
HAL Id: inria-00348715
https://hal.inria.fr/inria-00348715

Submitted on 20 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructive Root Bound for k-Ary Rational Input
Numbers

Sylvain Pion, Chee Yap

To cite this version:
Sylvain Pion, Chee Yap. Constructive Root Bound for k-Ary Rational Input Numbers. 19th Annual
ACM Symposium on Computational Geometry (SCG), Jun 2003, San Diego, California, United States.
pp.256-263. �inria-00348715�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50202813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00348715
https://hal.archives-ouvertes.fr

Constructive Root Bound for k-Ary Rational Input Numbers

Sylvain Pion
∗

Courant Institute of Mathematical Sciences
New York University

New York, NY 10012, USA

pion@cs.nyu.edu

Chee K. Yap
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012, USA

yap@cs.nyu.edu

ABSTRACT

Constructive root bounds is the fundamental technique
needed to achieve guaranteed accuracy, the critical capa-
bility in Exact Geometric Computation. Known bounds
are overly pessimistic in the presense of general rational in-
put numbers. In this paper, we introduce a method which
greatly improves the known bounds for k-ary rational input
numbers. Since majority of input numbers in scientific and
engineering applications are such numbers, this could lead
to a significant speedup for a large class of applications. We
apply our method to the BFMSS Bound. Implementation
and experimental results based on the Core Library are re-
ported.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; I.1.3 [Symbolic
and Algebraic manipulation]: Languages and Systems—
Special-purpose algebraic systems

General Terms

Algorithms, Theory, Experimentation

Keywords

Constructive root bounds, exact geometric computation, ro-
bust numerical algorithms, k-ary rational numbers

1. INTRODUCTION
The critical idea of the Exact Geometric Computation

(EGC) approach to robust algorithms is “geometric exact-
ness”. This amounts to ensuring that all computational de-
cisions in a program are error free. It translates to the abil-
ity to determine the sign of real numerical quantities. The

∗This research is supported by NSF/ITR Grant #CCR-
0082056. Sylvain’s work is conducted under a postdoc fel-
lowship of this grant.

SoCG’03, June 8–10, 2003, San Diego, California, USA.
.

generalization of this is what we call guaranteed accuracy
[13]. It is a generalization because to guarantee the exact
sign determination of a number, it is equivalent to guaran-
tee one relative bit of the number. Such techniques have
been encoded into two general libraries LEDA real [5, 1] and
Core Library [4, 6]. To ensure this form of numerical con-
trol, the use of root bounds is central. But classical root
bounds (e.g., [9]) may be highly non-constructive. What we
need are called constructive root bounds in [8]. Such
bounds are defined relative to some set E of algebraic ex-
pressions. It is constructive in two ways: (i) First, for each
expression E ∈ E , we define a set of mutually recursive pa-
rameters u1(E), . . . , um(E) (ii) Second, there is an explicit
computable root bound function β(u1, . . . , um) such that
if E is well-defined and E 6= 0, then

|E| ≥ β(u1(E), . . . , um(E)). (1)

We will write β(E) instead of β(u1(E), . . . , um(E)). To be
more precise, we may call β an exclusion root bound; if the
inequality in (1) were reversed, we would have an inclusion
root bound.

The first examples of such constructive root bounds is
Mignotte’s constructive Measure Bound [10], applied to
the problem of “identifying algebraic numbers”. In EGC,
such bounds were first introduced in the Real/Expr Package
[15], where the degree-height bounds [15] and degree-length
bounds [14, p. 177] were used. Burnikel et al [2] introduced
the BFMS Bound that turns out to be extremely effective
for division-free expressions. Recently, this bound was im-
proved to what we will call the BFMSS Bound [3]. In [8, 7],
we introduced another constructive root bound that over-
comes some of the shortcomings of BFMS. If β, β′ are root
bound functions, we can compare them in two ways: (i)
efficiency and (ii) effectiveness. Efficiency refers to the com-
plexity of computing the root bounds, and effectivity refers
to the size of the bounds (a larger β(E) is more effective).
Generally, the most interesting comparison is based on ef-
fectiveness (efficiency is less of an issue in most applications
because the running time is usually dominated by the mul-
tiprecision arithmetic). If β′(E) ≥ β(E) for all E ∈ E , we
say β′ dominates β (over E). Among the current construc-
tive root bounds, there are three that are not dominated
by any others over the class of constructible expressions:
degree-measure [10, 2], BFMSS [3] and Li-Yap [8]. We give
a comparison of the effectiveness of these three root bounds
in Section 5.

The starting point of this paper is the observation that (a)
current constructive bounds are quite effective for division-

free input expressions involving only integer inputs, and (b)
the bounds become considerably worse in the presense of di-
vision. Even when the expression is division-free, the pres-
ence of rational input numbers counts as introducing divi-
sion into the expression. Such ineffective bounds can make
some computations impractical. We note that these inef-
fective bounds are sometimes intrinsic, because it is easy to
see that the worst case requires exponential bit sizes. For-
tunately, this is not the end of the story. The vast majority
of numerical input in scientific and engineering applications
involves k-ary rationals for some integer k ≥ 2. Invariably
k = 2 (binary) or k = 10 (decimal). By a k-ary rational
we mean a rational number whose denominator is a power
of k. Thus k-ary rationals are generalizations of integers.

We shall introduce a general technique that can take ad-
vantage of k-ary rationals. The technique seems orthogo-
nal to previous techniques in the sense that for any current
constructive root bound β, we can modify it to a “k-ary
version” βk which is more effective. In this paper, we intro-
duce the k-ary version of the BFMSS and Measure Bounds.
These will be referred to as the BFMSS[k] and Measure[k]
Bounds. In algorithms, especially in computer algebra, it is
a well-known phenomenon that rational number arithmetic
is much slower than integer arithmetic. Furthermore, k-ary
rational number arithmetic has a complexity that is inter-
mediate between these two extremes. The techniques of this
paper will yield the same kind of intermediate complexity
for root bounds of expressions with k-ary input numbers.
Some Examples. We briefly illustrate the possible im-
provements with our new technique. Instead of the root
bound β(E), we normally consider the corresponding bit-
bound, defined as − lg β(E).

An example from [8] is the identically zero expression
E1(x, y) =

√
x +

√
y −

p

x + y + 2
√

xy. Suppose x, y are
L-bit binary numbers (i.e., numerator are L-bit integers and
denominator are L-bit powers of 2). Table 1 compares some
bit-bounds and timings (Cf. [3]). Line 1 gives the bit-bound
as a function of L. Line 2 gives the range of bit-bounds com-
puted by our Core Library implementation when 10 random
choices of machine doubles are substituted for x and y. Line
3 gives the time to evaluate the 10 random examples of Line
2 for 100 times each.

When x, y are rational numbers whose numerator and de-
nominator are L-bit integers, the Bit-Bound functions for
BFMSS and Li-Yap are just 96L + 30 and 28L + 60 (as in
Line 1) while BFMSS[2] drops to 8L + 30. On the other
hand, when x, y are L-bit integers, the Bit-Bound function
for all three methods is the same and equal to 7.5L+30. This
example illustrates our previous remark, that our new bit-
bounds for k-ary input numbers lie between the bit-bounds
for integers and for rational numbers. Indeed, they are only
slightly worse than the integer case.

Next, consider the important and common situation of
evaluating n×n determinants where the input numbers are
L-bit binary numbers. Such numbers have the form m2−k

where |m| < 2L and 0 ≤ k ≤ L. Let E0 be an expression
for such a determinant. First, assume E0 is the co-factor
expansion of the determinant (this is a polynomial with n!
terms). Then the BFMSS Bound for E0 gives a root-bit
bound that is more than

(n!)nL. (2)

This is exponentially worse in n than our binary version of

the BFMSS Bound, which gives a root-bit bound of 2nL.
In our experiments (Section 6), we use a more efficient de-

terminant expression: let E1 be the determinant expression
obtained by using dynamic programming principles. Thus
E1 is a DAG while E0 is a tree. E.g., when the input is a
random 5 × 5 matrix and L = 100, our BFMSS implemen-
tation gives the bound − lg |E| ≥ 10, 282, while our binary
version of BFMSS gives − lg |E| ≥ 326.
Overview. Section 2 gives a high-level view of what our
k-ary transformation does to any constructive root bound.
Section 3 reviews the BFMSS Bound, while Section 4 gives
the new BFMSS[k] Bound. We show that BFMSS[k] domi-
nates BFMSS. In the full version of this paper, we also give
the new Measure[k] Bound, and again we show that Mea-
sure[k] dominates Measure. Experiments and comparisons
are given in Section 5. We conclude in Section 6.

2. GENERIC K-ARY METHOD
We propose a meta-method for exploiting k-ary input

numbers. The meta-method is applicable to any construc-
tive root bounding method. In particular, we will apply
it to the BFMSS Bound. The Measure Bound is similarly
treated in the full version of this paper. In general, if β is a
root bound function as in (1), our k-ary transformation pro-
duces a related root bound function βk. If βbfmss and βmeas

are the root bound functions corresponding the BFMSS and
Measure Bounds, we will describe their binary version are
βbfmss

2 and βmeas
2 .

As usual, we consider the class of expressions which are
DAGs with rational numbers at the leaves and whose in-
ternal nodes are algebraic operators. The typical class of
algebraic operators are +,−,×,÷ and algebraic root extrac-
tion, but this may vary depending on context. Let val(E)
be the algebraic number denoted by E. Since algebraic op-
erators are partial functions, val(E) may be undefined. In
any inequality involving val(E), it is understood that the
inequality is in effect only when both sides are defined. We
usually write “E” instead of val(E) when this is clear from
context.

The basic idea of the k-ary transformation is to transform
an expression E to another expression Ek such that

E = kv(E)Ek (3)

and v(E) = vk(E) ∈ Z. What are the constraints on this
transformation? If β(E) is the original root bound function,
this transformation will lead naturally to a corresponding
k-ary root bound βk(E). In this paper, our basic goal is to
ensure that βk dominates β:

βk(E) ≥ β(E) (4)

for E ∈ E . Achieving this inequality will depend on the
nature of β. Assuming both sides of (3) are well-defined, we
have

E 6= 0 ⇒ Ek 6= 0

⇒ |Ek| > β(Ek)

⇒ |E| > kv(E)β(Ek)

Thus we define

βk(E) := kv(E)β(Ek).

Table 1: Comparison of BFMSS, Li-Yap and BFMSS[2]
Method BFMSS Li-Yap BFMSS[2] (new)

1 Bit-Bound function 96L + 30 28L + 60 8L + 30
2 Bit-Bound Range (L = 53) 4926-5118 2085-2165 426-462
3 Timing (L = 53, 100 × 10 times) 46.7 s 8.35 s 3.58 s

and so the inequality (4) amounts to β(kv(E)Ek) ≤
kv(E)β(Ek).

To simplify1 the presentation below, we will choose k = 2.
Also, we will simply write v(E) instead of v2(E). General-
izing this to a general k > 2 is mostly straightforward. A
further generalization is to maintain the powers of two or
more k’s simultaneously. It seems that (k′, k′′) = (2, 5) will
yield most of the benefits of the method, since actual input
numbers in computation are overwhelmingly decimal or bi-
nary. This amounts to the following transformation (cf. (3)):

E = 2v2(E)5v5(E)E2,5 (5)

where vk(E) ∈ Z (for k = 2, 5).

3. THE BFMSS BOUND
We first review the BFMSS Bound [2, 3] for algebraic

expressions. Let E be an expression as represented by a
DAG, with integers at its leaves, and whose internal nodes
correspond to the operators in column 1 of Table 2. The
“diamond operator” in the last row of the Table extracts the
jth largest real root of the polynomial

Pn

i=0 FiX
i where Fi

are expressions. With the diamond operators of a degree n,
we associate an inclusion root bound function (in the sense
of [3])

Φ(an−1, . . . , ai, . . . , a0) = Φ(. . . , ai, . . .) (6)

where it is understood that the index i decreases from n− 1
to 0. Since there are several possible choices Φ1, Φ2, etc for
Φ, we may just compute the bound given by each Φi and
take the best. This procedure amounts to the observation
that if Φ1 and Φ2 are inclusion root bound functions, then
max{Φ1, Φ2} is also an inclusion root bound.

The BFMSS bound constructively maintains two real pa-
rameters u(E) and ℓ(E) as shown in Table 2. To avoid
clutter in the table, we write u′, u′′, u for u(E′) and u(E′′);
similarly for ℓ′, ℓ′′. Furthermore, the diamond operator in-
volves subexpressions F0, F1, . . . , Fn; in this case, we write

Di :=
u(Fi)

ℓ(Fi)

n
Y

j=0

ℓ(Fj). (7)

The degree of a node in E is p if the node is the operator
p
√· · ·, and n if the node is the diamond operator of degree
n. Otherwise the degree is 1. Moreover, let D(E) be the
product of all the degrees of the distinct nodes in the dag of
E. The degree of val(E) is bounded by D(E). The BFMSS
bound says that if val(E) 6= 0 then

|val(E)| ≥ 1

u(E)D(E)−1ℓ(E)
. (8)

1The case k = 2 is the most important case. Also, the
resulting formulas are easier to read as we avoid the use of
the variable k.

Hence we may define the BFMSS root bound function as

βbfmss(u, ℓ, D) :=
1

uD−1ℓ
, (9)

with the usual convention we write βbfmss(E) for
β(u(E), ℓ(E), D(E)). The BFMSS Rules are given in Ta-

ble 2. Our rule for p
√

E′ in this table is a unification of
the two cases in the BFMSS presentation (an improvement
noted by Yap).

4. GENERALIZATION OF BFMSS
Let α be an algebraic number. As in [8], let µ(α) =

max{|αi| : i = 1, . . . , n} where α = α1, . . . , αn are all
conjugates of α. We call a triple (u′, ℓ′, v) a set of ul[2]-
parameters for α if u′, ℓ′ ∈ R≥0 and v ∈ Z and there exist
algebraic integers α1, α2 such that

α = 2v α1

α2
, (10)

µ(α1) ≤ u′ and µ(α2) ≤ ℓ′. If “2” is replaced by an integer
k > 2, we have the analogous set of ul[k]-parameters. When
α is non-zero with degree D, we have

|α| ≥ β2(u
′, ℓ′, v, D) := 2v 1

u′D−1ℓ′
(11)

where β2(u
′, ℓ′, v, D) = βbfmss

2 (u′, ℓ′, v, D) is the binary ver-
sion of the BFMSS root bound function. The expression
(10) is non-unique. Indeed, there is some leeway for design-
ing a suitable set of ul[2]-parameters for α because in gen-
eral the best choice is not easily given by a fixed rule. Thus,
if (u′, ℓ′, v) is a set of ul[2]-parameters for α, then either
(u′2v, ℓ′, 0) or (u′, ℓ′2−v, 0), depending on whether v ≥ 0
or not. More generally, it is always possible to reduce |v|
towards 0 in any set of parameters (u′, ℓ′, v). A set of ul[2]-
parameters where v = 0 can be regarded as a generalization
of the BFMSS parameters.
The BFMSS[2] Rules. The binary transformation of
BFMSS is given in Table 3. The table incorporates a refine-
ment of the ul[2]-parameters, whereby v(E) is represented
by two numbers v+(E) ≥ 0 and v−(E) ≥ 0 satisfying the
relation

v(E) = v+(E) − v−(E).

This refinement will better quantify our gain over the orig-
inal BFMSS bound (see Lemma 1 below). In actual im-
plementation, it is sufficient to just maintain v(E). In this
case, to apply the rules, we will define v+(E) to be v(E) if
v(E) ≥ 0 and otherwise let v+(E) = 0. Similarly, v−(E) is
defined to be −v(E) if v(E) < 0 and otherwise v−(E) = 0.
Call this variation the reduced version of the BFMSS[2]
Rules (in contrast to the refined version where v+, v− are
independent).

When α is represented by an expression E (in the dag
form), this table defines a unique set of ul[2]-parameters for

Table 2: BFMSS Rules
E u(E) ℓ(E)

integer n |n| 1
E′ ± E′′ u′ℓ′′ + ℓ′u′′ ℓ′ℓ′′

E′ × E′′ u′u′′ ℓ′ℓ′′

E′ ÷ E′′ u′ℓ′′ ℓ′u′′

p
√

E′ min(
p
√

u′ℓ′p−1, u′) min(ℓ′,
p
√

u′p−1ℓ′)

⋄(j, Fn, Fn−1, . . . , F0)
Φ(. . . , (Dn)iDn−i, . . .)
where Di is given in (7)

Dn

E,

(u2(E), ℓ2(E), v(E)).

The BFMSS[2] root bound for E is

E 6= 0 ⇒ |E| ≥ 2v(E)

u2(E)D(E)−1ℓ2(E)
(12)

In the table, (u′, ℓ′, v′) denotes the ul[2]-parameters of
subexpression E′; similarly (u′′, ℓ′′, v′′) is for E′′.

Most of the rules in Table 3 can be read off the table; but
the more complex diamond operator will be explained here.
We want a set of ul[2]-parameters for ⋄(j; Fn, Fn−1, . . . , F0).
Suppose Φ(an−1, an−2, . . . , a0) is a root bound function in
the sense of [3]. Write vi for v+

i − v−
i = v+(Fi) − v−

i (Fi).
Define

wi := vi +

n
X

j=0

v−
j

!

= v−
0 + · · · + v−

i−1 + v+
i + v−

i+1 + · · · + v−
n

(13)

and

Ci = 2wi
u2(Fi)

ℓ2(Fi)

n
Y

j=0

ℓ2(Fj). (14)

Just as in BFMSS, the diamond operator (if well-defined)
⋄(j; Fn, Fn−1, . . . , F0) specifies an algebraic number α where
α = U/L and U, L are algebraic integers satisfying

µ(U) ≤ Φ(. . . , (Cn)iCn−i, . . .), µ(L) ≤ Cn.

Also, a set of ul[2]-parameters for α is

(Φ(. . . , (Cn)iCn−i, . . .), 2
−wnCn,−wn). (15)

This justifies the rule for diamond operator in Table 3 (Other
rules will be justified below).

If we know more about the nature of Φ, improved bounds
may be possible. E.g., using the Lagrange-Zassenhaus
bound [14], we get the simpler set of ul[2]-parameters,

(Φ(. . . , Dn−i, . . .), 1, 0).

BFMSS[2] dominates BFMSS We first prove a key rela-
tionship between the BFMSS Rules and the new BFMSS[2]
Rules.

Lemma 1. Let

(u, ℓ), (u2, ℓ2, v
+, v−)

be the parameters for an expression E given by Table 2 and
Table 3, respectively. Then

u = 2v+

u2, ℓ = 2v−

ℓ2.

Proof. We use induction on the structure of E. The
base case is obvious.

CASE E = E′ ± E′′:

u
ℓ

= u′ℓ′′+ℓ′u′′

ℓ′ℓ′′

=
2v′++v′′−

u′

2ℓ′′2 +2v′−+v′′+
ℓ′2u′′

2

2v′−+v′′−
ℓ′2ℓ′′2

=
2v+

(2v′++v′′−
−v+

u′

2ℓ′′2 +2v′−+v′′+
−v+

ℓ′2u′′

2)

2v′−+v′′−
ℓ′2ℓ′′2

= 2v+
u2

2v−
ℓ2

where v+ = min(v′+ + v′′−, v′− + v′′−) and v− = v′− + v′′−.
We want to conclude from this derivation that

u = 2v+

u2, ℓ = 2v−

ℓ2.

This is only valid if, in the above derivation, we never ap-
ply any cancellation of terms between the numerator and
denominator. The reader may verify this is the case. In
other words, although we presented the argument as a se-
quence of equations involving ratios, it should be read as
a pair of parallel transformations involving the numerator
and denominator separately. This will also be true in all the
other derivations in this proof.

CASE E = E′ × E′′:

u
ℓ

= u′u′′

ℓ′ℓ′′
(BFMSS)

=
2v′++v′′+

u′

2u′′

2

2v′−+v′′−
ℓ′2ℓ′′2

(induction)

= 2v+
u2

2v−
ℓ2

(BFMSS[2])

where v+ = v′+ + v′′+ and v− = v′− + v′′−. The division
case is similar.

CASE E = E′ ÷ E′′:

u
ℓ

= u′ℓ′′

ℓ′u′′ (BFMSS)

=
2v′++v′′−

u′

2ℓ′′2

2v′−+v′′+
ℓ′2u′′

2

(induction)

= 2v+
u2

2v−
ℓ2

(BFMSS[2])

where v+ = v′+ + v′′− and v− = v′− + v′′+.
CASE E = p

√
E′: The rules here split into two cases,

depending on whether 2vu′
2 ≥ ℓ′2. The critical observation

is that 2vu′
2 ≥ ℓ′2 is equivalent to u′ ≥ ℓ′ (the corresponding

criteria for choosing the two cases in the BFMSS Rule).

First assume 2v′

u′
2 ≥ ℓ′2. Let ev = v′+ + (p − 1)v′−, v+ =

Table 3: The Refined BFMSS[2] Rules

E u2 = u2(E) ℓ2 = ℓ2(E) v+ = v+(E) v− = v−(E)

binary rational n2m |n| 1 max(0, m) max(0,−m)

E′ ± E′′ 2v′++v′′−−v+

u′
2ℓ

′′
2

+2v′−+v′′+−v+

ℓ′2u
′′
2

ℓ′2ℓ
′′
2

min(v′+ + v′′−,
v′− + v′′+)

v′− + v′′−

E′ × E′′ u′
2u

′′
2 ℓ′2ℓ

′′
2 v′+ + v′′+ v′− + v′′−

E′ ÷ E′′ u′
2ℓ

′′
2 ℓ′2u

′′
2 v′+ + v′′− v′− + v′′+

p
√

E′, 2v′

u′
2 ≥ ℓ′2

p

q

2ev−pv+u′
2ℓ

′
2

p−1 ℓ′2
⌊ev/p⌋where

ev = v′+ + (p − 1)v′− v′−

p
√

E′, 2v′

u′
2 < ℓ′2 u′

2
p

q

2ev−pv−u′p−1
2 ℓ′2 v′+ ⌊ev/p⌋where

ev = (p − 1)v′+ + v′−

⋄(j; Fd, , . . . , F0)
Φ(. . . , Ci

nCn−i, . . .)
(see (14))

2−wnCn 0 wn (see (13))

⌊ev/p⌋ and v− = v′−. We have

u
ℓ

=
p√

u′ℓ′p−1

ℓ′
(BFMSS)

=
p
q

2v′++(p−1)v′−
u′

2ℓ
′p−1
2

2v′−
ℓ′2

(induction)

= 2v+
u2

2v−
ℓ2

(BFMSS[2]).

The other case, when 2v′

u′
2 < ℓ′2 is similarly shown.

CASE E = ⋄(Fn, . . . , F0): For i = 0, . . . , n, we have

Di = u(Fi)
ℓ(Fi)

Qn

j=0 ℓ(Fj) (BFMSS)

= 2wi u2(Fi)
ℓ2(Fi)

Qn

j=0 ℓ2(Fj) (induction)

= Ci (BFMSS[2])

Thus

u(E) = Φ(. . . , Di
nDn−i, . . .)

= Φ(. . . , Ci
nCn−i, . . .)

= u2(E) = 2v+

u2(E).

Similarly, ℓ(E) = Dn = Cn = 2wnℓ2(E) = 2v−

ℓ2(E).
Q.E.D.

Our main result concerning the BFMSS and BFMSS[2]
Rules is the following domination relation:

Theorem 2. For expression E supported by Table 2, we
have

βbfmss
2 (E) ≥ βbfmss(E)

Proof. Let β(E) = 1
uD−1ℓ

and β2 = 2v

u
D−1
2 ℓ2

be (respec-

tively) the BFMSS and BFMSS[2] bounds for expression E.
From Lemma 1, we conclude

β2

β
=

2v · (2v+

u2)
D−1 · (2v−

ℓ2)

uD−1
2 ℓ2

= 2v+D ≥ 1.

Q.E.D.

Correctness and the Umbral Convention. We now
justify the BFMSS[2] Rules in Table 3. The correctness
of a set (u2, ℓ2, v) of ul[2]-parameters for an expression E
depends on the existence of algebraic integers U2, L2 such
that

E = 2v U2

L2
. (16)

with u2 ≥ µ(U2), ℓ2 ≥ µ(L2). We have not given explicit
rules for maintaining U2, L2, but these are easily deduced
from Table 3. That is because the rules for maintaining
u2, ℓ2 is a “shadow” of the corresponding rules for U2, L2.
Let us illustrate this: when E = E′ ± E′′, we have the rule

u2 = 2v′++v′′−−v+

u′
2ℓ

′′
2 + 2v′−+v′′+−v+

ℓ′2u
′′
2 (17)

This is a “shadow” of the corresponding2 rule for U2:

U2 = 2v′++v′′−−v+

U ′
2L

′′
2 ± 2v′−+v′′+−v+

L′
2U

′′
2 (18)

REMARKS: The original BFMSS rules also have such an
umbral connection between (u, ℓ) and the pair of expressions
(U, L), although this was only implicit. Such a shadowing
technique is similar to the mnemonic device called symbolic
or “umbral calculus” from the invariant theorists, and devel-
oped by Rota and his collaborators [11] as a form of linear
operator.

The umbral relation between (u2, ℓ2) and (U2, L2) is jus-
tified by the following:

Lemma 3. For any expression E,
(i) The expressions U2(E) and L2(E) are algebraic integers.
(ii) The following inequalities hold:

u2 ≥ µ(U2), ℓ2 ≥ µ(L2). (19)

Proof. (i) We sketch the justification of the rules for
U2(E); the justification of L2(E) is analogous. Consider the
case when E = E′ ± E′′. Then U2(E) is given by (18), and
this is an algebraic integer because v′+ + v′′− − v+ ≥ 0 and
v′− + v′′+ − v+ ≥ 0 (also, inductively, the subexpressions
U ′

2, U
′′
2 are algebraic integers). In the case of radicals, we

use the fact that p
√

E′ is an algebraic integer when E′ is
an algebraic integer. The remaining cases are just as easily
shown. (ii) We sketch the argument for part (ii). The re-
lationship (19) holds because for algebraic integers A, B, if
a ≥ µ(A) and b ≥ µ(B) then

a + b ≥ µ(A ± B), ab ≥ µ(AB), p
√

a ≥ µ(
p
√

A).

In particular, this justifies why (17) is an upper bound on
the algebraic integer (18). Q.E.D.

We are ready to prove the correctness of our rules.

2Note that the rules for u2, ℓ2 shadow the rules for U2, L2,
but not vice-versa, because ± for U2, L2 becomes a + for
u2, ℓ2. This can be seen by comparing (17) and (18).

Theorem 4. Table 3 is correct: for each expression E,
the triple (u2(E), ℓ2(E), v(E)) is a set of ul[2]-parameters
for E.

Proof. Since we already know Lemma 3, it remains to
show the relation (16). The BFMSS rules produce a pair
of algebraic integer expressions U(E), L(E) such that E =
U(E)/L(E). Lemma 1 shows that

u

ℓ
=

2v+

u2

2v−ℓ2
.

From the umbral relation between (u, ℓ) and (U, L), and also
between (u2, ℓ2) and (U2, L2), we conclude that

U

L
=

2v+

U2

2v−L2

= 2v U2

L2
.

Q.E.D.

Generalization. We can generalize the ul[2]-parameters to
ul[k]-parameters for any integer k > 2. Since the majority of
input constants in scientific and engineering computations
is covered by the ul[2] or ul[10], the following generalization
will be useful: if q1, . . . , qn ≥ 2 are relatively prime, it is
easy to define a set

(u(E), ℓ(E), vq1(E), . . . , vqn(E))

of ul[q1, . . . , qn]-parameters for E, so that

E =
u(E)

l(E)

n
Y

i=1

q
vqi

i

Special Cases. The binary BFMSS Rules allow the root
bounds of a floating point constant to behave like an integer
(i.e., ℓ(E) = 1). As long as there is no explicit division in
our expression, the expression continues to behave like an
integer. This is a very important case in practice.

Let us consider some specialization of our rules. Suppose
E′ and E′′ are “almost division-free” in the sense that ℓ′2 =
ℓ′′2 = 1 (they may not be algebraic integers since v1, v2 can
be negative). Then the rule for E = E′ ± E′′ in Table 3
gives

u2 = 2v′++v′′−−v+

u′
2 + 2v′−+v′′+−v+

u′′
2 . (20)

When v′ = v′′, this further simplifies to u2 = u′
2 + u′′

2 .
Similarly ℓ2 = 1 and v = v′. Suppose x, y are two L-bit
binary numbers. Such numbers can be represented by a
binary string of length L with a binary point somewhere
in the string. So the triple (4L, 1,−L) is a set of ul[2]-
parameters for x and for y. From the preceding, x + y has
ul[2]-parameters (2 · 4L, 1,−L). Similarly, xy has the ul[2]-
parameters (42L, 1,−2L). Now suppose E is the determi-
nant of an n× n matrix with entries which are L-bit binary
numbers. Viewing E as the standard sum of n! terms, we
easily see that E has

(4nLn!, 1,−nL) (21)

as a set of ul[2]-parameters. Furthermore, since D(E) = 1,
βbfmss

2 (E) = 2−nL. This justifies the root bit bound given
in (2).

5. EXPERIMENTAL RESULTS
The timings in this paper are based on runs on an Ul-

trasparc 10 machine with a 440 MHz CPU. The software

is Core Library Version 1.5+, which implements3 the Mea-
sure Bound, the Li-Yap Bound and a choice between the
original BFMSS, the BFMSS[2], or the BFMSS[2,5] Bound.

To give empirical data on the relative effectiveness of these
three bounds families, we run the Core Library Test Suite
and counted the number of times that each bound is the
best one. The results are shown in Table 4. Note that more
than one bound may be the best for any given expression,
so for each, we give a pair of numbers, the first one is the
number of times the given bound is equal to the best one,
and the second one is the number of times it is the only one
which is equal to the best one. The first column gives the
result of a run with the original BFMSS Bound used, the
second column gives the result of a run with the BFMSS[2]
Bound used, and the third column gives the result of a run
with the BFMSS[2,5] Bound used.

Experiment 1 involves the expression E1(x, y) given in
the introduction. We assume that E1(x, y) does not share
subexpressions. For example, we can reduce the degree from
16 to 8 by sharing, and the bit-bound function for BFMSS
improves to 48L + 22.

Experiment 2 involves the expression E2(x, y) =
√

x−√
y

x−y
−

√
x−√

y

x−y
, an example from [3]. When x, y are integers, the

bit-bound from BFMSS and Yap are 6L + 64 and 65L + 91,
respectively. But when x, y are L-bit binary numbers, the
bit-bound of BFMSS[2] is 7.5L + 11. When we substitute
various machine double values, we obtain bit-bounds whose
ranges are: 1643-1707 (BFMSS), 323-331 (BFMSS[2]). Run-
ning these 1000 times gives timings of 36 seconds (BFMSS)
and 22.8 seconds (BFMSS[2]). Although there is an im-
provement, it is not of the order of magnitude one might
expect from bit-bound ranges,
Determinants. Experiment 3 involves the determinant ex-
ample in the introduction. Let A be a n × n matrix whose
entries are L-bit binary rationals. By definition, the en-
tries has the form n2−k where 0 ≤ n < 2L and 0 ≤ k ≤ L.
There are two special cases that we consider:
(1) If n ≥ 2L−1, we say the L-bit binary rational is strict.
All the numbers in A are strict in our experiment.
(2) If k = L, then we say the L-bit binary rational is nor-
mal.

We noted that if E0 is the co-factor expansion of matrix
A, then the BFMSS bound gives − lg βbfmss(E0) ≤ (n!)nL,
while the binary BFMSS bound gives − lg βbfmss

2 (E) ≤ nL.
If E′ is the dynamic programming implementation of the
determinant of A, then βbfmss(E′) may be strictly greater
than β(E). For instance, if a, b, c are L-bit binary numbers
then βbfmss(a(b + c)) = 3L while βbfmss(ab + ac) = 4L. On
the other hand, βbfmss

2 (a(b + c)) = βbfmss
2 (ab + ac). Table 5

compares the root bit bounds of BFMSS and the binary ver-
sion on random matrices whose entries are 100 − bit binary
rationals. These empirical bounds are (as expected) better
than the worst case estimate. If we use normal 100-bit bi-
nary rationals, the Table 6 gives the same comparison when
those entries are normalized 100− bit binary rationals. Our

3Version 1.5+ refers to the modifications of the released Ver-
sion 1.5 necessary to support the experiments of this pa-
per. Our implementation of these bounds will generally be
slightly worse bound than the theory predicts because we
maintain upper bounds on lg M(E), lg u2(E), etc, instead
M(E), u2(E), etc. The Core Library Test Suite is a set
of about 30 sample programs that is distributed with the
library.

Table 4: Relative effectiveness of 3 Root Bounds on CORE Test Suite
original BFMSS BFMSS[2] BFMSS[2,5]

BFMSS family 55712/4016 55726/14214 55746/15277
Li-Yap 51669/33 41531/19 40472/3

degree-measure 4/4 4/4 0/0

Total number of expressions 55749 55749 55749

Table 5: Bitbound for dynamic programming deter-
minant for random binary entries (L = 100)

n (n!)nL BFMSS nL BFMSS[2]

2 400 164 200 101
3 1800 657 300 169
4 9600 2267 400 248
5 60, 000 10, 468 500 326

Table 6: Bitbound for dynamic programming deter-
minant for random normal binary entries (L = 100)

n (n!)nL BFMSS nL BFMSS[2]

2 400 400 200 200
3 1800 1497 300 300
4 9600 6364 400 400
5 60, 000 32, 282 500 499

implementation of the βbfmss
2 bound practically matches the

theoretical upper bound of nL.
We next compare timing for BFMSS, BFMSS[2] and

BFMSS[2,5]. Despite the wide gap in the root bounds, the
timings is not expected to be different for random matri-
ces. That is because a random determinant is unlikely to
be zero and so the floating point filter will be in effect. In-
stead, we convert the above data into degenerate matrices,
just by making the last row a duplicate of the previous row.
Surprisingly, there was no detectable difference in timing be-
tween BFMSS and BFMSS[2]. This could be explained as
follows: the internal representation of the numbers was in
binary, and even when the root bound asks for many bits of
precision, our implementation of BigFloat ensures that no
redundant bits are transmitted (i.e., trailing zeroes are omit-
ted). Hence the speedup could only be observed if we use
inputs that are not purely binary. Therefore, in our next set
of experiments for timing, we use decimal rationals. We use
random matrices whose entries are strict 50-digit decimal ra-
tionals. Table 7 compares the speed of BFMSS, BFMSS[2]
and BFMSS[2,5]. The timing are for 10, 000 evaluations of
each determinant.

6. OPEN PROBLEMS AND FUTURE

WORK
This paper introduce the factoring technique into con-

structive root bounds, and demonstrated its effectiveness.
In general, the problem of constructive root bounds will be-
come more important as EGC techniques and such algo-
rithms become more widely used. The trade-offs between

Table 7: Dynamic programming determinant for de-
generate strict matrices with 50-digit decimal ratio-
nals

n BFMSS BFMSS[2] BFMSS[2,5]
time bitbd time bitbd time bitbd

2 4.4 352 4.3 300 4.4 175
3 15.2 648 13.9 538 14.1 236
4 57.5 2624 58 1984 35 339
5 568 15,427 572 12,202 107 444

effectiveness (i.e., small root-bit bounds) and efficiency (i.e.,
low computational complexity) is not understood. Between
the extremes of simple recursive rules (as constitute the bulk
of current bounds) and (say) computing minimal polynomi-
als, we would like to see methods with intermediate compu-
tational complexity. Our factoring method can be seen as
one step in this direction. We list some open problems and
future work:

• Our k-ary method can be generalized to maintain ar-
bitrary rational factors, in addition to k-ary factors.
(e.g., transform E to q2vE2 where v ∈ Z, q ∈ Q). The
benefit of the rational factors is less predictable, and
hence experimentation is called for.

• Current constructive root bound techniques are mostly
static in nature. More dynamic root bound techniques
should be exploited. An idea of Sekigawa[12] can be
pursued. Sekigawa proposed some methods in the case
of the measure bound, but they do not seem to have
been implemented. We could combine with the most
significant bit (MSB) bound that is maintained in the
Core Library [7].

• It is clear that the k-ary method can also be applied
to the Li-Yap Bound.

• The general treatment of the diamond operators under
the Measure Bound is subject for further research.

• The incorporation of the Sekigawa improvements into
the current Measure[2] Rules is immediate if there is
no division. It is possible to give rules that incorporate
these improvements for division, but it is unclear how
to ensure that the binary bound dominates the original
bound.

7. REFERENCES
[1] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.

Exact geometric computation made easy. In Proc.
15th ACM Symp. Comp. Geom., pages 341–450, 1999.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and
S. Schirra. A strong and easily computable separation
bound for arithmetic expressions involving radicals.
Algorithmica, 27:87–99, 2000.

[3] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A separation bound for real algebraic
expressions. In Lecture Notes in Computer Science,
pages 254–265, 2001.

[4] CORE Homepage, 1998. Core Library Project: URL
http://cs.nyu.edu/exact/core/.

[5] LEDA Homepage, 1998. Library of Efficient Data
Structures and Algorithms (LEDA) Project. From the
Max Planck Institute of Computer Science. See URL
http://www.mpi-sb.mpg.de/LEDA/.

[6] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A
Core library for robust numerical and geometric
libraries. In 15th ACM Symp. Computational
Geometry, pages 351–359, 1999.

[7] C. Li. Exact Geometric Computation: Theory and
Applications. Ph.d. thesis, Department of Computer
Science, New York University, Jan. 2001. Download
from http://cs.nyu.edu/exact/doc/.

[8] C. Li and C. Yap. A new constructive root bound for
algebraic expressions. In Proc. 12th ACM-SIAM
Symposium on Discrete Algorithms, pages 496–505.
ACM and SIAM, Jan. 2001.

[9] M. Marden. The Geometry of Zeros of a Polynomial
in a Complex Variable. Math. Surveys. American
Math. Soc., New York, 1949.

[10] M. Mignotte. Identification of algebraic numbers. J. of
Algorithms, 3:197–204, 1982.

[11] G.-C. Rota. Finite Operator Calculus. Academic
Press, Inc, 1975.

[12] H. Sekigawa. Using interval computation with the
Mahler measure for zero determination of algebraic
numbers. Josai Information Sciences Researches, 9(1),
1998.

[13] C. Yap. A new number core for robust numerical and
geometric libraries. In 3rd CGC Workshop on
Geometric Computing, 1998. Invited Talk. Brown
University, Oct 11–12, 1998. See abstracts
http://www.cs.brown.edu/cgc/cgc98/home.html.

[14] C. K. Yap. Fundamental Problems in Algorithmic
Algebra. Oxford University Press, 2000.

[15] C. K. Yap and T. Dubé. The exact computation
paradigm. In D.-Z. Du and F. K. Hwang, editors,
Computing in Euclidean Geometry, pages 452–486.
World Scientific Press, Singapore, 1995. 2nd edition.

