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Abstract: The utilization of new generation computing platforms like computational
grids or desktop grids introduces new challenging problems. In particular, due to the
huge number of the involved processors, security and fault-tolerance aspects are key issues
that must be taken into account. Coordinated checkpointing is one of the most popular
technique to deal with failures in such platforms. The approach of application-directed
checkpointing in fault-tolerance puts an incredible strain on the storage system and the
communications. This results in large overheads on the execution times of applications
that severely impact the performance and the scalability. This work presents a new model
of coordinated checkpoint/restart mechanism for several types of computing platforms. Its
main feature is that it is independent from the failure law which makes it very flexible.
We will show that such a model may be used to determine the optimal periodic checkpoint
interval and to reduce the checkpoint overhead through mathematical analysis of reliability.
Moreover, unlike most of the existing checkpointing models, the proposed model is able to
take into account a variable checkpoint cost. Finally, we report some experiments based on
simulations for random failure distributions corresponding to the two most popular laws,
namely, the Poisson’s process and Weibull’s law.

Key-words: Checkpointing , Fault tolerance, Parallel processing



Une nouvelle modélisation flexible du mécanisme de

sauvegarde/reprise

Résumé : L’utilisation des nouvelles plates-formes de calcul parallèle comme les grilles de
calcul ou les desktop grids introduisent de nouvelles problématiques. En particulier, à cause
du nombre élevé des noeuds de calcul, la sécurité et la tolérance aux pannes sont des aspects
très importants et ils doivent être pris en considération. Le mécanisme de sauvegarde
et reprise cordonnée est un des protocoles le plus populaire dans ces nouvelles plates-
formes. Néanmoins, ce genre de mécanisme crée une congestion importante aux cours de
l’exécution. Cela touche directement les performances et la scalabilité des applications avec
ce type de mécanisme. Ce travail présente une nouvelle modélisation flexible du mécanisme
de sauvegarde et reprise dans divers environnements de calcul. En effet, ce modèle permet
de déterminer les intervalles optimaux entre chaque sauvegarde dont le but est de réduire
le surcoût engendré par le mécanisme de sauvegarde. Nous notons que ce modèle est
indépendant de la loi de panne ce qui le rend flexible. En plus ce modèle prend en compte
un coût variable de sauvegarde, ce qui représente une originalité de ce modèle par rapport
aux modèles existants. Finalement nous proposons des expérimentations qui valident le
modèle avec deux types de loi de panne (Processus de Poisson et loi de Weibull).

Mots-clés : Sauvegarde, Tolérance aux pannes, Calcul parallèle
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1 Introduction

Today the most powerful computing systems involve more and more processors. Reliability
is a crucial issue to address while running applications on such large systems because the
failure rate grows with the system size. The users expect several processors to fail during
the execution of their applications. Thus, it is necessary to develop strategies for providing
a reliable completion of large applications. From the IBM source, the BlueGene/L system
with 65,536 nodes is expected to have a mean time between failure less than 24 hours
[1]. Fault-tolerant systems have been extensively studied on various computing or real-
time systems. Many approaches have been proposed for dealing with fault-tolerance. We
focus in this work on the coordinated checkpoint/restart which is one of the most popular
mechanism used in practice [5][6][9][11][14]. In checkpointing-based approaches, the state
of computations is saved periodically in a reliable storage [2]. Informally, checkpointing
is a technique that enables to reduce the completion time of the application by saving
intermediate states in a stable storage, and then, to restore from the last stored state when
a failure occurs. In the case of distributed computations, checkpointing methods differ
from each other in the way the processes are coordinated in order to capture the global
state in a consistent manner or not. Coordinated checkpointing requires that all processes
coordinate the construction of a consistent global state before they write the individual
checkpoints in the stable storage. After one or many failures, the restart mechanism sets
up each processor from the last checkpoint and then, it schedules again the tasks of the
crashed processors on new ones.
In this paper, we focus on the minimization of both the completion time of an application
and the checkpoint/restart overhead by determining the optimal interval between two
consecutive checkpoints. The main contribution of this work is to derive a new probabilistic
model of the execution time of parallel applications with stochastic processes. This explicit
analytical cost model enables to address and solve several important problems. First, like
most of other models, it can be used to determine the optimal interval length between
two successive checkpoints that minimizes the congestion on the network in the case of
periodic checkpoints. Moreover, it is possible to take into account a variable checkpoint
cost that depends on residual workload. Finally, the proposed model can be adapted to
several types of computations since it is independent from the failure law. We show how to
use it for the two most popular laws (Exponential and Weibull distribution). This makes
it very flexible.
The rest of this paper is organized as follows: Section 2 briefly recalls and discusses the other
existing models for coordinated checkpointing on parallel platforms. Section 3 describes
the proposed model which leads to a formula that expresses the expected completion time
of the execution. In Section 4, we detail how to apply this model to two case-studies for
the distribution of failure occurrences with Poisson’s process and Weibull’s law. Before
concluding, we report in Section 5 some experiments based on simulations for assessing the
model in several scenarii.
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2 Review of Related Works

Let us first recall the principle of the coordinated checkpoint/restart protocol proposed by
Chandy et al. [2]. It served as a basis of many implementations of fault tolerant systems
for high performance computing. Coordinated checkpointing requires that all processes
periodically coordinate the construction of a consistent global state before writing the state
of individual checkpoints in a stable storage. Based on simulation results, Elnozahy et al.
[6] showed that this approach is the most effective fault tolerance mechanism in large-scale
parallel platforms. The aims of fault tolerance models is to find strategies that minimize
the completion time of the execution. Young [14] proposed a checkpoint/restart model
where the failures follow an exponential law. Moreover, checkpointing is assumed to be
fault-free and to have a constant execution time. The basic periodic version of this model
has been recently extended by Oliner et al. [11]. Daly proposed also in [5] an extension
of Young’s model where failures can occur during checkpointing and he derived a higher
order of approximation. Both Young’s and Daly’s models are able to compute an optimal
checkpoint interval that minimizes the completion time considering constant checkpoint
times. Other works from Geist et al. [8], Plank et al. [12] studied stochastic models and
determined an optimal checkpoint date that minimizes a cost function which corresponds
to maximize the availability of the system. Yudan et al. [9] proposed a stochastic model
and an optimal checkpoint interval which does not depend on the specific failure law, such
as the Poisson’s process used in [8, 12]. Moreover, in this model, it is possible to compute
the optimal checkpoint interval that minimizes the expected wasting time in the protocol
itself (checkpoint overhead, restart time and rollback time). Another variant of this model
is proposed in [10], that modelize the incremental checkpoint under Poisson’s process.
We present in this paper a new model that expresses the expected time to completion
with respect to the distribution law of failures taking into account variable checkpoint
overheads. The two most important differences between this new model and the previous
works is that it does not depend on a particular failure law and it takes into account the
variable size of checkpoint as an input of the problem.

3 Probabilistic Model

In this section a detailed description of the proposed probabilistic execution model is
presented. Firstly, we present a short description of the application model with no fail-
ures, then we add a failure process which allows to compute the expected completion
time of the execution with a formal method. Finally, using this abstraction that models
a classical execution without checkpointing, we derive a global model that contains the
checkpoint/restart mechanism. Moreover, we establish a global formula that expresses the
expected completion time of the execution.

INRIA



A new flexible Checkpoint/Restart model 5

3.1 Application Model

The first input parameter in the considered problem is the application model. In this work
a parallel application is modelized by a residual computation work function denoted by ωt,
where t is time index and ωt represents the amount of work remaining at t. The typical
shape of this cost function is represented in Figure 1. The slope of the curve indicates
the parallel degree of the application. In the general case, the curve can be divided into
two parts. The first part before the moment τ is characterized by a linear speed-up with
a slope which depends on the number of processors m and overhead factor α (due to the
parallelism). In this case, all the processors are busy. The second part presents a more
curved shape. This means that there is not enough work for all the processors, and thus,
some idle time appear. These two parts will be determined by the amount of parallelism
in the target application.
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t

ωt

Pm

P3

P2

P1

Tend

t
Tend

τ

ωτ

τ

ωτ
ω0 − ωτ

Figure 1: General execution model

In this work we assume, that having a linear speed-up until the end of the application,
where ω0

αm
= τ = Tend. This hypothesis will be relaxed in future works, but is not really a

limitation for large applications. Under this hypothesis the ωt function can expressed as
follows:

Definition 1. Let ω0 be the total amount of work to be executed, α the overhead factor
0 < α 6 1 and m the number of available processors. The residual workload at time t is:

ωt = ω0 − αmt

3.2 Probabilistic Execution Model

After having described the application model, the next step is to add to this abstraction
the failures process and the checkpoint/restart mechanism. The global execution model
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is drawn in Figure 2. From this figure we deduce the following renewal process. At the
first step, there is a start-up or a restart phase in where the time is elapsed but the
residual workload does not decrease. It is denoted by Rj which is the restart cost in the
jth checkpoint interval. Thus, the cost of this restart depend on the cost of the preview
checkpoint. Then, the computation is started and the residual workload is decreased with a
speed-up depending on the number of computing nodes. After an interval of work denoted
by Ij a checkpoint is triggered. Finally, when a failure comes into one of these preview
phases, all the computed work after the last checkpoint is lost. Thus, the application
is restarted from the last checkpoint and the process is restarted from the beginning.
Using this abstraction will allow to establish some important theorems under the following
hypothesis.

Statistical hypothesis on the failures process Mainly we consider permanent failures
that affect the hardware or software system. In this model, if a processor crashes, all of its
tasks will be reassigned to another new processor. We also assume that we have available
processors to replace the lost ones so that the number of processors remains m. Also,
we assume reliability of the failures detection tool and the time of failures detection is
negligible and that the failures do not propagate. Thus, the time between failures on
different processors in the system are independent and identically distributed. Finally,
the phases of checkpoint and recovery may also suffer from failures. From the above
assumptions, we deduce that {Xj

i } process (which denote the ith inter-arrival of failures in
the jth interval of checkpoint) is a renewal process, thus {Xj

i } are positive independent and
identically distributed random variables with distribution function F (t) and probability
density function f(t).

Phase of Checkpoint

*

Ik

X1
1 X1

2 X1
3 Xk−1

1 Xk−1
2 Xk−1

3

I1

Ik−1

T 1
end T k−1

end T k
end

Xk
1 Xk

2

t

Tend

ω0

C (I1 + I2 + · · · + Ik−1)

C (I1)

Wt
R1 R1 R1

Rk−1

Rk Rk

Rk−1Rk−1

Figure 2: Model of execution with the checkpoint/restart mechanism
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Hypothesis on the Checkpoint/Restart process The checkpoint process is consid-
ered as a deterministic process and the cost of a checkpoint depends only on the amount
of the work already done. It is denoted by C(Sj) where Sj =

∑j

i=1 Ii the amount of
work already done. Thus, the restart process is considered as a deterministic process and
its cost depends only on the cost of the last checkpoint. It is denoted by R(Sj−1) where
Sj−1 =

∑j−1
i=1 Ii is the work already done before the last checkpoint.

State variables
{Zi}n∈N: The failure arrival process.
{Xi}n∈N: The inter-arrival time of failure process (which does not depend on the j index).
{Ij}j∈N: Each Ij represent the amount of work to be done before each checkpoint.
Tend: The global completion time in presence of failures.
{T j

end}j∈N: Each T j
end represents the sub-completion time of a sub-quantity of workload.

k ∈ N: The number of checkpoint barriers.

3.2.1 Model of Execution without Checkpoint

R R

 Failure

R

phase of recoveryphase of startup

X1 X2 X3

tZ2Z1 Tend

ω0

ωt

Z3

Figure 3: Execution Model without checkpoint mechanism.

To establish the first fundamental theorem, we start by studying the execution without
checkpoint mechanism. In such an execution model, the execution is restarted from the
beginning after a failure (see Figure 3). We recall that in this case the recovery process is
a deterministic process with duration Rj = R. From this figure, we deduce a formula that
expresses the expected completion time Tend. Consider a number of failures N during the
execution such as:

{N = n} = {X1 <
ω0

αm
+ R, X2 <

ω0

αm
+ R · · ·Xn >

ω0

αm
+ R}.

Consequently N is a stopping time process associated to the process {Xi}. Based on the
Wald’s equation [13] we can establish the following theorem.

RR n° 6751
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Theorem 1. Let Tend be the completion time of the execution, ω0 the quantity of work at the
beginning, m the number of processors, α the overhead factor (0 < α 6 1) and p the proba-
bility of failure occurrence during the execution with p = P[X 6

ω0

αm
+R] = F ( ω0

αm
+R) then:

E(Tend) =
1

1 − p
E(X1) +

ω0

αm
+ R − E(XN).

Proof. From Figure 3, We have:
Tend =

∑N

i=1 Xi + ω0

αm
+ R − XN , where XN is the first interval between failures which is

greater than ( ω0

αm
+ R).

Taking the expectation of both sides gives:

E(Tend) = E(
N

∑

i=1

Xi) +
ω0

αm
+ R − E(XN).

Using Wald’s equation [13] we obtain:

E(Tend) = E(N)E(X1) +
ω0

αm
+ R − E(XN).

Since the {Xi} process is independent and identically distributed, hence the stopping time
N is geometrically distributed with parameter p = P[X 6

ω0

αm
+ R], thus E(N) = 1

1−p
.

Consequently:

E(Tend) =
1

1 − p
E(X1) +

ω0

αm
+ R − E(XN).

Moreover given the density f(x) of inter-arrival time of failures, the quantity E(XN) is
computed by the following expression:

E(XN) = E(X|X >
ω0

αm
+ R) =

1

P[X > ω0

αm
+ R]

∫ +∞

ω0

αm
+R

xf(x)dx. (1)

3.2.2 Model of Execution with a Checkpoint Mechanism

To add the checkpoint mechanism in the previous model, we divide the initial workload
ω0

αm
in k intervals denoted by I1, I2 · · · Ik (see Figure 2). Then, we use the above model

for each Ij, as Ij is the amount of workload that should be done between the checkpoint
number j − 1 and j. Because the computation is restarted again after a checkpoint, we
suppose that the failures process is also restarted after each checkpoint barrier. From this
hypothesis we establish the following theorem:

Theorem 2. Let k be the number of checkpoints, I1, I2, I3...Ik be the amount of work
between each checkpoint, such as

∑k

j=1 Ij = ω0

αm
, C(Sj) the cost of the checkpoint after the

INRIA



A new flexible Checkpoint/Restart model 9

amount of work Sj and R(Sj−1) the restart cost before the jth checkpoint then:

E(Tend) = E(X1)
k

∑

j=1

1

1 − pj

+
k

∑

j=1

ηj − E(Xj
N),

where ηj = Ij + C(Sj) + R(Sj−1), pj = F (ηj).

Proof. As it can be seen in Figure 2, Tend can be written as Tend = T 1
end +T 2

end + · · ·+T k
end.

Taking the expectation of both sides gives:

E(Tend) = E(T 1
end) + E(T 2

end) + · · · + E(T k
end).

Thus, using Theorem 1 with ηj as initial amount of work, E(T j
end) is given as follows:

E(T j
end) =

1

1 − pj

E(Xj
1) + ηj − E(Xj

N).

Then,

E(Tend) = E(X1)
k

∑

j=1

1

1 − pj

+
k

∑

j=1

ηj − E(Xj
N) (2)

Thus, Theorem 2 expresses the expected value of the completion time. We notice that
this formula does not depend on the type of failures law, which is very important. Then,
in order to find the optimal amount of work between each checkpoint we have to minimize
the equation in Theorem 2.

4 Case Studies

In this section, we propose two exhaustive case studies. In the first one, we express the
optimal checkpoint interval when the failures process is modeled by a Poisson’s process.
Then, in the second one we also express the optimal solution when the failures are modelized
by a Weibull’s law.

4.1 Poisson’s Process Failures

One of the most common method to modelize the failures in electronic device, is the
Poisson’s process with a constant rate (denoted by λ).

Proposition 1. If the distribution of failures time follows a Poisson’s process with rate λ
then:

E(Tend) =
1

λ

k
∑

j=1

[eληj − 1] where ηj = Ij + C(Sj) + R(Sj−1).

RR n° 6751
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Proof. First due to the Poisson’s process distribution, we have:

• E(X1) = 1
λ
,

• pj = 1 − e−ληj ,

• From Equation (1), we have E(Xj
N) = ηj + 1

λ
.

Then, from Theorem 2 we have:

E(Tend) = E(X1)
k

∑

j=1

1

1 − pj

+
k

∑

j=1

ηj − E(Xj
N),

=
1

λ

k
∑

j=1

eληj +
k

∑

j=1

ηj −
k

∑

j=1

ηj −
k

λ
,

=
1

λ

k
∑

j=1

[eληj − 1].

4.1.1 Case with a Constant Checkpoint Cost

When the cost of the checkpoint barrier is constant such that C(I) = C and R(S) = R,
the general form of the equation in Proposition 1 becomes:

E(Tend) =
1

λ

k
∑

j=1

[eλ(Ij+C+R) − 1]. (3)

Lemma 1. When the cost of Checkpoint and restart is constant, then the optimal interval
between each checkpoint is ω0

αmk
where k is the checkpoint number.

Proof. Let L the Lagrange function and l1 a Lagrange multiplier, such as:

L(I1, I2 · · · Ik) =
1

λ

k
∑

j=1

eIj+C+R + l1(
ω0

αm
−

k
∑

j=1

Ij).

Then, the minimal value is the value where the gradient of L is equal to zero.

∂L
∂I1

= eλ(I1+C+R) + l1 = 0
∂L
∂I2

= eλ(I2+C+R) + l1 = 0
∂L
∂Ik

= eλ(Ik+C+R) + l1 = 0
∂L
∂l1

= ω0

αm
−

∑k

j=1 Ij = 0

.

INRIA
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hence,
I1 = log(−l1)

λ
− C − R

I2 = log(−l1)
λ

− C − R

Ik = log(−l1)
λ

− C − R
ω0

αm
=

∑k

j=1 Ij

.

Thus,
I1 = I2 = · · · = Ik =

ω0

αmk

After finding the optimal interval between each checkpoint using Lemma 1 the Equation
(3) becomes:

E(Tend) =
k

λ
(eλ(

ω0

αmk
+C+R) − 1) (4)

Theorem 3. If the failures follows a Poisson’s process and the checkpoint/restart cost is
constant, the optimal checkpoint number is:1

k̂ =
ω0 λ

αm(1 + W (−e−1−λ (C+R)))

Proof. To minimize Equation (4), let define φ by:

φ(k) =
k

λ
(eλ(

ω0

αmk
+C+R) − 1)

The optimal value is the root of the derivation d(φ)
dk

= 0
(

eλ ( ω0

αmk
+C+R) − 1

)

λ
−

ω0

αmk
eλ ( ω0

αmk
+C+R) = 0

e
λω0

αmk eλ(C+R)(
λω0

αmk
− 1) = −1,

e
λω0

αmk
−1(

λω0

αmk
− 1) = −e−λ(C+R)−1,

Then, using the Lambert equation denoted by W such as:

X = Y eY ⇐⇒ Y = W(X)

We obtain:

k̂ =
ω0 λ

αm(1 + W (−e−1−λ (C+R)))

Notice the Lambert’s function is multivalued except when we restrict to real arguments,
then the function is defined only for X ≥ −1/e which is true for (−e−1−λ (C+R)). Using
Taylor’s series one can compute a numeric value of this function.

1W denote the Lambert function [4].
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4.2 Using Weibull’s Law

In this second case study, a Weibull’s law with shape parameter β and scale parameter λ
is used to modelize the failure distribution occurrences.

Proposition 2. If the distribution of inter-arrival failures time follows a Weibull’s law
with a shape parameter β and a scale λ parameter then:

E(Tend) =
k

∑

j=1

e(ληj)
β

∫ ηj

0

e−(λx)β

dx.

Proof. Let 1 − pj = p̄j. Using Theorem 2, we have:

E(Tend) = E(X1)
k

∑

j=1

1

p̄j

+
k

∑

j=1

ηj −
k

∑

j=1

E(XNj
).

Then, from Weibull’s law we have:

• E(X1) = Γ(1 + 1
β
) 1

λ
such as Γ is the complete Gamma function,

• pj = 1 − e−(ληj)
β

,

• E(Xj
N) = e(ληj)

β

Γ(1 + 1
β
) 1

λ
+ ηj − e(ληj)

β ∫ ηj

0
e−(λx)β

dx.

Hence,

E(Tend) =
Γ (1 + 1

β
)

λ

k
∑

j=1

e(ληj)
β

+
k

∑

j=1

ηj −
k

∑

j=1

ηj−

k
∑

j=1

e(ληj)
β

(
Γ (1 + 1

β
)

λ
−

∫ ηj

0

e−(λx)β

dx),

E(Tend) =
k

∑

j=1

e(ληj)
β

∫ ηj

0

e−(λx)β

dx.

4.2.1 Case with Constant Checkpoint Cost

Let us now assess the proposed model when the checkpoint cost is constant. Thus, the
general form of the equation in Proposition 2 becomes:

E(Tend) =
k

∑

j=1

e(λ(Ij+C+R))β

∫ Ij+C+R

0

e−(λx)β

dx (5)
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A new flexible Checkpoint/Restart model 13

Lemma 2. If the failure distribution is a Weibull’s law and the checkpoint/restart cost
is constant, the optimal interval between each checkpoint is ω0

αmk
, where k is the optimal

number of checkpoints.

Proof. Let: τ(I1, I2 · · · Ik) .

τ(I1, I2 · · · Ik) = e(λ(I1+C+R))β

∫ I1+C+R

0

e−(λx)β

dx+

e(λ(I2+C+R))β

∫ I2+C+R

0

e−(λx)β

dx + · · ·

· · · + e(λ(Ik+C+R))β

∫ Ik+C+R

0

e−(λx)β

dx

τ is symmetric then:

τ(I1, I2 · · · Ik) =
1

k
(τ(I1, I2 · · · Ik) + τ(Ik, I1 · · · Ik−1) + · · · + τ(I2, I3 · · · Ik, I1)) (6)

τ is convex then:

1

k
(τ(I1, I2 · · · Ik) + τ(Ik, I1 · · · Ik−1) + · · · + τ(I2, I3 · · · Ik, I1)) ≥

τ

(

(I1 + I2 · · · + Ik)

k
,
(Ik + I1 + · · · + Ik−1)

k
, · · · ,

(I2 + I3 + · · · + Ik + I1

k

)

(7)

7 + 6 =⇒ ∀(I1, I2 · · · Ik) τ(I1, I2 · · · Ik) ≥ τ(
ω0

mk
,

ω0

mk
, · · · ,

ω0

αmk
)

Then, using Lemma 2 the new expression of the expected completion time becomes:

ke(λ( ω
αmk

+C+R))β

∫ ω
αmk

+C+R

0

e−(λx)β

dx (8)

Thus to minimize Equation (8) the Newton’s numerical method is used to find the root
of the derivative function. To achieve this goal we use the fsolve function in MAPEL
softwar.

5 Simulations

In the first set of simulations, a Poisson’s process is used to validate the proposed model
and to compare it with Daly’s model [5]. Then, a second set of simulations is presented
that confirm that the proposed model can predict the optimal checkpoint location even
when the failure process is modeled by a Weibull’s law. We also compare this model with
Yudan’s model [9].

RR n° 6751
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5.1 Using Poisson’s Process

In this scenario, we study the behavior of the proposed model with a Poisson’s process
when the cost of the checkpoint barrier C varies in a given interval such that the amount
of initial work and the failures rate is known. For each value of C we compute the average
completion times over 104 executions and the associated 95% confidence interval. In the
second scenario, we set the checkpoint cost and the initial amount of work at a given value
and we compute the average completion times when the failure rate increases and becomes
very large.

5.1.1 Variation of Checkpoint Cost
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Figure 4: Variation of the average completion times with C ∈ [1, 95] mins, ω0

αm
=

7 days, λ = 1
2

per day

In this simulation the initial amount of work per computing node is 7 days and the
failures rate per day is equal to 1

2
, then the checkpoint cost parameter C will increase in

the interval [1, 95] minutes. The results are displayed in Figure 4. It is clear that the
two curves are not distinguishable. Thus, we conclude that our flexible checkpoint model
(denoted by FCM) achieves about the same performance as in Daly’s model.
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5.1.2 Variation of Failure Rate
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Figure 5: Variation of the average completion times with λ ∈ [1
2
, 96] per day, ω0

αm
=

10 days, C = 10 mins

In this section, we study the behaviors of our model when the failure rate λ becomes
very large. To develop this second series of simulations, the scenario is the following: We
set the duration of the parallel application to 10 days and the cost of checkpoint is constant
at 10 minutes. Then, the failure rate per day varies in the interval [1

2
, 96], for each λ we

report the average completion times for 103 executions. In Figure 5 it is clear that again
both curves are not distinguishable. Therefore it confirms that our model keeps the same
performance even when we increase highly the failures rate. The most important new
result in these simulations is presented in Figure 6 that reports the number of checkpoints
of our model together with Daly’s one. This figure shows that our model reduces up to
20% the number of checkpoints compared to the number of checkpoints made by Daly’s
model. Indeed, we notice that this point is very important even if we have the same average
completion time of the execution in simulation, i.e, since the checkpoint mechanism may
generate high of network congestion.
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Figure 6: Variation of the optimal checkpoint number with λ ∈ [1
2
, 96] per day, ω0

αm
=

10 days, C = 10 mins

5.2 Variable cost of checkpoint

In this section, we validate the proposed model in cases where the cost of the checkpoint
depends on the residual workload. We use traces of execution collected from real exe-
cution on the midlware KAAPI [7]. The trace contains sum of the data size that have
been written at each checkpoint barrier (see Figure 7). Notice that the sampling time
between each checkpoint is 10 minutes and the application execution time is 220 minutes,
it corresponds to N-Queens benchmark on 572 processors and 10 stable storage system
in Grid5000 platform. From these experiments it is clear that the cost of the checkpoint
is not constant but it depends on the residual work load. Thus, from this set of values
a cost function is established by polynomial interpolation with degree 7 (see Figure 8).
Thus, the cost of a checkpoint at S is equal to the evaluation of the polynomial at this
point multiplied by the data writing cost on a stable storage. Determining the optimal
solutions to this optimization problem with a formal method is hard. However, a first
approach is to solve the problem with numerical method. We use an implementation of
the trust-region-reflective algorithm [3] form the Optimization Toolbox in MATLAB. We
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Figure 7: Variation of the Checkpoint
size to write in the stable storage
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Figure 8: Polynomial interpolation of the
checkpoint variation
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Figure 9: Optimal workload intervals between each checkpoint

use this algorithm to minimize f(I, k) such as:

f(I, k) =
1

λ
(eλ(I(1)+C(S1)+R(S0)) − 1) +

1

λ
(eλ(I(2)+C(S2)+R(S1)) − 1) · · ·

+
1

λ
(eλ(I(k)+C(Sk)+R(Sk−1))) − 1).
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Under the following constraints:

1. Equality constraints
k

∑

j=1

Ij =
ω0

m

2. In-equality constraints ∀Ij | 1 ≤ j ≤ k and each Ij ≥ 0.

In the last figure 9 each bar represents the optimal amount of work between the checkpoint
j and j + 1. This figure shows that the proposed solution fit very well with the variation
of the checkpoint cost. Since, it is clear that the bar length increases when the cost of
checkpoint increases which means that the model reduces the number of checkpoint when
the cost of checkpoint increases. Then when the cost of the checkpoint decreases the bar
length decreases also that means it is more effective to increase the number of checkpoints
when it has a lower cost.

5.3 Using Weibull’s Law
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Figure 10: Variation of the average wast time with ω0

αm
∈ [100, 2500] hrs, λ = 1

20.584
, β =

0.509

INRIA



A new flexible Checkpoint/Restart model 19

In this new simulation a Weibull’s law is used to generate the successive interval between
failures. We use the same value for (β, λ, ω0

αm
), as those used in [9] to compare the results.

Thus, the shape parameter (β = 0.509) and λ = 1
20.584

. In this scenario, the total amount
of work is increased in the interval [100, 2500] hours. Then, we compare the average wasted
times on 104 simulations produced by the two models. The wasted time is the same as
defined in [9], it is equal to the overhead due to the checkpoint plus the amount of work
that should be re-executed due to failures plus restart costs.

Figure 10 represent the average wasted time for each model when the checkpoint over-
head is 10 minutes and 15 minutes. This figure shows that our model reduces up to factor
4 the wasted time, especially when the initial amount of work is relatively large. Also, we
notice that our model reduces very well the confidence interval.

6 Concluding Remarks

We have presented in this work a new flexible model for checkpointing applications in
large-scale computing platforms. The main result was to establish a simple analytical
model which expresses the expected completion time of the application. We showed that
it is possible to use this model with various probability laws that modelize the failures
process, such as the Poisson’s process or the Weibull’s law. Moreover, it is also this model
is designed, for determining the optimal interval between checkpoints considering a vari-
able checkpoint cost and the wasted time. A comparison with other existing mechanisms
revealed that our model reduces the congestion of the network and the wast time.
We are currently working at implementing this mechanism in an actual system. For this
purpose, it would be interesting to take into account a variable number of processors (in-
stead of unbounded number of processors) since it is not obvious to always have extra
available processors to replace those which failed.
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