
HAL Id: inria-00349845
https://hal.inria.fr/inria-00349845

Submitted on 8 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling an Isolated Compound TCP Connection
Alberto Blanc, Konstantin Avrachenkov, Denis Collange

To cite this version:
Alberto Blanc, Konstantin Avrachenkov, Denis Collange. Modelling an Isolated Compound TCP
Connection. [Research Report] RR-6778, INRIA. 2008. �inria-00349845�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50201866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00349845
https://hal.archives-ouvertes.fr


appor t  


de  r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
7

7
8

--
F

R
+

E
N

G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Modélisation d’une connexion Compound TCP

isolée

Alberto Blanc — Denis Collange — Konstantin Avrachenkov

N° 6778

Decembre 2008





Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Modélisation d’une connexion Compound TCP

isolée

Alberto Blanc ∗ , Denis Collange ∗ , Konstantin Avrachenkov †

Thème COM — Systèmes communicants
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simulations ns-2 utilisant l’implémentation Linux de CTCP. Ce modèle permet
d’identifier différents modes de fonctionnement de CTCP, selon les paramètres
du système. Nous montrons que durant la phase où la fenêtre de congestion est
considérée comme constante par les auteurs du protocole, la fenêtre observe en
réalité des oscillations importantes. Ces fluctuations peuvent dégrader les per-
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que nous avons développé permet également de calculer le débit moyen d’une
connexion CTCP, ainsi que l’occupation induite du buffer du goulet d’étrangle-
ment. Ces métriques dépendent du mode de fonctionnement de CTCP. Pour des
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Modelling an Isolated Compound TCP

Connection

Abstract: Compound TCP (CTCP) was designed by Tan at al. to improve
the efficiency of TCP on high speed networks without unfairly penalizing other
connections. In the present work we construct and analyze a detailed model
of an isolated CTCP connection. We validate it with ns-2 simulations using a
Linux implementation of CTCP. The detailed model allows us to identify and
classify significantly different CTCP operating regimes depending on the sys-
tem parameters. We show that in the “constant window” phase the congestion
window can in fact have significant oscillations with non-negligible effect on the
performances and which can, also, induce additional jitter in the cross traffic.
Using this model we calculate the average throughput and average backlog size
at the bottleneck link. These performance metrics depend on the CTCP oper-
ating regime. Under certain circumstances, an isolated CTCP connection on a
high speed link utilizes around 75% of the link capacity.

Key-words: TCP, Compound TCP, fluid model
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1 Introduction

With the increasing popularity of faster access links like Fiber To The Home,
the current Standard TCP is not always ideal. As indicated by Floyd [9] the cur-
rent Standard is not able to reach these rates in realistic environments, i.e. with
typical packet loss rates. Many new transport protocols have been proposed and
are currently being studied to replace it. Some of them are already implemen-
ted in the latest versions of some operating systems, like Compound TCP on
Windows, and Cubic (and others) on Linux. Others are implemented in network
equipment. At least for the next few years, the protocols already implemented
will play an increasing role in the resource sharing between flows in the In-
ternet. Yet the behavior, the performance, and the impact on the network of
these protocols are not well-known. A method to evaluate the new protocols has
just been specified [10], and test scenarios are still under discussion. For most
of these new protocols there are only experimental or simulation studies, with
conflicting results. Analytical models, describing their behavior and impact on
the network, exist only for a few protocols and for simple cases. In this paper we
develop an analytical model of Compound TCP, to analyze in detail its behavior
for an isolated connection.

Compound TCP (CTCP) has been presented by Microsoft Research in [15]
and [16] in 2006. It is currently submitted as a draft to the IETF Network Wor-
king group with minor differences [13]. CTCP is enabled by default in computers
running Windows Server 2008 and disabled by default in computers running
Windows Vista [8]. It is also possible to add support for CTCP to Windows XP.
An implementation of CTCP, based on [16, 13], is also available for Linux [3].

As the proposal of CTCP is still recent, there are only a few published
evaluations of it. The only analytical model of CTCP in [16] assumes a constant
window size in the third phase of Figure 1. To the best of our knowledge there
are no complete theoretical models of CTCP that can be used to analyze in
details the behavior of this new protocol. While we have shown in [7] that the
sending window oscillates during this phase, and that these oscillations may have
a significant impact on the performance of CTCP. Other evaluations are based
on experiments. However, except the one of Li [12], all the other experimental
evaluations [5, 11, 4] use Linux implementations of CTCP whose behavior differs
from the Windows implementation, according to [4].

The main objective of the authors of CTCP [16] is to specify a transport
protocol which is efficient, using all the available bandwidth, fair and conserva-
tive, limiting its impact on the network. They propose to combine the fairness
of a delay-based approach with the aggressiveness of a loss-based approach. The
sending window (w) is defined as the sum of two components : the classical New
Reno congestion window (wc) and a delay-based window (wd).

When the source detects an under-utilized network, it quickly increases the
delay-based component until the sending window exceeds the estimated band-
width delay product. Conversely, the delay-based component is decreased if the
source detects increasing network delays. The delay-based component is then
adjusted to maximize the efficiency and to minimize the backlog in network
queues. At the i-th round trip the backlog in network queues is estimated as :

∆i = wi (1 − τ̃ /τi) . (1)

RR n➦ 6778
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Fig. 1 – The four different phases

where wi is the sending window, τ̃ the smallest round trip time ever observed
and τi the latest sample of the round trip time. The sending window is then
quickly increased if ∆i is lower than a threshold γ, and decreased otherwise :

wi+1 =

{

wi + αwk
i , if ∆i < γ

wi − ζ∆i + 1 , if ∆i ≥ γ.
(2)

Where γ was initially a fixed threshold, with proposed value equal to 30 [16].
It is now dynamically adjusted between 5 and 30, according to the window size
on loss events [14], using the TUBE algorithm. For the sake of simplicity, and
due to the fact that is has been only recently introduced we do not explicitly
model TUBE in the remainder of the paper. The authors of CTCP proposed to
set α = 1/8, k = 3/4 and ζ = 1. Unless otherwise specified, we are going to use
the same values for all the numerical examples and simulations.

2 Different Phases of CTCP

In order to model an isolated CTCP connection we consider a simple fluid
system comprised of a sender and receiver connected by a FIFO queue, with
rate µ and buffer size b. The sender uses a single CTCP connection to send
data to the receiver. For the sake of simplicity we will assume that there is no
exogenous traffic in the FIFO queue ; that the sender has an unlimited amount
of data to send ; and that the advertised window is never a limiting factor.

We are going to consider different cases corresponding to different phases
in the evolution of the sending window. Each particular realization will take a
different path, depending on the specific values of all the parameters involved.
But given the initial state it is always possible to determine the final state at the
end of the first phase. Based on this, the next phase is chosen and the process
is repeated.

We assume that the time origin coincides with the starting time of the phase
being discussed. Therefore all the times are meant as an offset from the start of
each phase. The initial conditions as well always refer to those of the phase in
question.

INRIA



Modelling an Isolated Compound TCP Connection 5

In all phases w is the total congestion window, while wc and wd are the
congestion and the delay component respectively. Let τ(t) be the round trip
time at time t and τ̃ be the propagation delay (including processing delays) so
that :

τ(t) , τ̃ +
x(t)

µ

where x(t) is the backlog at time t. In the case of an isolated connection the
smallest round trip sample coincides with the propagation delay, and we use τ̃
to indicate both quantities.

Let Rin(t) be the input process, that is the total amount of traffic sent by the
source up to (and including) time t. Similarly, let Rq(t) be the output process
of the FIFO queue, that is the total amount of traffic that has left the queue
since the beginning of the current phase.

As done in previous works (see, for example, [1]) we are going to model the
flow of acknowledgments from the receiver back to the sender with a process
equal to the output process of the queue delayed by a fixed propagation delay (τ̃).
Clearly this is not what happens in a real network but it is a correct abstraction
as the acknowledgments do inform the sender of the total amount of traffic
arrived at the receiver. Using this model we have that :

Rin(t) = Rout(t) + w(t)

where Rout(t) = Rq(t−τ̃), that is the output of the queue delayed by τ̃ . Without
the loss of generality we will assume that Rout(0) = 0 at the beginning of each
phase so that Rin(0) = w(0) and the total amount of traffic sent between 0
and t is Rin(t) − Rin(0) = Rin(t) − w(0). We are also going to assume that
whenever the window is instantaneously increased by a certain amount Rin

increases instantaneously by the same amount. In other words whenever the
window has a discontinuity (a jump) so does the input process. This is the same
as assuming that the capacity of the link connecting the sender to the FIFO
queue is much greater than µ.

Figure 1 shows the four different phases of CTCP, we will use a number to
identify each of them and its corresponding parameters. For example ti is the
end time of the i-th phase and w∗

i is the value of the window at the beginning
of the i-th phase. For each phase we explicitly compute the expression of w(t),
which can be used to compute the final value of w and the total amount of
traffic sent during each phase. It is also possible to compute wc and then find
wd using the relation w = wc + wd.The final values of w and wc can be used as
the initial values of the following phase. In section 4, we will show how several
different combinations of these phases are possible.

2.1 Empty Buffer and Superlinear Increase

Let w∗

1 be the window at the beginning of the phase. Given that the buffer is
empty τ(t) = τ̃ . During this phase the sender increases w by αwk every τ̃ units
of time. We have not been able to find a closed form expression for the recursion
wn+1 = wn + αwk

n so that it is not possible to find the exact expression of w(t).
Instead we use the same approach as in [16] by approximating the derivative of

RR n➦ 6778
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w with its increment during one round trip time1 :

dw

dt
⋍

αwk

τ̃
,

combining this with the initial condition w(0) = w∗

1 we have :

w(t) =

(

(1 − k)α

τ̃
t + w∗1−k

1

)
1

1−k

. (3)

In a fluid system the buffer would be empty as long as the instantaneous arrival
rate is greater than µ. As Rin(t) represents the total amount of traffic received
until time t, its first derivative (provided it exists) is the instantaneous arri-
val rate. Using the fact that Rin(t) = Rout(t) + w(t) and that, in this phase,
Rout(t) = Rin(t − τ̃) it is possible to compute R′

in(t). But it is not possible to
find a closed form solution for the equation R′

in(t) = µ.
Given that we cannot explicitly compute when R′

in(t) = µ we will use a
different approach. Clearly, if w > µτ̃ the backlog has to be greater than zero :
if there are more than µτ̃ bits in flight some of them have to be in the buffer
waiting to be served. This is also true in a packet based system and we will use
this value to determine when this phase ends. To be more precise in a packet
based system the backlog is non-zero every time a packet arrives at the buffer
before the departure of the previous one and this can happen even for small
values of the window but only for limited periods of time. Provided µ < µτ̃ ,
even if the sender can send some packets in a burst such burst is not big enough
to cause a persistent backlog. In the sense that before the beginning of the next
round trip time the backlog will be zero.

In both the fluid and the packet based system the backlog will be non-zero
at some point before w = µτ̃ but we can use this value as an approximation to
compute the end time of this phase. The simulations results in Section 4 validate
this assumption. From (3) it follows that w < µτ̃ until time

t1 =
µ1−k τ̃2−k − τ̃w∗1−k

1

(1 − k)α
.

In order to compute Rin(t) we would need to know Rout(t) starting from time
0 but this depends on what happened before this phase. At the same time, given
that the buffer is empty at time 0, after t = τ̃ the system will loose memory of
what happened before the beginning of this phase. For the sake of simplicity we

are going to assume that Rout(t) =
w∗

1

τ̃
t for 0 ≤ t ≤ τ̃ . That is that, during the

first round trip time, acknowledgments arrive at a constant rate. In this case
Rout(t) = Rin(t − τ̃) after τ̃ , and :

Rin(t) =

{

w∗

1

τ̃
t + w(t) , if t < τ̃

Rin(t − τ̃) + w(t) , if t ≥ τ̃ .

The total amount of traffic sent during this phase is :

Rin(t1) =
w∗

1

τ̃
z +

N
∑

n=0

w(t1 − nτ̃), (4)

1The same approximation can be obtained by considering how much each acknowledgment

contributes to the increase of the window and then assuming that the acknowledgments arrive

at rate w
τ̃

.

INRIA



Modelling an Isolated Compound TCP Connection 7

where we have “decomposed” t1 as the sum of N propagation delays and a
remainder z, that is t1 = Nτ̃ +z. Using (4) we can compute the average sending

rate as λ̄1 ,
Rin(t1)

t1
.

Alternatively we can exploit the fact that λ = w(t)
τ

and compute the total
amount of traffic as :

Rin(t) =

∫ t1

0

w(t)

τ̃
dt

=
(µτ̃)2−k − w∗2−k

1

(2 − k)α
.

Using this approach the average sending rate is2 :

Rin(t1)

t1
=

(1 − k)
(

w∗k
1 (µτ̃)2 − w∗2

1 (µτ̃)k
)

(2 − k)τ̃
(

w∗k
1 µτ̃ − w∗

1(µτ̃)k
) .

In order to correctly characterize the following phase we also need to compute
the final value of the two components of the window. During this phase wc grows
by 1 each round trip time so that

wc(t) = wc,1 +
t

τ̃
(5)

where wc,1 is the initial value of the congestion component of the total window
at the beginning of this phase. Therefore at the end of this phase :

wc(t1) = wc,1 +
(µτ̃)1−k − w∗1−k

1

(1 − k)α
.

As w(t1) = µτ̃ and w = wc + wd it follows that

wd(t1) = µτ̃ − wc,1 −
(µτ̃)1−k − w∗1−k

1

(1 − k)α
.

Even though in the fluid model a buffer overflow is not possible in this phase,
in a packet based system this can happen if the increment of window during one
round trip time is bigger than the buffer size. As we are assuming that the
capacity of the link connecting the source to the bottleneck is much grater than
the bottleneck capacity, whenever the sender updates its sending windows using
the w = w + αwk relationship, the sender will inject a burst of size αwk into
the network. Clearly if this burst is bigger than the size of the buffer there will
be an overflow. If b is the buffer size this will happen when αwk ≥ b that is
when w ≥ (b/α)

1

k . Given that this phase will end when w = µτ̃ we also need

(b/α)
1

k < µτ̃ . In other words there will be a buffer overflow in this phase only
if b < α(µτ̃)k. If this is true the phase will end not when w = µτ̃ but when

w = (b/α)
1

k . In this case we have :

t1 =
τ̃

(1 − k)α

(

(

b

α

)

1−k

k

− w∗1−k
1

)

(6)

wc(t1) = wc,1 +
1

(1 − k)α

(

(

b

α

)

1−k

k

− w∗1−k
1

)

2Clearly in the final version only one of the two approaches will be presented. I have to

check which one give the best estimate.

RR n➦ 6778



8 Blanc, Collange, Avrachenkov

where we have used (5) to compute the final value of wc.

2.1.1 Safe Values for k

While, at this time, we do not have any different recommendations, we would
like to point out the consequences of using value of k greater than one. If k > 1
then, for any positive value of α there exist a value of the window, say ŵ, such
that if w > ŵ then the increment of the window is greater than during slow start,

that is αwk
n > wn. This is because if k > 1 and wn > α

1

1−k then αwk
n > wn. By

choosing small values of α the value of ŵ can be increased. But such an approach
would leave the possibility of having an exponential increase of the window in
certain network scenarios. The case k = 1 would lead to an increase similar to
slow start, which would probably be excessive in several cases. Because of this
we are going to assume that 0 < k < 1.

2.2 Non Empty Buffer and Superlinear

Increase

Again let w∗

2 be the window and x2 the backlog at the beginning of the
phase. In this case w∗

2 ≥ µτ̃ so that either x(0) > 0 or x(0 + ǫ) > 0 for any
ǫ > 0, that is the backlog is always non-zero immediately after time 0. Note
that in throughout this phase the round trip time is not a constant anymore.
We also know that the acknowledgments are arriving with rate µ as the buffer
is non-empty.

Given that the window is increased when w acknowledgments are received
we can say that, on average, each acknowledgment increases the window by
αwk/w. This is true also if delayed acknowledgments are used : as explained in
the draft standard ([13], section 6) the round trip time is estimated matching
some of the arriving acknowledgments with the corresponding segments and
computing the difference between the arrival time of the acknowledgment and
when the segment was sent. Delay acknowledgments do diminish the number of
available samples but they should not radically change the value of the estimates.
Especially considering that only a fraction of the packets is used as samples
anyway, in order to diminish the computing overhead.

Between t and t + δ we receive µδ acknowledgments so that

w(t + δ) = w(t) + µδαwk−1,

and
w(t + δ) − w(t)

δ
= µαwk−1. (7)

By taking the limit as δ approaches zero of (7) we have that

dw

dt
= µαwk−1

which implies

w(t) =
(

(2 − k)αµt + w∗2−k
2

)

1

2−k , (8)

where we have used the initial condition w(0) = w∗

2 .
The superlinear increase will continue as long as the backlog is less than γ.

More precisely until the ∆i < γ, where ∆i is the backlog estimate computed

INRIA



Modelling an Isolated Compound TCP Connection 9

by the sender each round trip time. If we assume that this estimate is correct,
this phase will end when x(t) = γ. Given that w(t) = x(t) + µτ̃ (that is all the
bits in flights are either in the buffer or in the delay element) we can use (8) to
compute t2 such that x(t2) = γ :

t2 =
θ2−k − w∗2−k

2

(2 − k)αµ

where θ = γ + µτ̃ is the final value of w during this phase. Note that this
expression holds for any value of θ > w∗

2 (we will use this fact shortly to consider
the case when this phase ends because of a buffer overflow and not because
w = γ + µτ̃).

During this whole phase the congestion window component grows by 1 each
round trip time. Using the same argument as above we have that each acknow-
ledgment increases the congestion window by 1

w
so that

dwc

dt
=

µ

mw
, (9)

where m is the number of packets acknowledged by each acknowledgment.
We know that, until t2, w(t) is given by (8) so that (9) becomes (see [6] for

the solution) :
dwc

dt
=

µ

m

(

(2 − k)αµt + w∗2−k
2

)

1

k−2 .

which implies

wc(t) =
1

(k − 1)mαw∗k
2

(

(

w∗2−k
2 − (k − 2)tαµ

)

1

k−2 ×

×
(

(k − 2)tw∗k
2 αµ − w2

2

)

+ w2

)

+ wc,2 (10)

where we have used the initial condition wc(0) = wc,2. At time t2 we know that
x(t) = γ and that

wc(t2) = wcb +
w∗1−k

2 − (γ + µτ̃)1−k

(k − 1)mα
.

During this phase Rout(t) = µt, so that Rin(t) = Rout(t) + w(t) = µt + w(t),
given that Rin(0) = w∗

2 . As w(t2) = θ we have that

Rin(t2) − Rin(0) = θ +
θ2−k − w∗2−k

2

(2 − k)α
− w∗

2

so that

λ̄2 =
µθk

(

w∗

2 − w∗k
2 α(θ − w∗

2)(k − 2)
)

− w∗k
2 θ2µ

w2
2θ

k − wk
2θ2

= µ +
(2 − k)α(w∗

2 − θ)(w∗

2θ)kµ

w∗2
2 θk − w∗k

2 θ2

λ̄2 = µ +
(2 − k)α(w∗

2 − θ)(w∗

2θ)kµ

w∗2
2 θk − w∗k

2 θ2

If γ > b the backlog cannot reach γ and this phase will, instead, end with
a buffer overflow when w(t) = b + µτ̃ . In this case we can use all the above
expressions with θ = b + µτ̃ .

RR n➦ 6778



10 Blanc, Collange, Avrachenkov

2.3 Constant Window

As a first approximation we are going to assume that during this phase the
window is constant and equal to θ, as in [16]. That is we are assuming that wd

is decreasing at the same rate as wc is increasing so that the total window is
constant. During this phase (9) becomes

dwc

dt
=

µ

mθ

so that
wc(t) =

µ

mθ
t + wc,3. (11)

Where wc(0) = wc,3 is the initial value of wc for this phase. This expression
holds until time t3 such that wc(t3) = θ. From (11) we have

t3 =
mθ(θ − wc,3)

µ
.

In this phase Rout(t) = µt as well so that Rin(t) = µt − θ + w(t) = µt. The
total amount of traffic sent is Rin(t3) = mθ(θ − wc,3) and the average sending
rate is λ̄3 = µ.

2.4 Linear Increase

In this phase the delay component is zero (i.e. wd = 0) so that w = wc and

dwc

dt
=

dw

dt
=

µ

mw
.

In this case

w(t) =

√

2µ

m
t + w∗2

4 (12)

where we have used the initial condition w(0) = w4.
This phase will end when the buffer overflows, that is when x(t) = b. Using

(12) we can compute t4 such that x(t4) = b, that is w(t4) = b + µτ̃ :

t4 =
m
(

(b + µτ̃)2 − w∗2
4

)

2µ
.

Using once more the fact that Rout(t) = µt we can compute Rin(t) as Rin(t) =
µt − w∗

4 + w(t) so that

Rin(t4) − Rin(0) = b − w4 + µτ̃ +
m

2

(

(b + µτ̃)2 − w4

)

and

λ̄4 =
2µ
(

b − w∗

4 + µτ̃ + m
2

(

(b + µτ̃)2 − w∗

4

))

m ((b + µτ̃)2 − w∗

4)
.

INRIA
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Fig. 2 – Oscillations of w (ns-2 simulation : µ = 100Mb/s, τ̃ = 50ms)

3 Oscillations During Phase 3

As noted in [7], during phase 3, the algorithm described in [16] and [14]
causes the window to oscillate around a constant value. Figure 2 shows the
evolution of the sending window between two packet losses. Clearly, during phase
3, the window is constantly incremented and decremented. In this particular
case the oscillations are realized by increasing the window three times and then
decreasing it once but this is not the only possible pattern : depending on
the system parameters it is possible to have different patterns. In each case a
series (two or more) of increasing phases is followed by one (or more) decreasing
phase(s). We use two integers m :n to indicate the type of oscillations, with m
and n representing the number of increasing and decreasing phases, respectively.

While considering the window as a constant can be a useful approximation, it
is not always possible to ignore the oscillations during this phase. In at least two
cases it is important to consider them. First, if the window were kept constant
(such that w = µτ̃ + γ) phase 3 would take place as long as b > γ, but, because
of the oscillations, the window will reach a value greater than µτ̃ + γ causing
a buffer overflow and a premature end of phase 3. If θmax and θmin are the
maximum and minimum values reached by w during each oscillation, phase 3
will take place only if µτ̃ + b < θmax. If this condition does not hold phase 2
ends with a buffer overflow with a potentially adverse effect on the throughput.
In most cases, if phase 2 ends with a buffer overflow, the buffer will be empty
after each window cut, reducing the throughput. Second, even if phase 3 does
take place, the oscillations of the window will cause the backlog to oscillate as
well, which can have a negative impact on the other traffic going through the
same bottleneck link. Even if in this work we do not consider exogenous traffic
we, nonetheless, think that it is important to highlight this consequence of the
oscillations.

While it is possible to use a fluid model to estimate the size of the oscillations
we believe it is easier to use the discrete event model presented in [7] to precisely
characterize these oscillations. In the remainder of this section, after a brief
presentation of the model used in [7], we will extend that work by proving
the existence of the fixed point solution (in one case) and by showing how it is
possible to determine the m :n pattern of the oscillations based on the bandwidth
delay product.
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Note that all the results presented in this section depend on properties of the
specific Linux implementation we have used [3]. So some care should be taken
in applying them to other implementations. At the same time we believe that
these issues will be present in any implementation of the algorithm presented
in [16, 14]. Furthermore the rest of the model depends only on θmax and θ (the
maximum and average value of the window during phase 3) so that it suffices
to find these two values for each implementation.

3.1 Linux Implementation

Once every round trip time the Linux implementation, that we used for the
simulations, instead of using (1), computes ∆i as :

∆i = wi−1 (1 − τ̃ /τi) (13)

where wi−1 is the size of sending window the last time the window was updated
(that is one round trip time before). As the sender uses acknowledgments to
estimate the round trip time any such estimate refers to the packet being ack-
nowledged. Given that this packet was sent one round trip time ago it is more
appropriate to use wi−1 rather than wi.

The round trip time estimate τi is the smallest value of all samples collected
during the last round trip time. This choice is explained, by a comment in the
source code, as a way to minimize the impact of delayed acknowledgments.

In the case of a single connection with no cross traffic τi depends only on
the window dynamics so that it is possible to express it as a function of past
values of the window. In particular we have that :

τi =







min
[

wi−2+1
µ

, τ̃
]

, if wi−1 > wi−2

min
[

wi−1
τ̃

τi−1

, τ̃
]

, if wi−1 < wi−2

(14)

That is if the window was not reduced at the last update the first expression
is used, while if the window was reduced at the last update then the second one
is used (see [7] for more details).

3.2 Fixed Points

Given an initial value for the window it is possible, using equations (13), (14)
and the window update function wi+1 = wi + αwk

i , to explicitly compute the
evolution of the window. For example, in the case of the 3 :1 cycle if w1 is the
initial value of the window, the final value will be w4(w1) − ∆4(w1) + 1, where
w4 is the value after w1 was updated three times, (the value at the beginning
of the fourth step in the cycle). And ∆4 is the value of ∆i at the beginning of
the same cycle. The plus one takes into account the fact that this cycle covers
four round trip times and in three of them the window is incremented while in
the fourth one wd is decremented while wc is still incremented by one. Using
the above equations it is possible to compute the values of w4(w1) and ∆4(w1)
in closed form but the expressions are lengthy and do not offer any insight and
are not presented here.

In Figure 2 the oscillations quickly reach a steady state, as they do in all
the simulations we have observed. As discussed in [7], if a steady state solution
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does exist it must satisfy the condition that the final value of one cycle is the
same as the initial value of the following one. If f(w1) is the final value of a
cycle starting with w = w1 we can find the steady state solution by solving the
fixed point equation f(w1) = w1 for w1. Note that that the expression of f(w1)
depends on the type of oscillations. In general, for the m :1 cases fm:1(w1) =
wm+1(w1)−∆m+1(w1) + 1 and fm:2 = wm+1(w1)−∆m+1(w1)−∆m+2(w1) + 2
for the m :2 cases.

Given that 0 < k < 1 it is not possible to find a closed form expression for
the solution of fm:n(w1) = w1 (it is possible to write fm:n in closed form but
the expression is somewhat long and it is not reported here). At the same time
it is possible to use efficient numerical algorithms to find the solution as fm:n

is a continuous function. The following theorem shows that, in the 3 :1 case,
such solution does indeed always exist. We believe that a similar argument can
be used for the other cases as well. For the proof see the companion technical
report [6].

Theorem 1 f3:1(w1) = w1 has always one solution in [µτ̃
2 ,∞), provided 0 <

k < 1, µτ̃
2 > α−

1

k , and µτ̃
2 > α

1

1−k .

Proof Using 13,14 we have that f3:1(w1) = w4(w1) − ∆4(w1) = w4(w1) −

w3(w1)
(

1 − µτ̃
w2+1

)

and we can rewrite f3:1(w1) = w1 as g1(w1) = g2(w1) where

g1(w1) = w4(w1) − w1 and g2(w1) = w3(w1)
(

1 − µτ̃
w2(w1)+1

)

. We are going to

show that g1(
µτ̃
2 ) ≥ g2(

µτ̃
2 ) and that

lim
w1→+∞

[g2(w1) − g1(w1)] ≥ 0.

As fm:n(w1) is the composition of continuous function is itself continuous (for
w1 > 0), and so are g1 and g2. To see why fm:n is continuous consider that
w1 > 0 implies wi > 0 and (as τi ≥ τ̃ > 0) ∆i > 0. Using the intermediate
value theorem, we can, therefore, conclude that g1(w1) = g2(w1) for some w1 ∈
[µτ̃

2 ,∞)].

We will first show that g1(
µτ̃
2 ) ≥ g2(

µτ̃
2 ). We have that, as w4 > w2 :

g1(w1) = w4(w1) − w1

> w2(w1) − w1

= αwk
1 .

Where the last equality follows from the definition of wi. If µτ̃
2 > α−

1

k then

g1(
µτ̃
2 ) > 1. For g2 we have :

g2

(

µτ̃

2

)

= w2

(

µτ̃

2

)

+ 1 − µτ̃

= −
µτ̃

2
+ 1 + α

(

µτ̃

2

)k

≤ −
µτ̃

2
+ 1 +

µτ̃

2
= 1,
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where the first two equalities follows from the definition of g2, wi and ∆i ; the

inequality holds because α(µτ̃
2 )k ≤ µτ̃

2 (as µτ̃
2 ≥ α

1

1−k ). Therefore g2(
µτ̃
2 ) ≤

g1(
µτ̃
2 ).
Next we will show that for w1 → ∞ the opposite inequality holds. Using the

definitions of g2 and g1 we have :

g2(w1) − g1(w1) = w1 − α(w3(w1))
k −

w3(w1)

w2(w1) + 1
µτ̃ .

Starting with the last term we have :

lim
w1→∞

w3(w1)

w2(w1) + 1
µτ̃ =

= lim
w1→∞

w2(w1) + α(w2(w1))
k

w2(w1) + 1
µτ̃

= lim
w1→∞

w2(w1)

w2(w1)
µτ̃ + lim

w1→∞

α(w2(w1))
k

w2(w1) + 1
µτ̃

= µτ̃

where the first equality follows from the definition of w3(w1) and the last one
from the fact that k < 1 and limw1→∞ wi(w1) = ∞. For the first two terms
consider that if f(x)/h(x) → 0 and if f(x) → ∞ then f(x)−h(x) → ∞ (where all
the limits are as x → ∞). Therefore it suffices to show that α(w3(w1))

k/w1 → 0.
Using the definitions of w3 and w2 and then l’Hôpital’s rule we have

lim
w1→∞

α(w3(w1))
k

w1
=

= lim
w1→∞

α
[

w1 + αwk
1 + α

(

w1 + αwk
1

)k
]k

w1

= lim
w1→∞

αk
[

w1 + αwk
1 + α

(

w1 + αwk
1

)k
]k−1

×
[

1 + αkwk−1
1 + αk

(

w1 + αwk
i

)k−1
(1 + αkwk−1

1 )
]

= 0

where the last step follows from the fact that k < 1.

3.3 Different Oscillation Cycles

The fixed point equations presented in the previous section can be used
to calculate the maximum and minimum values of the oscillations but do not
indicate which cycle type will take place. For any value of the bandwidth delay
product it is always possible to have a certain type of oscillations, provided
the window is reduced by the appropriate amount at the appropriate time. But
CTCP calls for the window to be reduced only when ∆i ≥ γ so that, for any
specific bandwidth delay product, certain patterns are not feasible because they
need the window to be reduced by a factor smaller than γ.

Using simulations, we have observed several different types : 3 :1, 5 :2, 4 :2
and 3 :2 but also 4 :1, 5 :1 and 6 :1. In most cases, the type of oscillations
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∆5,3:1 < γ

True

3:1

True True

5:2 4:2

3:2

False False

False

∆5,5:2 < γ ∆4,3:2 < γ∆4,3:1 < γ

True

m:1

False
start

Fig. 3 – How to find the type of oscillations

case cond. 1 cond. 2 cond. 3 µτ̃ interval
(γ = 30)

2 :1 ∆2 < γ ∆3 ≥ γ ∆4 < γ [545, 558]
3 :1 ∆3 < γ ∆4 ≥ γ ∆5 < γ [312, 545]
5 :2 ∆5 < γ ∆6 ≥ γ ∆7 ≥ γ [546, 573]
4 :2 ∆4 < γ ∆5 ≥ γ ∆6 ≥ γ [559, 1411
3 :2 ∆3 < γ ∆4 ≥ γ ∆5 ≥ γ [1342,∞)

Tab. 1 – Limits for ∆i,m:n

µτ̃

m : 1 3 : 1 5 : 2 4 : 2 3 : 2

1342 MSS574 MSS544 MSS313 MSS

Fig. 4 – Type of oscillations for γ = 30

depends on the bandwidth delay product and does not change during the course
of the simulation. This can be easily explained by observing that, every round
trip time, the sender will compute ∆i and compare it with γ. If ∆i ≥ γ then
wd (and therefore the sending window) decreases, otherwise it increases. For
example the 3 :1 oscillations can only take place if three conditions are met.
The first one is ∆4,3:1 ≥ γ, so that the window will be cut at the fourth step.
The second is that ∆5,3:1 < γ , otherwise the window would be reduced another
time and the cycle type would be 3 :2. The third one is that ∆3,3:1 < γ, so that
the window is not cut at the third step, and only two increments, in which case
the cycle would be 2 :1.

For each case it is possible to use a similar argument to find the boundary
values for the appropriate ∆i,m:n. Table 1 shows the three conditions for several
cases, where the ∆i’s in each row are those of the corresponding case : for
example ∆3 on the second row is a shorthand for ∆3,3:1 and ∆5 on the third
row represents ∆5,5:2. The values in the last column correspond to the case when
γ = 30, with µτ̃ expressed in terms of MSS of 1500B. As indicated by the last
column of Table 1, these are necessary conditions for a certain oscillation type
but they are not sufficient in the sense that it is possible for two oscillation types
to be feasible for the same value of the bandwidth delay product. For example
if 546 ≤ µτ̃ ≤ 558 both the 2 :1 and the 5 :2 oscillations are possible and if
559 ≤ µτ̃ ≤ 573 the 4 :2 and 5 :2 cases are possible.

Based on an extensive set of simulations it seems that certain conditions have
“priority” in the sense that as long as they are satisfied the corresponding case
will take place. For example the 5 :2 case happens whenever 546 ≤ µτ̃ ≤ 573
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Fig. 5 – Amplitude of the oscillations

even though the 2 :1 and 4 :2 cases could take place as well. In only one case
(µτ̃ = 557) we were able to observe the 2 :1 oscillations. In some cases, for
values very close to some of the brake points reported in table 1, the type of
oscillations observed in the simulations is not the same as the one given by the
model but, instead, it is the neighboring one (e.g. 3 :2 instead of 4 :2 or vice
versa).

Given that we did not run a simulation for every possible value of the band-
width delay product we might have missed some other exceptions but we are
reasonably confident that it is possible to use these“priorities”to find the oscilla-
tion type. Figure 4 shows the type of oscillations obtained using this method for
γ = 30 while Figure 3 presents it in the form of a flow chart. In both figures we
use the oscillation type m : 1 to represent the 4 :1, 5 :1 and 6 :1 oscillations. We
have not written more detailed tests for these cases because they happen only
when the window is small with respect to γ so that four or more increments are
needed before the window can be reduced (recall that the size of the reduction
is always greater than γ). The window will oscillate around such small values
only when the bandwidth delay product is small and, in this case, the duration
of phase 3 ( “constant window”) is much smaller than the duration of phase 4.

As discussed in [7] the Linux kernel does not use floating point instructions,
so that the implementation we used approximates all the operations using inte-
ger operations. All the numerical values used in this section and the following
ones are computed using the same approximations as the Linux implementation
as there can be non-negligible differences between using floating point and in-
teger operations. Especially when computing for which value of the bandwidth
delay product certain ∆i’s are equal to γ. (See [7] for more details.)

3.4 Oscillation Amplitude

Using the algorithm presented in Figure 3 it is possible to compute the size
of the oscillations as a function of the bandwidth delay product. Figure 5 shows
the amplitude of the oscillations for γ = 30 and γ = 5. These two values of γ
are the maximum and minimum values suggested in [14]. For γ = 30 the type of
oscillations changes with the bandwidth delay product (see Figure 4) explaining
the discontinuities in the curve. While for γ = 5 the only type of oscillations is
always 3 :2.
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When, for γ = 30, the oscillations are m :1 (m ∈ {4, 5, 6}) the difference
between the two curves is not too big but it is the case that the oscillations
are smaller when γ = 5 (in this case the oscillations have the same order of
magnitude as γ). For the 3 :1 case the difference becomes smaller but it is still
true that the oscillations are slightly smaller when γ = 5. The difference between
the two curves becomes significant for the 5 :2 and 4 :2 cases. While for the 3 :2
case the oscillations are the very same whether γ = 30 or γ = 5. This is because
the larger window sizes, due to the larger bandwidth delay product, cause each
increment of the sending window to be fairly large. For example, if w = 1500
then αwk = 30.13 and the difference between ∆i and ∆i+1 is comparable. As a
consequence, ∆i is either 0 or of the same order of magnitude of αwk and any
value of γ smaller than this will not make any difference in the behavior of the
sender. This indicates that even using smaller values for γ (and/or the TUBE
algorithm [14]) would not limit the size of the oscillations for larger values of
the bandwidth delay product. On this figure we also see that the oscillations
might have an impact on other flows sharing the same bottleneck link.

4 Combining Multiple Phases

In this section we are going to analyze all the possible combinations, six in
total, of the phases described in section 2, identifying under what conditions each
combination will take place. In most case, we will also compare the evolution of
the window given by the model with ns-2 simulations. For these we used ns-2.33
and the CTCP implementation [3].

We assume that CTCP uses fast recovery and fast retransmit. As a conse-
quence, assuming that a single packet is lost, after receiving the third duplicate
acknowledgment and after reducing the window by a factor of (1−β), the sender
will not transmit until it has received acknowledgments for wf− (1−β)wf worth
of data, where wf is the value of the window just before the cut. As in [16] we
will use β = 1/2.

According to [2] after receiving the third duplicate acknowledgment the sen-
der will retransmit the lost packet and set its window to (1 − β)wf + 3. Then
it will keep incrementing the window by one for each acknowledgment received.
As we are assuming that a single packet was lost the sender will keep receiving
the same sequence number in each acknowledgment for one round trip time so
that the number of unacknowledged packets does not change preventing the sli-
ding window mechanism used by TCP from moving the window. Therefore the
sender can send a new packet only when the window reaches again wf. As the
window is increased by 1 for each acknowledgment received this will take a time
equal to (βwf − 3)/µ, assuming acknowledgments arrive at rate µ.

At this point the sender will send data at the same rate at which acknow-
ledgments are arriving. We assume that this rate is µ, which is true as long as
the buffer is non-empty, so that the total length of this round trip time is wf/µ
and the total amount of traffic sent (during this round trip time) is (1−β)wf+3.
As it is sending at rate µ for a period of time equal to (wf −βwf +3)/µ. After a
time equal to wf/µ after the loss was detected (i.e. at the end of the round trip
time) the acknowledgment for the lost packet, which was re-transmitted at the
beginning of the round trip time, will finally arrive and the sender will set its
window equal to (1 − β)wf.
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Fig. 6 – The window in case 1

Combining all this we have that the length of this round trip is wf/µ, the
length of sender’s pauses, immediately after detecting the loss, is (βwf − 3)/µ
and the total amount of data sent during this round trip is (1 − β)wf + 3. For
each phase we are going to consider this last round trip, starting from when the
loss is detected, as an integral part of the current phase.

4.1 Case 1 : Phase 1 Only

As discussed in section 2.1 if b < α(µτ̃)k the buffer will overflow when

w = (b/α)
1

k . and t1 is given by (6). According to equation (4) of [16] the total

window will then be reduced to (1− β)(b/α)
1

k . According to the fluid model, in
this phase, the round trip time is constant, and equal to the propagation delay
τ̃ . In a packet based system, instead, the round trip time is constantly changing.
We are going to assume that the behavior during the round trip time following
the reduction of the window is the same as in the other phases, that is that
fast recovery/retransmit will be used. The assumption that acknowledgments
arrive at rate µ can be justified by observing that, in a packet based system, the
source would send bursts of packets that are served at rate µ at the bottleneck
link so that acknowledgments do arrive at rate µ, at least for all the packets
that were sent during the same burst. At the same time, given that these bursts
are not big enough to cause a non-zero backlog throughout the round trip, this
assumption does not hold during part of each round trip.

The total duration of this phase and the total amount of traffic sent during
this phase are :

T1 = t1 +
1

µ

(

b

α

)
1

k

R1 = Rin(t1) + (1 − β)

(

b

α

)
1

k

where t1 and Rin(t1) are given by (6) and (4), respectively, and where we have

used the fact that wf = (b/α)
1

k .
Figure 6 compares the model with the corresponding simulation (µ = 100Mb/s,

τ̃ = 50 ms, b = 10 pkts, MSS = 1500 B). The mismatch between the two curves

INRIA



Modelling an Isolated Compound TCP Connection 19

6 8 10 12 14

t /s

100

200

300

400

w
/
M

S
S

w

w (theory)
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is not too surprising, given that, in this phase, the fluid model is not the best
approximation for a packet based system. As we have previously pointed out,
the fluid model predicts a constant round trip time and an empty buffer and we
have to consider packet bursts in order to get an estimate of the window size
when a packet is dropped. Furthermore, we have assumed that a single packet
is dropped at each congestion event so that the sender can use fast retrans-
mit/recovery. Given that, in this case, packets are dropped when the window is
rapidly increasing, the single packet drop assumption does not necessarily hold.
Indeed, in the simulation shown in Figure 6, it is the case that either two pa-
ckets are dropped during the same round trip time or two packets are dropped
in two consecutive round trip times, causing the window to be cut twice (from
364 to 92). Even if the Linux implementation seems to be capable of quickly
recovering, the window dynamics after a congestion event are not accurately
described by the fast retransmit/recovery mechanism that we have described
above. We believe that for this reason the model underestimates the length of
each congestion epoch while average value of w is roughly correct.

4.2 Case 2 : Phases 1 and 2

If α(µτ̃)k < b < θmax − µτ̃ phase 2 does take place and ends with a buffer
overflow when w = wf = b + µτ̃ . If b < βµτ̃

1−β
the buffer will be empty at the

end of the pause time following the triple duplicate acknowledgment so that the
connection will be in phase 1 at the beginning of the following cycle.

Figure 7 compares simulation and theoretical model for this case (µ =
100 Mb/s, τ̃ = 50 ms, b = 25 MSS, MSS=1500 B, and γ = 30 MSS). As in the
previous case the single packet drop assumption does not hold. At each conges-
tion event in the simulation, between 6 and 12 packets are dropped during the
same round trip time or during two consecutive round trip times. This explains
why the window is reduced twice most of the times in Figure 7 (more precisely,
for five congestion events, four times the window is reduced twice and once is
reduced once).
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Fig. 8 – The window in case 3

4.3 Case 3 : Phase 2 Only

As in the previous case if α(µτ̃)k < b < θmax − µτ̃ phase 2 does take place
and ends with a buffer overflow when w = wf = b + µτ̃ . But, if b > βµτ̃

1−β
the

buffer will never be empty.
Note that for this case to take place γ would need to be incremented to an

unrealistic value. Given that we need βµτ̃
1−β

< b < θmax−µτ̃ to be in this case, and

increasing γ is the only way to increase θmax while still having θmax−µτ̃ > βµτ̃
1−β

.
In practice we believe that this case will be encountered rarely and it is presented
only for completeness. In the simulations, as in the previous two cases, multiple
packets are dropped at each congestion event : in this case six packets are
dropped each time and the window is always reduced twice.

Figure 8 shows the window according to the model and the simulation with
µ = 50Mb/s, τ̃ = 20ms, b = 85MSS, MSS=1500 B, and γ = 90MSS.

4.4 Case 4 : Phases 1, 2, 3 and 4

If θmax−µτ̃ < b < β
1−β

µτ̃ the connection goes through all the four phases and

phase 4 ends with a buffer overflow. Therefore wf = b + µτ̃ and (1 − β)wf < µτ̃
implying that the buffer will empty after the overflow.

Figure 9 compares the evolution of w from the simulation with the fluid
model. In this case µ = 100 Mb/s, τ̃ = 50 ms, b = 80 MSS, MSS=1500B, and
γ = 30 MSS. The match is quite accurate, even though it is possible to notice
that after three cycles there is a slight difference between the two curves. This
is due to the fact that the time between two packet drops predicted by the fluid
model it is not exactly the same as the one in the simulation.

In the simulation w oscillates during the “constant window”phase, as discus-
sed in section 3. In Figure 9 the value used for the fluid model during this phase
is calculated as the average between the maximum and minimum values given
by the solution of the corresponding fixed point equation, presented in section
3.2.
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Fig. 9 – The window for case 4
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Fig. 10 – The window for case 5
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Fig. 11 – The window for case 6

4.5 Case 5 : Phases 2, 3 and 4

If β
1−β

µτ̃ < b < βµτ̃+γ
1−β

the buffer is always non empty and phase 1 doesn’t
take place. Figure 10 compares the fluid model with the simulation when µ =
100 Mbit/s, τ̃ = 50ms, b = 420MSS, MSS=1500 B and γ = 30MSS.

In order to be in this case the backlog needs to be always non-zero so that
the window needs to reach bigger values than in case 4 and the constant window
phase will always be small compared to the total time between packet drops.

4.6 Case 6 : Phase 4 Only

If b > βµτ̃+γ
1−β

the backlog is always greater than γ so that phase 4 is the only

one. Figure 11 compares the fluid model with the simulation when µ = 100Mb/s,
τ̃ = 50ms, b = 500MSS, MSS=1500 B and γ = 30MSS. In this case the behavior
of CTCP is the same as Reno and there is a better, even though not perfect,
match between the fluid model and the simulations.

4.7 Case Selection

In the case of an isolated connection only one of them will take place, de-
pending on the system parameters (b and µτ̃).

In the previous sections we have described all the possible six cases for the
evolution of the sending window. Figure 12 shows the different cases on the b-µτ̃
plane. Note that both axis use a logarithmic scale. The discontinuities and the
“fuzziness” in the lines between cases 2 and 4 and between cases 5 and 6 are due
to the integer approximations used to compute θmax and to different oscillation
types (3 :1, 5 :2, etc.).

The dotted line in the middle of the figure represents the boundary between
cases 2 and 4 if the oscillations during phase 3 are ignored, that is if we take
θmax = µτ̃ +γ. This is another example of the consequence of these oscillations.
The behavior in cases 2 and 4 is significantly different : in case 2 packets are
dropped before the “constant window” phase causing large oscillations in the
window and lower throughput while in case 4 the connection goes through all
the phases with a throughput close to the link capacity. Ignoring the oscillations
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Fig. 13 – Flow chart for selecting the case based on µτ̃ and b

would lead to the wrong conclusion that for large values of the bandwidth delay
product case 2 is no longer possible and that the only possible issue would be
if the buffer is much smaller than the bandwidth delay product so that case 1
would take place. Due to the oscillations, even much larger values of the buffer
might not be enough to guarantee a high throughput.

Figure 12 was plotted using γ = 30 and the standard values for all the other
parameters. For arbitrary values of the parameters it is possible to use the flow
chart in Figure 13 to find the corresponding case. In order to use this flow chart
one needs to know the values of the all the parameters and of θmax, which can
be computed as discussed in section 3 for the Linux implementation we have
used. As we have previously mentioned for different implementations θmax will
be different but it is the only implementation-specific parameter used.

5 Steady State Performances

5.1 Throughput

Using the model presented in the previous sections it is possible to compute
the average throughput of an isolated CTCP connection. More precisely solving
the fixed point equations presented in section 3.2 and then using the flow chart
in Figure 3 it is possible to compute θmax. Using this value and the flow chart
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in Figure 13, the corresponding case can be found so that the evolution of the
window is known. We have implemented this procedure in order to compute the
average throughput (λ̄) for different values of the bottleneck capacity. Figure
14 compares the normalized throughput (λ̄/µ) computed using the theoreti-
cal model and the results of some simulations with b = 100 MSS, τ̃ = 50 ms,
MSS=1500 B and γ = 30 MSS (each square corresponds to a simulation). To
compute the throughput in the simulations we ignore the slow start phase. In
a realistic setting, where some of the connections send small amounts of data,
ignoring the slow start might not be appropriate. But here we are interested in
comparing the simulations with the theoretical model we presented, which does
not model slow start.

The first change in throughput at µ = 273Mb/s is caused by a transition
from case 4 to case 2, due to the increase in the size of the oscillations during
phase 3. At µ = 320Mb/s the oscillation type changes from 4 :2 to 3 :2 causing
smaller oscillations and a transition back to case 4 from case 2 (this corresponds
to the reduction at µτ̃ = 1340 MSS in Figure 5). In this region θmax is close
to b + µτ̃ and it is possible for a packet to be dropped before the oscillations
reach steady state (recall that θmax is the maximum value of the window during
the oscillations in steady state). This is confirmed by the simulations : for µ =
330 Mb/s and µ = 360Mb/s phases 3 and 4 do take place so that we are in case
4 while for µ = 350 Mb/s packets are dropped during phase 2 and we are in
case 2. At µ = 400Mb/s the oscillations during phase 3 are sufficiently large to
cause a buffer overflow causing the transition from case 4 to case 2.

Until µ = 273Mb/s, that is during case 4, there is a very good match between
the model and the simulations. For case 2, instead, the match is not as good.
As already discussed in section 4.2, in this case multiple packets are dropped at
each congestion event, violating one of the assumptions of the model. We have
also noticed that, in several cases, the window will oscillate a few times before
packets are dropped, extending the length of each congestion epoch. At the same
time we do not have an explanation for the fact that there is a bigger difference
between the model and the simulation for µ = 800Mb/s and µ = 900Mb/s.

As discussed in section 3.4, even for γ = 5 the amplitude of the oscillations
is an increasing function of µ. For example, if γ = 5 the transition from case 4
to case 2 takes place when µ ≃ 410 Mb/s, indicating that the TUBE algorithm
can shift this problem to higher bit rates but it does not solve it completely.
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Fig. 15 – Average backlog size

5.2 Average Backlog

Using the equations describing the evolution of the sending window, pre-
sented in section 4, and with some simple but tedious algebra, it is possible to
compute the average backlog at the bottleneck link. Using the same procedure
described for the throughput it is possible to determine which case the connec-
tion will follow and then use the appropriate formula for the average backlog.

Figure 15 shows the average backlog for different values of µ, according to the
model and to the simulations (with the same parameters used for the throughput
analysis). As in the previous section each square corresponds to a simulation,
ignoring the slow start phase to compute the average backlog. The rapid decrease
at µ = 131Mb/s corresponds to the oscillations changing from 3 :1 to 5 :2. The
5 :2 oscillations are present between 131Mb/s and 138 Mb/s (which correspond
to the peak between µτ̃ = 546 MSS and µτ̃ = 574 MSS in Figure 5). When the
oscillations change from 3 :1 to 5 :2 the double reduction causes the backlog
to decrease further at each oscillation and the average value is lower as well.
Between µ = 138 Mb/s and µ = 273 Mb/s the 4 :2 oscillations have increasing
amplitude, causing the average backlog to increase as well. It is interesting to
note how these different types of oscillations (3 :1, 5 :2 and 4 :2) have a negligible
effect on the throughput while they have a significant impact on the backlog.
This is because during the oscillations, which are present only during phase 3,
the backlog is nonzero most of the time, leading to high throughput, but the
window oscillations cause similar oscillations in the backlog size affecting its
average value.

For values of µ above 273Mb/s Figures 15 and 14 have the same disconti-
nuities, caused by the same underlying changes in the evolution of the sending
window, as described in the previous section.

It is interesting to note how the oscillations during phase 3 do affect the
performance of CTCP, both in terms of throughput and of average backlog size.
Modifying the protocol in order to significantly reduce their amplitude would
be a worthwhile endeavor. One such way could be to use smaller increments and
decrements after full utilization is detected, that is after ∆i is positive but such
modifications are outside the scope of this work.
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6 Conclusions

We have presented a complete model for an isolated CTCP connection and
we have validate it with ns-2 simulations using a Linux implementation of CTCP.
To the best of our knowledge this is the first complete model of CTCP which has
led us to identify its significantly different behaviors depending on the system
parameters. While the basic idea of combining a delay and a loss based approach
is fairly simple but the resulting protocol is far from it and its behavior is much
more complicated to analyze than that of TCP Reno, even in the simple case of
an isolated connection.

While the model does not always match the simulations with great precision
it does accurately predict the overall evolution of the window and it has allowed
us to identify the different regimes of CTCP. As the performances, in terms of
throughput and average backlog size at the bottleneck link, do depend on these
regimes the model can be used to analyze them, helping to find for which values
of the system parameters the performances will change.

We have also highlighted how the oscillations during the “constant window”
phase do have a non negligible impact on the performance and how it is not
possible to reduce their size by simply reducing the value of the parameter γ.
We believe that modifying the protocol in order to significantly reducing the size
of the oscillations could have a significant impact. Especially given that, even
though we have not addressed the issue, they can adversely effect the other
traffic sharing the same links.
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