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Abstract

We present in this note some variations of the Monte Carlo method for
the random walk on spheres which allow to solve many elliptic and parabolic
problems involving the Laplace operator or second-order differential oper-
ators. In these methods, the spheres are replaced by rectangles or paral-
lelepipeds. Our first method constructs the exit time and the exit position of
a rectangle for a Brownian motion. The second method exhibits a variance
reduction technique. The main point is to reduce the problem only to the
use of some distributions related to the standard one-dimensional Brownian
motion.

1 Introduction
In this short article, we present the methods introduced in the works [1, 2]. The
aim is to construct an algorithm that simulates the first exit time and exit position
from a rectangle (or more generally an parallelepiped) for a Brownian particle,
with possibly a constant drift. As for the method of random walk on spheres
[3] and squares [4, 5], this method allows one to simulate the first exit time and
exit position from a general domain D. The idea is to successively sample exit
times and exit positions for simple domains (spheres, squares, ...) included in D
and containing the current position of the particle. The procedure stops when the
calculated position is close enough to the boundary. If the domain is a polygon
without sharp angles, our simulation is exact. The advantage we take with this
method is that we are not restricted to consider only rectangles centered on the
particle’s position as is the case for the methods on spheres or on squares. Thus,
the rectangles can be chosen before any Monte Carlo simulation.

This technique could be applied to solve many linear problems arising in math-
ematical modelling, such as solving Poisson equations or bi-harmonic equations,
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evaluating effective coefficients in geophysics [6], computing the first eigenvalue
of the Laplace operator [7, 8], computing barrier options in finance etc.

Moreover, this method can be easily adapted to perform importance sampling
which allows to estimate the probability of rare events or to reduce the variance
of the Monte Carlo estimator.

2 The method: exact simulation of the first exit time and posi-
tion for a rectangle

Although the random variables giving the first exit time and the corresponding
exit position from the rectangle, with a starting point inside the rectangle, are
not independent, the algorithm we propose here relies on the simulation of one-
dimensional random variables by performing proper conditioning. The method is
adapted from the computations of [5] where the first exit time and exit position
from a square are computed by assuming that the particle starts from the center of
the square.

Let us present our method for a rectangle [−L,L] × [−ℓ, ℓ] and a Brownian
particle initially at (x1, x2). The algorithm returns a 3-uple giving the first exit
time from [−L,L] × [−ℓ, ℓ] and the corresponding exit position.

1. Simulate a realization (τ 1, y1) of the first exit time τ 1 from [−L,L] for a
1-dimensional Brownian motion B1 starting from x1 and its exit position
B1

τ1 .

2. Use a Bernoulli random variable of parameter Px2 [τ < τ 1] to deduce whether
or not the first exit time from [−ℓ, ℓ] of a Brownian motion B2 starting at x2

is greater or smaller than τ 1.

3. If τ < τ 1, then simulate a realization (τ 2, y2) of (τ, B2
τ ) given that {τ < τ 1}.

Simulate also a realization z1 of B1
τ2 given {τ 1 = τ 1, B1

τ1 = y1} and return
(τ 2, z1, y2).

4. If τ > τ 1 then simulate a realization z2 of B2
τ1 given {τ > τ 1} and return

(τ 1, y1, z2).

Basically, all the quantities we need to simulate are related to the position of
the exit time τ from an interval J for a one-dimensional Brownian motion, and to
the position at a given time t of the killed Brownian motion. By using the scaling
property of the Brownian motion (B, Px)x∈J , we may assume that J = [−1, 1].
The distribution function of B2

t given {t < τ 1}, of B1
t given {t = τ 1}, of τ 2

given {τ 2 < τ 1} are easily computed by using h-transform and Bayes’ formula.
In addition, if p(t, x, y) is the transition density function of B killed when it exits
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from [−1, 1] and q(t, x) is the density of the first exit time from [−1, 1], then

q(t, x) = −
∫ 1

−1

∂

∂t
p(t, x, y) dy.

The density transition function p(t, x, y) can be computed either by a spectral
decomposition

p(t, x, y) =
+∞∑
n=1

exp

(
−n2π2

8
t

)
sin

(nπ

2
(x + 1)

)
sin

(nπ

2
(y + 1)

)
, (1)

or by the method of images

p(t, x, y) =
1√
2πt

+∞∑
n=−∞

(
exp

(
−(x − y − 4n)2

2t

)
− exp

(
−(x + y − 2 − 4n)2

2t

))
.

(2)
These series converge very quickly, and (1) is suitable for large values of t, while
(2) is suitable for small values of t.

Similar formulas can be obtained for a Brownian motion with a constant drift.

3 How to choose the rectangles?
In order to use this method for the simulation of a Brownian motion on a general
domain, the idea is to perform successive simulations of the exit time and exit
position from rectangles. The rectangles have to be included in the domain and be
as large as possible. The algorithm is stopped when the particle is close enough
to the boundary, or really on the boundary. When the domain has a polygonal
boundary, a good method to choose the rectangles consists in selecting, when
possible, rectangles that have at least one side on the boundary. In this situation,
the algorithm stops when the particle leave such a rectangle by the side contained
on the boundary. We obtain thus an exact value of the exit time and exit position.

Let us note also that our algorithm can be adapted to deal with Brownian mo-
tions with constant drift, and also to Neumann boundary conditions, by possibly
changing p(t, x, y) with the transition density function of the Brownian motion on
[−1, 1], killed on 1 and reflected at −1.

4 Importance sampling
The idea behind our importance sampling method is that instead of considering
the first exit time and exit position (τ, Bτ ) from a rectangle R, we consider the
simulation of a realization (θ, Z) of a couple of random variables (θ, Z) with val-
ues on R∗

+×∂R. Thus, at each simulation, we compute a weight given by the ratio
of the densities of (τ, Bτ ) and (θ, Z) at the point (θ, Z). By computing succes-
sively the exit time and position from rectangles, the global weight w associated
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to the particle can be expressed as the product of all previously calculated weights.
Let σ be the first exit time from a domain D or a given time. Then an expression
like E[Φ(σ,Bσ)], can then be replaced by E[wΦ(θn∗ , Zn∗)]. Here (θn∗ , Zn∗) marks
the position when the algorithm that computes the intermediate positions (θi, Zi)
stops. Analytical expressions of the weight w can be given and, as for the exact
simulation, they involve only p(t, x, y) and q(t, x).

With this approach one can “force” the particle to go where it does not natu-
rally go, and thus one can perform variance reduction or estimate rare events.
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