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THE NUMBER OF HECKE EIGENVALUES OF SAME SIGNS

Y.-K. LAU & J. WU

Abstract. We give the best possible lower bounds in order of magnitude for the
number of positive and negative Hecke eigenvalues. This improves upon a recent
work of Kohnen, Lau & Shparlinski. Also, we study an analogous problem for
short intervals.

1. Introduction

Let k > 2 be an even integer and N > 1 be squarefree. Among all holomorphic
cusp forms of weight k for the congruence subgroup Γ0(N), there are finitely many
of them whose Fourier coefficients in the expansion at the cusp ∞,

f(z) =

∞
∑

n=1

λf(n)n(k−1)/2e2πinz (ℑmz > 0),

are the Hecke eigenvalues. Up to scalar multiples, these forms are the only simulta-
neous eigenfunctions of all Hecke operators. We call them the primitive forms, and
write H∗

k(N) for the set of all primitive forms of weight k for Γ0(N). One central
problem in modular form theory is to study the Hecke eigenvalues λf(n). (We omit
the factor n(k−1)/2 to avoid its uneven amplifying effect.) Classically it is known
that the arithmetical function λf(n) is real multiplicative, and verifies Deligne’s
inequality

(1.1) |λf(n)| 6 d(n)

for all n > 1, where d(n) is the divisor function. Furthermore we have

(1.2) λf(p
ν) = λf(p)ν and λf(p) = εf(p)/

√
p

for all primes p | N and integers ν > 1, where εf(p) ∈ {±1}. (See [5] and [10].) The
distribution of the Hecke eigenvalues λf (n) is delicate. The Lang-Trotter conjecture
concerns the frequency of λf(p) taking a value in the admissible range where p runs
over primes. This conjecture is still open but there are progress made on itself
or the pertinent questions, for instance, [6], [18], [16], [17], [2], [4], [15], etc. In
this regard, various techniques and tools are applied, such as ℓ-adic representations,
Chebotarev density theorem, sieve-theoretic arguments, Rankin-Selberg L-functions
and the method of B-free numbers. In [15], Kowalski, Robert & Wu investigated
the nonvanishing problem and gave the sharpest upper estimate to-date on the gaps
between consecutive nonzero Hecke eigenvalues. Another wide belief is Sato-Tate’s
conjecture, asserting that λf(p)’s are equidistributed on [−2, 2] with respect to the
Sato-Tate measure.
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In this paper, we are concerned with the Hecke eigenvalues of the same sign.
Kohnen, Lau & Shparlinski [14, Theorem 1] proved

(1.3) N
±

f (x) :=
∑

n6x, (n,N)=1
λf (n)≷0

1 ≫f
x

(log x)17

for x > x0(f). † Very recently Wu [21, Corollary] improved this result by reducing
the exponent 17 to 1−1/

√
3, as a simple application of his estimates on power sums

of Hecke eigenvalues. The exponent 1−1/
√

3 can be improved to 2−16/(3π) if one
assumes Sato-Tate’s conjecture.

Our first result is to remove the logarithmic factor by the B-free number method,
which is the best possible in order of magnitude.

Theorem 1. Let f ∈ H∗
k(N). Then there is a constant x0 such that the inequality

(1.4) N
±

f (x) ≫f x

holds for all x > x0.

Remarks. 1. It is clear from the proof that our method gives the stronger result
∑

n6x, (n,N)=1
n squarefree, λf (n)≷0

1 ≫f x

for every x > x0(f).
2. The method is robust and applies to, for example, modular forms of half-

integral weight. We return to this problem in another occasion.

By coupling (1.3) with Alkan & Zaharescu’s result in [1, Theorem 1], it is shown
in [14, Theorem 2] (see also [13, Theorem 3.4]) that there are absolute constants
η < 1 and A > 0 such that for any f ∈ H∗

k(N) the inequality

(1.5) N
±

f (x + xη) − N
±

f (x) > 0

holds for x > (kN)A, but no explicit value of η is evaluated. Apparently it is interest-
ing and important to know how small η can be, in order for a better understanding
of the local behaviour. A direct consequence of (1.5) is that λf (n) has a sign-change
in a short interval [x, x+xη] for all sufficiently large x. The sign-change problem was
explored in [11], [14], [21] on different aspects. Here we prove that there are plenty
of eigenvalues of the same signs in intervals of length about x1/2. More precisely, we
have the following.

Theorem 2. Let f ∈ H∗
k(N). There is an absolute constant C > 0 such that for

any ε > 0 and all sufficiently large x > N2x0(k), we have

(1.6) N
±

f (x + CNx1/2) − N
±

f (x) ≫ε (Nx)1/4−ε,

where

CN := CN1/2Ψ(N)3, Ψ(N) :=
∑

d|N
d−1/2 log(2d)

and x0(k) is a suitably large constant depending on k and the implied constant in

≫ε depends only on ε.

†It is worthy to indicate that they gave explicit values for the implied constant in ≫ and x0(f).
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The result in Theorem 2 is uniform in the level N , and its method of proof is
based on Heath-Brown & Tsang [8]. The exponent of Ψ(N) in CN can be easily
reduced to any number bigger than 3/2, which however may not be essential as
Ψ(N) is already very small - log Ψ(N) = o(

√
log N). The range of x > N2x0(k) can

also be refined to x > N1+εkA for some constant A > 0, but we save our effort.

Acknowledgement. Part of this work was done during the visit of the second au-
thor at the University of Hong Kong in 2008. He would like to thank the department
of mathematics for hospitality. The work was supported in part by a grant from the
PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research
Grants Council of Hong Kong and the Consulate General of France in Hong Kong
(F-HK36/07T). The authors would also thank the referee for his careful reading and
helpful comments.

2. Proof of Theorem 1

Let p′ be the least prime such that p′ ∤ N and λf(p
′) < 0. ‡ Introduce the set

B = {p : λf(p) = 0} ∪ {p : p | N} ∪ {p′} ∪ {p2 : p ∤ p′N and λf(p) 6= 0}
= {bi}i>1 (with increasing order).

By virtue of Serre’s estimate [18, (181)]:

|{p ≤ x : λf(p) = 0}| ≪f,δ
x

(log x)1+δ

for x ≥ 2 and any δ < 1
2
, we infer that

∑

i>1

1/bi < ∞ and (bi, bj) = 1 (i 6= j).

Let A := {ai}i>1 (with increasing order) be the sequence of all B-free numbers,
i.e. the integers indivisible by any element in B. According to [7], A is of positive
density

(2.1) lim
x→∞

|A ∩ [1, x]|
x

=

∞
∏

i=1

(

1 − 1

bi

)

> 0.

From the definition of B and the multiplicativity of λf (n), we have λf(a) 6= 0 for
all a ∈ A . Then we partition

A = A
+ ∪ A

−,

where

A
± :=

{

ai ∈ A : λf(ai) ≷ 0
}

.

Without control on the sizes of A ±, we construct a set from A + ∪ A − such that
the sign of λf (a) is switched on the counterpart. Consider

N
± := A

± ∪ {aip
′ : ai ∈ A

∓}.

‡According to [11], we have p′ ≪ (k2N)29/60.
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Clearly λf(a) ≷ 0 and (a, N) = 1 for all a ∈ N
± and

N
±

f (x) >
∣

∣N
± ∩ [1, x]

∣

∣ >
∣

∣A ∩ [1, x/p′]
∣

∣

for all x > 1. The desired result follows with the inequality (2.1).

3. Proof of Theorem 2

The method of proof is based on the investigation of

S∗
f(x) :=

∑

n6x, (n,N)=1

λf(n).

Since the L-function associated to f is belonged to the Selberg class and of degree
2, we apply the standard complex analysis to derive truncated Voronoi formulas for
S∗

f(x).

Lemma 3.1. Let f ∈ H∗
k(N). Then for any A > 0 and ε > 0, we have

(3.1)

S∗
f(x) =

ηf

π
√

2
(Nx)1/4

∑

d|N

(−1)ω(d)λf(d)

d1/4

∑

n6M

λf (n)

n3/4
cos

(

4π

√

nx

dN
− π

4

)

+ O

(

N1/2

{

1 +

(

x

M

)1/2

+

(

N

x

)1/4}

(Nx)ε

)

uniformly for 1 6 M 6 xA and x > N1+ε, where ηf = ±1 depends on f and

the implied O-constant depends on A, ε and k only. The function ω(d) counts the

number of all distinct prime factors of d.

Remark. The case N = 1 and A = 1 of (3.1) is covered in [12, Theorem 1.1]
with h = k = 1 therein. Our proof follows closely Section 3.2 of [9], and we first
evaluate the case without the constraint (n, N) = 1: for any A > 0 and ε > 0, we
have uniformly in 1 6 M 6 xA,

(3.2)

Sf (x) :=
∑

n6x

λf(n)

=
ηf(Nx)1/4

π
√

2

∑

n6M

λf(n)

n3/4
cos

(

4π

√

nx

N
− π

4

)

+ O

(

N1/2

{

1 +

(

x

M

)1/2

+

(

N

x

)1/4}

(Nx)ε

)

.

Proof. As usual, denote by µ(N) the Möbius function. (3.1) follows from (3.2)
because

S∗
f(x) =

∑

d|N
µ(d)

∑

n6x/d

λf(dn)

=
∑

d|N
(−1)ω(d)λf(d)

∑

n6x/d

λf (n)(3.3)
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by the multiplicativity of λf(n) and the first equality in (1.2). Note that x/d >

xε/(1+ε) when x > N1+ε and d|N , we can keep the same range of M for all inner
sums over n by selecting a suitable A. Inserting (3.2) into (3.3), the main term
of (3.1) comes up immediately. The effect of summing the O-terms over d|N is
negligible in light of the second formula in (1.2), and hence the result.

To prove (3.2), we consider M ∈ N without loss of generality. As usual write

L(s, f) :=
∑

n>1

λf (n)n−s (ℜe s > 1).

Let κ := 1 + ε and T > 1 be a parameter, chosen as

T 2 =
4π2(M + 1

2
)x

N
.(3.4)

By the truncated Perron formula (see [20, Corollary II.2.4] with the choice of σa = 1,
α = 2 and B(n) = Cεn

ε), we have

(3.5) Sf (x) =
1

2πi

∫ κ+iT

κ−iT

L(s, f)
xs

s
ds + O

(

N1/2

{(

x

M

)1/2

+ 1

}

(Nx)ε

)

.

We shift the line of integration horizontally to ℜe s = −ε, the main term gives

(3.6)
1

2πi

∫ κ+iT

κ−iT

L(s, f)
xs

s
ds = L(0, f) +

1

2πi

∫

L

L(s, f)
xs

s
ds,

where L is the contour joining the points κ± iT and −ε± iT . Using the convexity
bound

L(σ + it, f) ≪
(
√

N(k + |t|)
)max{0,1−σ}+ε

(−ε 6 σ 6 κ),

the integrals over the horizontal segments and the term L(0, f) can be absorbed in
O
(

(NTx)ε(N1/2 + T−1x)
)

. The O-constant depends on k and ε, and in the sequel,
such a dependence in implied constants will be tacitly allowed.

To handle the integral over the vertical segment Lv := [−ε − iT,−ε + iT ], we
invoke the functional equation
(

√
N

2π

)s

Γ

(

s +
k − 1

2

)

L(s, f) = ikηf

(

√
N

2π

)1−s

Γ

(

1 − s +
k − 1

2

)

L(1 − s, f)

where ηf := µ(N)λf(N)
√

N ∈ {±1} (see [10, p.375] with an obvious change of
notation). Then we deduce that

(3.7)
1

2πi

∫

Lv

L(s, f)
xs

s
ds = ikηf

∑

n>1

λf(n)

n
ILv

(nx),

where

ILv
(y) :=

1

2πi

∫

Lv

(

4π2

N

)s−1/2
Γ(1 − s + (k − 1)/2)

Γ(s + (k − 1)/2)

ys

s
ds.

The quotient of the two gamma factors is

|t|1−2σe−2i(t log |t|−t)+isgn(t)π(k−1)/2{1 + O(t−1)}
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for bounded σ and any |t| > 1, where the implied constant depends on σ and k.
Together with the second mean value theorem for integrals (see [20], Theorem I.0.3),
we obtain

(3.8)

ILv
(nx) ≪ N1/2

(

N

nx

)ε(∣
∣

∣

∣

∫ T

1

t2εe−ig(t) dt

∣

∣

∣

∣

+ T 2ε

)

≪ N1/2

(

NT 2

nx

)ε(∣
∣

∣

∣

∫ b

a

e−ig(t) dt

∣

∣

∣

∣

+ 1

)

for some 1 6 a 6 b 6 T , where g(t) := t log
(

Nt2/(4π2nx)
)

− 2t. In view of (3.4),
we have

g′(t) = − log(4π2nx/(Nt2)) < 0 and |g′(t)| > | log(n/(M + 1
2
))|

for n > M + 1 and 1 6 t 6 T . Using (1.1) and [20, Theorem I.6.2], we infer that

(3.9)

∑

n>M

λf(n)

n
ILv

(nx) ≪ N1/2

(

NT 2

x

)ε
∑

n>M

d(n)

n1+ε

(
∣

∣

∣

∣

log
n

M + 1
2

∣

∣

∣

∣

−1

+ 1

)

≪ N1/2

(

NT 2

x

)ε{
∑

M<n62M

d(n)(M + 1
2
)

n1+ε|n − M − 1
2
| +

1

Mε/2

}

≪ N1/2

(

NT 2

√
Mx

)ε

≪ N1/2(Nx)ε.

For n 6 M , we extend the segment of integration Lv to an infinite line L ∗
v in

order to apply Lemma 1 in [3]. Write

L
±
v := [1

2
+ ε ± iT, 1

2
+ ε ± i∞), L

±
h := [−ε ± iT, 1

2
+ ε ± iT ]

and define L
∗
v to be the positively oriented contour consisting of Lv, L

±
v and L

±
h .

The contribution over the horizontal segments L
±
h is

I
L

±
h

(nx) ≪
∫ 1/2−ε

−ε

(

4π2

N

)σ−1/2

T 1−2σ (nx)σ

T
dσ

≪ N1/2

∫ 1/2−ε

−ε

(

nx

NT 2

)σ

dσ

≪ N1/2(Nx)ε.

As in (3.8), for n 6 M we get that

I
L

±
v

(nx) ≪ N1/2

(

nx

N

)1/2+ε(∫ ∞

T

t−1−2εe−ig(t) dt +
1

T 1+2ε

)

≪ N1/2

(

nx

NT 2

)1/2+ε( ∣
∣

∣

∣

log
M + 1

2

n

∣

∣

∣

∣

−1

+ 1

)

≪ N1/2

( ∣

∣

∣

∣

log
M + 1

2

n

∣

∣

∣

∣

−1

+ 1

)

.
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So

(3.10)

∑

n6M

λf(n)

n

(

I
L

±
v

(nx) + I
L

±
h

(nx)
)

≪
∑

n6M

d(n)

n

(
∣

∣I
L

±
v

(nx)
∣

∣ +
∣

∣I
L

±
h

(nx)
∣

∣

)

≪ N1/2(Nx)ε.

Now all the poles of the integrand in

IL ∗
v
(y) =

√
N

2π

1

2πi

∫

L ∗
v

Γ(1 − s + (k − 1)/2)Γ(s)

Γ(s + (k − 1)/2)Γ(1 + s)

(

4π2y

N

)s

ds

lie on the right of the contour L ∗
v . After a change of variable s into 1 − s, we see

that

IL ∗
v
(y) =

√
N

2π
I0

(

4π2y

N

)

,

with

I0(t) :=
1

2πi

∫

Lε

Γ(s + (k − 1)/2)Γ(1 − s)

Γ(1 − s + (k − 1)/2)Γ(2 − s)
t1−s ds.

Here Lε consists of the line s = 1
2
− ε + iτ with |τ | > T , together with three sides

of the rectangle whose vertices are 1
2
− ε− iT , 1 + ε− iT , 1 + ε− iT and 1

2
− ε + iT .

Clearly our I0 is a particular case of Iρ defined in [3, Lemma 1], corresponding to
the choice of parameters ρ = 0, δ = A = 1, ω = 1, h = 2, k0 = −(2k + 1)/4. It
hence follows that

(3.11) IL ∗
v
(nx) =

ik(nNx)1/4

π
√

2
cos

(

4π

√

nx

N
− π

4

)

+ O

(

N3/4+ε

(nx)1/4

)

,

The value of e′0 in Lemma 1 of [3] is 1/
√

π by direct computation. We conclude

(3.12)

∑

n6M

λf(n)

n
ILv

(nx) =
ik(Nx)1/4

π
√

2

∑

n6M

λf (n)

n3/4
cos

(

4π

√

nx

N
− π

4

)

+ O

(

N1/2

{(

N

x

)1/4

+ 1

}

(Nx)ε

)

,

from (3.10) and (3.11), and finally the asymptotic formula (3.2) by (3.5)-(3.7), (3.9)
and (3.12). �

Following Theorem 1 of [8], we have the next lemma.

Lemma 3.2. Let f ∈ H∗
k(N). There exist positive absolute constants C, c1, c2 such

that for all sufficiently large X > N2X0(k), we can find x1, x2 ∈ [X, X + CNX1/2]
for which

S∗
f(x1) > c1(NX)1/4 and S∗

f(x2) < −c2(NX)1/4,

where CN := CN1/2Ψ(N)3 and X0(k) is a constant depending only on k. The same

result also holds for Sf (x).
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Proof. Define

Kτ (u) := (1 − |u|)(1 + τ cos(4παu)),

where τ = 1 or −1 and α is a (large) parameter, both chosen at our disposal.
Consider the following integral

rβ = rβ(α, τ, t) :=

∫ 1

−1

Kτ (u) cos

(

4π(t + αu)
√

β − π

4

)

du,

where t ∈ N and β > 0. Because

w(ξ) :=

∫ 1

−1

(1 − |u|)ei2πξu du =

(

sin πξ

πξ

)2

=

{

1 if ξ = 0,

O
(

min(1, ξ−2)
)

if ξ 6= 0,

we can write, with the notation αβ := 2α
√

β and α±
β := 2α(

√
β ± 1),

(3.13)

rβ =

∫ 1

−1

(1 − |u|)
(

1 + τ
ei4παu + e−i4παu

2

)

ℜe ei{4π(t+αu)
√

β−π/4} du

= ℜe ei(4πt
√

β−π/4)

∫ 1

−1

(1 − |u|)
(

ei2παβu +
τ

2
ei2πα+

β
u +

τ

2
ei2πα−

β
u

)

du

=

(

w
(

αβ

)

+
τ

2
w
(

α+
β

)

+
τ

2
w
(

α−
β

)

)

cos

(

4πt
√

β − π

4

)

= δβ=1
τ

2
√

2
+ O

(

min

(

1,
1

α2β

)

+ δβ 6=1 min

(

1,
1

(α−
β )2

))

,

where the O-constant is absolute,

δβ=1 :=

{

1 if β = 1

0 otherwise
and δβ 6=1 := 1 − δβ=1.

The last error term in (3.13) appears only when β 6= 1.
For all X > N2X0(k) (whose value will be specified below), we write T =

(X/N)1/2 and t = [T ] + 1 ∈ N, and consider the convolution

Jτ =

∫ 1

−1

Ff(t + αu)Kτ (u) du,

where

Ff (t + αu) :=
π
√

2

ηf

S∗
f (N(t + αu)2)
√

N(t + αu)
.

By Lemma 3.1 with M = NT 2 = X, we deduce that

Ff (t + αu) =
∑

d|N

(−1)ω(d)λf(d)

d1/4

∑

n6M

λf(n)

n3/4
cos

(

4π(t + αu)

√

n

d
− π

4

)

+ Ok

(

1

T 1/4

)

,

and

Jτ =
∑

d|N

(−1)ω(d)λf(d)

d1/4

∑

n6M

λf (n)

n3/4
rn/d + Ok

(

1

T 1/4

)

(3.14)

by (1.2).
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Next we estimate the contribution of the O-term in (3.13) to Jτ . Using (1.2) and
(1.1) again, its contribution to Jτ is

≪
∑

d|N

1

d3/4

{

∑

n6M

d(n)

n3/4
R′

d,n(α) +
∑

n6M
n 6=d

d(n)

n3/4
R′′

d,n(α)

}

,(3.15)

where

R′
d,n(α) := min

(

1,
d

α2n

)

, R′′
d,n(α) := min

(

1,
d

α2|√n −
√

d|2

)

.

Consider the second sum in the curly braces. We separate n into

n 6 α−d, α−d < n < α+d or α+d 6 n

where α± := (1−α−1/2)∓2, and R′′
d,n(α) is 6 1/α, 1 or d/(αn) accordingly. Therefore,

∑

n6M
n 6=d

d(n)

n3/4
R′′

d,n(α) 6
1

α

∑

n6α−d

d(n)

n3/4
+

∑

α−d<n<α+d
n 6=d

d(n)

n3/4
+

d

α

∑

n>α+d

d(n)

n7/4
.

Obviously the first and last terms on the right-hand side are ≪ α−1d1/4 log(2d).
Note that n ≍ d in the second sum. So, by using Shiu’s Theorem 2 in [19] it follows

∑

α−d<n<α+d
n 6=d

d(n)

n3/4
≪ d−3/4

∑

α−d<n<α+d
n 6=d

d(n)

≪ α−1/2d1/4 log(2d)

if d > α. Otherwise (i.e. d 6 α), pulling out d(n) ≪ nε ≪ dε ≪ αε, we have
∑

α−d<n<α+d
n 6=d

d(n)n−3/4 ≪ αεd−3/4
∑

α−d<n<α+d
n 6=d

1

≪ αεd−3/4α−1/2d

≪ α−1/3d1/4 log(2d).

(We can assume that (α+ − α−)d > α−1/2d > c′ for a small constant c′, otherwise
the last sum is empty.) Hence

∑

n6M
n 6=d

d(n)

n3/4
R′′

d,n(α) ≪ α−1/3d1/4 log(2d).

The first sum in the bracket of (3.15) can be treated in the same fashion (even
more easily). Thus, (3.15) is bound by

≪ α−1/3
∑

d|N

log(2d)

d1/2
=: α−1/3Ψ(N).
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We conclude from (3.14) with (3.13) and (1.2) that

Jτ =
τ

2
√

2

∑

d|N

(−1)ω(d)

d2
+ O

(

Ψ(N)

α1/3

)

+ Ok

(

1

T 1/4

)

,

where the implied constant is absolute in the first O-term, but depends on k in the
second. Noticing that

∑

d|N

(−1)ω(d)

d2
=
∏

p|N

(

1 − 1

p2

)

>
6

π2

and T >
√

NX0(k), we take α = CΨ(N)3 with a large absolute constant C and a
large X0(k) so that both O-terms O(α−1/3Ψ(N)) and Ok(T

−1/4) are 6 cos(π/4)/π2 =
1/(π2

√
2). Therefore

J−1 < −1/(π2
√

2) and J1 > 1/(π2
√

2).

With the nonnegativity of Kτ (u) and the estimate

1 − (2πα)−2 6

∫ 1

−1

Kτ (u) du 6 2 (τ = ±1),

we have

2Ff (t + αη+) > 1/(π2
√

2) and
(

1 − (2πα)−2
)

Ff(t + αη−) 6 −1/(π2
√

2)

for some η+, η− ∈ [−1, 1]. Let CN = CN1/2Ψ(N)3. As

X − 3CN

√
X 6 N(t + αη±)2 6 X + 3CN

√
X,

our assertion follows from the definition of Ff and replacing X−3CN

√
X by X. �

Now we are ready to prove Theorem 2.
We exploit the consecutive sign changes of S∗

f(x). Let x > N2X0(k) where X0(k)

takes the value as in Lemma 3.2. We apply Lemma 3.2 to the intervals [x, x+CNx1/2]
and [y, y+CNy1/2] where y = x+CNx1/2. Over each of the intervals, S∗

f(x) attains in

magnitude (Nx)1/4 in both positive and negative directions. Hence, we can find three
points x < x1 < x2 < x3 < x+3CNx1/2 such that S∗

f(xi) (i = 1, 2, 3) takes alternate

signs and their absolute values are ≫ (Nx)1/4. (Note that 2
√

x >
√

x + CN

√
x.) It

follows that the two differences

S∗
f(x2) − S∗

f(x1) =
∑

x1<n6x2

(n,N)=1

λf(n)

and
S∗

f(x3) − S∗
f(x2) =

∑

x2<n6x3

(n,N)=1

λf(n)

have absolute values ≫ (Nx)1/4 but are of opposite signs. This implies (1.6), since
for example, if

∑

a<n<b
(n,N)=1

λf (n) < −c′(Nx)1/4
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for some constant c′ > 0 and b ≪ x, then we have

c′(Nx)1/4 <
∑

a<n<b, (n,N)=1
λf (n)<0

(

− λf(n)
)

≪ xε
∑

a<n<b, (n,N)=1
λf (n)<0

1.

This completes the proof of Theorem 2. �
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