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Résumé : Nous analysons les performances d’une longue connexion Compound
TCP isolée en présence de pertes de paquets aléatoires. Compound TCP est une
nouvelle version de TCP implémentée sur Microsoft Windows pour améliorer les
performances des transferts sur des réseaux à grand produit délai-bande pas-
sante. Nous calculons grâce à un modèle markovien l’évolution la fenêtre d’émis-
sion Compound TCP, et nous en déduisons la distribution stationnaire et le débit
moyen d’une connexion TCP. Nous remarquons que l’approximation usuelle de
ce système, basée sur un ”cycle typique”, sous-estime la fenêtre moyenne et sa
variance, tandis que le modèle Markovien donne des résultats plus proches des
simulations. Nous utilisons ce même modèle pour comparer Compound TCP et
TCP Reno. Nous notons que Compound TCP donne toujours un débit supérieur
ou égal à Reno, tandis que la performance relative en termes de gigue dépend du
taux de perte. La gigue générée par Compound TCP est plus élevée que Reno
pour des taux de perte élevés, mais plus petite que Reno pour des faibles taux
de perte.
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Compound TCP with Random Losses

Abstract: We analyze the performance of a single, long-lived, Compound TCP
(CTCP) connection in the presence of random packet losses. CTCP is a new
version of TCP implemented in Microsoft Windows to improve the performance
on networks with large bandwidth delay-products. We derive a Markovian model
for the CTCP sending window and compute the steady state distribution of the
window and the average throughput of a CTCP connection. We observe that
the previous approximation, using a “typical cycle,” underestimates the average
window and its variance while the Markovian model gives more accurate results.
We use our model to compare CTCP and TCP Reno. We notice that CTCP gives
always a throughput equal or greater than Reno, while relative performance in
terms of jitter depends on the specific network scenario: CTCP generates more
jitter for moderate-high drop rate values, while the opposite is true for low drop
rate values.

Key-words: TCP, Comopund TCP, Bernoulli losses, Markovian Models
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1 Introduction

With the increasing popularity of faster access links like Fiber To The
Home [9], the current standard TCP is not always ideal. As indicated by Floyd
[10] the current standard is not able to reach high rates in realistic environments,
i.e. with typical packet loss rates. Many new transport protocols have been pro-
posed and are currently being studied to replace it. Some of them are already
implemented in the latest versions of some operating systems, like Compound
TCP (CTCP) on Windows, and Cubic (and others) on Linux. For a survey
and comparative analysis of several high speed TCP versions see, for example,
[12, 15, 14]. For the next few years, the new high speed TCP versions will play
an increasing role in resource sharing among flows in the Internet. Yet the beha-
vior, the performance, and the impact on the network of these protocols are not
well-known. In particular, there is no comprehensive analytical study of CTCP.

CTCP has been presented by Microsoft Research in [20] and [21] in 2006. It is
currently submitted as a draft to the IETF Network Working group with minor
differences [18]. CTCP is enabled by default in computers running Windows
Server 2008 and disabled by default in computers running Windows Vista [8]. It
is also possible to add support for CTCP to Windows XP. An implementation
of CTCP, based on [21, 18], is also available for Linux [2]. The main objective
of the authors of CTCP [21] is to specify a transport protocol which is efficient,
using all the available bandwidth, fair and conservative, limiting its impact on
the network. They propose to combine the fairness of a delay-based approach
with the aggressiveness of a loss-based approach. As the proposal of CTCP is
still recent, there are only a few published evaluations of it. The only analytical
model of CTCP in [21] is based on a de facto deterministic model.

In the present work we study the performance of CTCP under random losses.
There are at least two important motivations to analyze TCP performance under
random losses : random losses harm the performance of the current New Reno
TCP on high speed optical links and random losses are inherent in wireless
networks (WiMax can provide significantly high transmission rates in wireless
networks).

The outline of the paper and of our results is as follows. In Section 2 we
give a brief overview CTCP. In Section 3 we present a two-dimensional Markov
chain model for CTCP. With the help of this model we obtain the long-run
average throughput of CTCP and the distribution of its congestion window
at congestion events. Then, in Section 3.2 we use Palm calculus to obtain the
distribution of the congestion window at arbitrary time moments. In Section 3.3
we propose some heuristics and compare them with the accurate two-dimension
Markov chain model. Finally, in Section 4 we provide numerical and simulation
results which confirm our theoretical findings. In particular, we conclude that
CTCP provides a higher throughput than TCP New Reno and , even if more
aggressive, it causes less traffic jitter than TCP New Reno on high speed links
with small random losses.

Due to space constraints, some technical details are provided in a companion
technical report [3].

RR n° 6736



4 Blanc & al.

2 Compound TCP Overview

In this section we give a very brief overview of CTCP (see [21] for a complete
description). The main idea of CTCP is to quickly increase the window as long
as the network path is not fully utilized, then to keep it constant for a certain
period of time and finally to increase it by one MSS (Maximum Segment Size)
per round trip time just like TCP Reno. We will often use the term “phases” for
these three different behaviors.

During phase 1 the sender computes the value at the (i + 1)-th round trip
as wi+1 = wi +αwk

i (as suggested in [21] we use α = 1/8 and k = 3/4). At each
round trip the sender estimates the bandwidth-delay product and the amount
of data backlogged in the network using the same method adopted by TCP
Vegas [7]. If the amount of backlogged data is greater than a certain threshold
(γ, usually set to 30 [21, 19]) the sender switches to phase 2 and keeps the
window constant. This constant value corresponds to the sum of the estimated
bandwidth-delay product and the estimated amount of backlogged data. We
consider an ideal behaviour of CTCP, assuming that such estimates are correct.
In such case the window in phase 2 is equal to θ , µτ̃+γ, where µ is the capacity
of the bottleneck link and τ̃ is the round trip propagation delay. In reality any
queue size estimate available at the sender is outdated due to feedback delays,
this fact combined with the CTCP algorithm presented in [21] causes the window
to oscillate during this phase as we analyzed in [5]. The length of phase 2 is
dictated by the “congestion component” of the window. In fact in CTCP the
congestion window w is the sum of two components : the delay window wd and
the congestion window wc. The congestion component is incremented by one
every round trip (just like the TCP Reno congestion window) and when this
component reaches θ phase 2 ends. The delay component is set such that the
value of the total window (wi = wci + wdi) at the i-th round trip time follows
the following evolution in absence of packet losses :

wi =


wi−1 + δi , if wi−1 + δi < θ

θ , if wi−1 + δi ≥ θ and wc0 + i < θ

wi−1 + 1 , otherwise
(1)

where δi = max
{⌊
αwk

i−1

⌋
, 1
}

. Figure 1 shows the three phases of the window
evolution. When a loss occurs both the total window and the congestion window
are halved.

3 Performances with Random Losses

We consider a single long lived TCP compound flow using a path with µτ̃
bandwidth delay product and buffer size equal to b. The flow will experience a
loss every time that its window size reaches the value µτ̃ +b. For this reason, we
can consider wmax = µτ̃ + b as an upper bound for the the window size. Beside
the deterministic losses due to buffer overflow, we consider also that each packet
can be dropped with some probability p, independently from all other packets,
i.e. according to a Bernoulli process. In what follows we derive the throughput
and the window distribution in steady state. We are going to assume that w can
only take integer values.

INRIA
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Fig. 1 – The evolution of w and wc in CTCP

3.1 Throughput calculation

We define a cycle as the time interval between two consecutive losses. We
denote as wt

cn
(respectively wt

dn
) the congestion (respectively delay) window at

the begin of the (n + 1)-th round trip time of the t-th cycle. We will omit the
superscript t whenever it is clear which cycle is being considered.

We observe that in our framework the evolution of the window in each cycle
t depends from previous cycles only through the window value at the begin of
the cycle, or, more precisely, through the two initial values wt

c0
and wt

d0
, which

can be determined by the final value of the windows at the t− 1-th cycle. This
also implies that it is possible to use the renewal reward theorem to compute
the average throughput as (see [16]) :

E[λ] =
E[S]
E[T ]

(2)

where λ is the throughput (in MSS/s), S is the total number of packets sent
during a cycle and T is the duration of the cycle.

Both E[T ] and E[S] can be evaluated starting from the knowledge of the
distribution size of the two (correlated) random variables Wc0 and Wd0 . We de-
note g(wc0 , wd0), the probability mass function (pmf) of these random variables.
We first show how to derive the distribution of cycle duration from g(wc0 , wd0)
and then derive the pmf g() itself. E[S] can be evaluated similarly to E[T ].

A cycle has length equal to n if there is a loss at the n-th round trip time. As
we are assuming that there is a loss whenever w = wmax, all cycles have a finite
length. Let m(w0) = min {n|wn ≥ wmax} be the maximum possible length (in
round trips) of a cycle starting at w0. For n < m(w0) the probability of a cycle
having length equal to n can be derived from the Bernoulli loss process as :

P [T = n|Wc0 = wc0 ,Wd0 = wd0 ] = (1− p)Vn−1(w0) − (1− p)Vn(w0) (3)

, an(wc0 , wd0),

where

Vn(w0) ,
n−1∑
i=0

wi, V0 , 0,

RR n° 6736



6 Blanc & al.

and wi is computed as in (1) so that Vn is the number of packets sent during
the n-th round trip of a cycle starting with w = w0. Both Vn and an, as most
quantities used in this section, depend on the initial window w0 = wc0 +wd0 as
highlighted by the notation an(w0) and Vn(w0), even though we will also use
the simplified notation an and Vn.

The expression of an follows from the cumulative distribution function of
the geometric random variable F (x) = 1 − (1 − p)k and corresponds to the
probability of at least one packet being dropped during the n-th round trip.

The probability that a loss occurs at the m(w0)-th round trip can be eva-
luated simply considering that

∑m
i=1 P [T = i] = 1 :

P [T = m(w0)|Wc0 = wc0 ,Wd0 = wd0 ] = 1−
m(w0)−1∑

i=1

ai(wc0 , wd0).

Finally, being that the support of the discrete random variables Wc0 and Wd0

is finite, we can use a finite sum to compute P [T ] :

P [T = n] =
∑

wc0 ,wd0

an(wc0 , wd0)g(wc0 , wd0). (4)

In order to compute g(wc0 , wd0 we model the evolution of the window (at
the beginning of each cycle) with a Markov chain. The evolution of the window
of TCP Reno at the begin of a cycle (wt

0) has been modeled in other works as
a Markov chain (see, for example, [13, 16]). In fact wt

0 is equal to half of the
window value at the end of the (t − 1)-th cycle, which depends only on wt−1

0

and on packet loss probability p.
In order to model CTCP we use a two-dimensional discrete Markov chain

Xt to account for wt
c0

and wt
d0

. For each state (i, j) the first index represents
wt

c0
and the second wt

d0
. For any pair of states it is possible to compute the

transition probability as :

P [Xt+1 = (k, l)|Xt = (i, j)] =
∑
n∈B

an(i, j)

with wt
c0

= i, wt
d0

= j, B =
{
n|
⌊
wt

cn
/2
⌋

= k,
⌊
wt

dn
/2
⌋

= l
}

, where wt
cn

and wt
dn

are evaluated according to (1). The sum on the right hand side is needed because
different pairs (wt

cn
,wt

dn
) can originate, after a loss, the same pair (wt+1

d0
,wt+1

d0
)

as we use integer values for the window. As w ≤ wmax we have that wc0 ≤
bwmax/2c , N and, if θ is the value of the window during the constant window
phase, wd0 ≤ bθ/2c , M (as wd ≤ θ). Combining these two bounds we obtain
that the number of states in the Markov chain is NM . Using the ARPACK
implementation of the Arnoldi method [17] it is possible to efficiently calculate
the steady state distribution of the Markov chain Xt even for large values of
NM . The more time consuming step is actually to compute the transition matrix
for X. The complexity of the algorithm we used is O(MN2) ; we believe that
it is not possible to decrease the complexity of the algorithm given that it has
to compute all the possible transitions and these grow like MN2. Note that the
number of possible transitions for a Markov chain with NM states is N2M2

therefore we already take into account that, in this case, some transitions are
not possible.

INRIA



Compound TCP with Random Losses 7

Once the steady state distribution of the Markov chain Xt (g(wc0 , wd0)) is
derived, we can use it to compute E[T ], E[S] and then the average throughput
using (2).

If the queueing delays are negligible with respect to the propagation delays
it is possible to convert round trip times into seconds by simply multiplying the
number or round trip times by the total propagation delay. If this approximation
is not acceptable we can account for the queueing delays by estimating the queue
size q as q = w − µτ̃ (this is true as long as w > µτ̃ and the source has been
sending date at a rate greater than µ over the last round trip). Using this
estimate we have that the round trip time is w/µ whenever w ≥ µτ̃ .

For a given n, wc0 and wd0 , the right hand side of (4) corresponds to a cycle
starting with w = wc0 +wd0 and lasting n round trip times. For each value of n
we know the window size w and we can compute the length in seconds of each
round trip and, hence, the total length of each cycle in seconds. Summing over
all the possible cycles we can compute the expected value of T in seconds, and,
by using (2), the average throughput in MSS/s.

3.2 Steady State Distribution of the Window

In the previous section we have described how to compute the steady state
distribution of wc0 and wd0 , and consequently also the value of the window
w0 = wc0 + wd at the beginning of each cycle. In this section we are interested
in the steady state distribution of the window as a function of time. We denote
as Yn the value of the window at the begin of the (n − 1)-th round trip time.
Note that Yn is different both from Xt, which is the value of the window after a
packet loss, and from wt

n, which is the value of the window at the begin of the
(n−1)-th round trip time in the t-th cycle. Clearly Xt represents a subsequence
of the sequence Yn. We observe that Yn can also be modeled as a discrete time
Markov chain where a transition occurs every round trip. Also this Markov chain
is ergodic, hence it admits a steady state and we assume that it is in steady state
at time 0.

Using Palm calculus, we first compute P [Yn = k] starting from P [W0 = w0],
where Yn represents the window after n round trip times starting from some
arbitrary value (given that all the Markov chains involved are ergodic, the initial
value is irrelevant).

Let Zn be the (discrete) time of the n-th packet drop after time 0. Using the
intensity and inversion formulas of Palm calculus [6] we can compute P [Yn = k]
as a function of P [W0 = w0] :

P [Yn = k] = E
[
1{Yn=k}

]
= P [Z0 = 0]E0

[
Z1∑
s=1

1{Ys=k}

]
(5)

= ηE0

[
Z1∑
s=1

1{Ys=k}

]
(6)

= η
∑
w0,l

[
P [W0 = w0]P [Z1 = l|W0 = w0]

l∑
s=1

1{Ys=k|W0=w0}

]
(7)

RR n° 6736



8 Blanc & al.

where E0 is the Palm expectation, 1{Yn=k} is the indicator function for the event
Yn = k and η is the intensity of the process Zn. The second (5) and third (6)
equalities follow from the inversion and intensity formulas, respectively, while
(7) follows from the total probability theorem, conditioning on all the possible
values of W0 and l. Given that Zn is an ergodic process P [Z0 = 0] can be
computed, using the intensity formula, as the inverse of the expected value of
T

d= Zn − Zn−1 that is as the average length of a cycle (in round trips) so that
η = 1/E[T ] where E[T ] can be computed using (4).

If the queueing delays are non-negligible with respect to the propagation
delays it is possible to re-normalize πk , P [Yn = k] as follows in order to take
this into account :

π̂k ,
πkqk∑wmax

i=1 πkqk

where

qk , max
{
τ̃ ,
k

µ

}
.

3.3 A Simple Approximation and the Deterministic Res-
ponse Function

The method described in the previous section provides an exact solution, but
it can be computationally expensive for medium and large values of wmax and
θ. Using the same method as in [13] it is possible to quickly find an approximate
solution for the average window size. The idea is to consider a sequence of
“typical” or “average” cycle. If p is the probability that a packet is dropped,
the average cycle has exactly 1/p packets (provided the probability of reachind
wmax). Let us denote w0 the initial window of an average cycle and wn(w0) the
final window, after n round trip times during which 1/p packets are transmitted.
Being that the following average cycle has to be identical and that CTCP, as
Reno, halves the window at the end of each cycle, it has to be :

wn(w0) = 2w0. (8)

Imposing the constraint Vn(w0) = 1/p (Vn(w0) is defined in section 3.1), we can
identify the unique possible value of w0 and then the unique possible window
evolution corresponding to p. Once the window evolution is known, the average
window can be obtained and can be plotted as a function of the drop rate.

As previously noted in [1] this approach corresponds to the calculation of
what is usually called the “deterministic response function.” This function is of-
ten used in the literature on TCP. For example, [10] defines the response function
as “the function mapping the steady-state packet drop rate to TCP’s average
sending rate in packets per round-trip time.” Where the drop rate is simply the
inverse of the number of packets sent during each cycle. In this case the term
“drop rate” always refers to this quantity and not to any probabilistic model,
while this usage is not the most appropriate one it is, nonetheless, common in
the literature. From another point of view, we observe that the average cycle
corresponds to the actual evolution of the window under our loss model, when
there is no random loss, but the bandwidth delay product and the buffer size
are such to cause a deterministic loss every 1/p packets.

INRIA



Compound TCP with Random Losses 9

When the window update rule operates on a round trip time basis -as in
CTCP but also in Reno and HighSpeed for example- the deterministic response
function does not depend on physical parameters like capacity or propagation
delay. In other words it can be considered as an intrinsic property of the specific
growth function used to increment the window. On the contrary, for TCP Cubic
the growth of the window depends on real time and hence also on link capacities
and propagation delays, so that a comparison with the TCP versions indicated
above would need special care.

Figure 2 shows the response function for different values of θ, between
100 MSS and 1000 MSS (Maximum Segment Size). The two lines correspond
to two different ways to express the window evolution in (8). The dotted line
corresponds to a fluid model where the growth of the window is approximated
with a continuous function (see [4]). More precisely

wn(w0) =
(
(1− k)αn+ w∗1−k

0

) 1
1−k .

The solid line, instead, considers only integer values of the window and computes
the increment of the window as according to (1) with wc0 = w0. In this case
the last round trip time of the cycle -the n-th one- is evaluated as n = min{i :
wi ≥ 2w0}. In both cases we have considered w0 as the independent value. For
each value of w0 we have then computed S, the total amount of packets sent
during a cycle starting with w = w0 and then we have plotted the average
window as a function of 1/S = p. Clearly the total number of packets sent
during such a cycle is a monotonically increasing function of w0 (as the TCP
window is monotonically increasing during each cycle) so that increasing values
of w0 correspond to increasing values of S, and decreasing values of p = 1/S.

Regarding the integer approximation we observe that, for α = 1/8 and k =
3/4 (values suggested in [21]), αwk ≥ 2 only if w > 30. That is the CTCP
window grows by one each round trip, the same as Reno, as long as w < 30. This
is somewhat consistent with what suggested in [21] where the authors call for the
delay component to be used (that is to increment the window by αwk) only if
the window is larger than lowwnd which they set equal to 41. This observation
explains why for small values of w the fluid and integer approximation are
different, with the integer approximation giving a larger average value of the
window.

In the case of the integer approximation and for large drop rates (more than
10−3) the response function is the same as Reno. The same is true, regardless
of the approximation, for small drop rates (less than 10−6) given that, in this
latter case, the evolution of the window is the same in CTCP and Reno. For
drop rates roughly between 4 · 10−4 and 10−3 only the rapid increase phase of
CTCP is used so that the response function is steeper. For drop rates between
10−6 and 4 · 10−4 the “constant” window phase is used along with all the other
phases and this explains why the response function increases more slowly until
it reaches the Reno response function.

While for Reno and HighSpeed TCP the response function is only a function
of the drop rate, for CTCP the response function is also a function of θ (the
value of the window during the constant window phase). The larger the value
of θ the longer the rapid increase phase can be. In the extreme case of θ = ∞
the other phases would not take place at all and the response function would
be much steeper. Note that in [21] the authors compute the response function

RR n° 6736



10 Blanc & al.
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Fig. 2 – The deterministic response function for θ = 100, 250, 450, 1000
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Fig. 3 – CTCP response function

for exactly this case (θ = ∞). Given that they are interested in limiting the
aggressiveness of CTCP, they are in effect considering the worst case, by only
considering the rapid increase phase. At the same time it can be argued that,
as a consequence, CTCP is less aggressive than HighSpeed TCP as, for small
values of p, CTCP is as aggressive Reno, which is less aggressive than HighSpeed
TCP.

Finally it is worth noting that, as p decreases, the difference between the
fluid and integer models for the rapid increase phase becomes negligible.

4 Numerical Results

Using the models presented in the previous sections we can compute the
average throughput and the average window size for different values of the drop
probability p. Figure 3 shows the CTCP response function computed using the
two deterministic models presented in section 3.3 and the probabilistic model
discussed in section 3.1, for θ = 250 MSS. For the same “drop probability” the
deterministic model with integer approximations gives a smaller average window
than the probabilistic model, which uses the very same integer approximations,
as already observed in [1]. The fluid model, instead, does agree with the proba-

INRIA



Compound TCP with Random Losses 11
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Reno (Mark. ch.)

Fig. 4 – Average Throughput (µτ̃ = 400 MSS, wmax = 600 MSS)

bilistic model, for some values of p, but we believe that this is just a coincidence.
One should take some care in comparing these two models : in the case of the
deterministic model the buffer size at the bottleneck is fixed (so that all the
cycles have the same size) while in the case of the probabilistic model the buffer
size at the bottleneck link is much larger (in theory infinite, set to 1600 MSS for
the numerical results) and allows the window to reach larger values. If we used
the same buffer size in both models the average window would be smaller in the
probabilistic case.

Figure 4 shows the average throughput for CTCP and TCP Reno. For CTCP
we have used the probabilistic model introduced in section 3.1 while for Reno
we have used an equivalent model but with a “one dimensional” Markov chain
as Reno does not have two components in the congestion window. The squares
and triangles in Figure 4 correspond to simulation results. For both versions of
TCP there is a good match between the probabilistic model and the simulations,
obtained using ns-2 with a Linux implementation of CTCP [2]. In the simulations
there is a single TCP connection with no cross traffic going through a bottleneck
of 100 Mb/s with propagation delay of 26.4 ms and where each packet of 1500 B
is dropped with probability p. As the difference between different simulation
runs is very small (less than 1%) we did not plot errorbars.

In Figure 4 wmax = 370 MSS, the bandwidth-delay-product is 220 MSS and
the buffer size is 150 MSS. While in Figure 3 wmax = 1600 MSS this explains
why in Figure 4 the throughput is constant for small drop probabilities (most
of the packets are dropped when w = wmax) a similar behavior takes place for
larger values of wmax but for drop probabilities smaller than those included in
Figure 3.

Figures 5, 6, 7 and 8 show the distributions for w0, wc0 and wd0 when
θ = 430 MSS for p = 3 · 10−3, 3 · 10−4, 4 · 10−5 and 5 · 10−6 respectively.
Corresponding to the four different regions of the response function in Figure 2.
In each case the dotted lines represent the corresponding distribution obtained
from ns-2 simulations.

Figure 5 corresponds to the case where, most of the time, the window is
smaller than 41 so that CTCP behaves similarly to Reno. This is confirmed by
the fact that wd0 = 0 most of the time.
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Fig. 5 – Distribution of w0,wc0 and wd0 (µτ̃ = 400 MSS, wmax = 600 MSS,
, p = 3 · 10−3)
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Fig. 6 – Distribution of w0,wc0 and wd0 (µτ̃ = 400 MSS, wmax = 600 MSS,
p = 3 · 10−4)

Figure 6 corresponds to the case where most of the packet are dropped when
the window is quickly growing as wn+1 = wn +αwk

n. In this case the distribution
of wc0 is greater than the distribution of wd0 , so that, on average, wc0 < wd0 .

Figure 7 corresponds to the case where most of the packets are dropped
during the constant window phase as confirmed by the jump in the distribution
of w0 when w0 = 215 MSS which correspond to θ/2 (as θ = 430 MSS in this
case). The smaller jumps in the distribution for the ns-2 simulations are caused
by the oscillations of the window during the constant window phase. These
oscillations are not taken into account by the probabilistic model.

Figure 8 corresponds to the case where a significant fraction of packets is
dropped during the Reno phase (almost 50%). Again the jump at w0 = 215 MSS
represents the packets dropped during the constant window phase (with the
simulations having smaller jumps caused by the oscillations of the window).
The jump at w = 300 MSS correspond to the case when packets are dropped
due to a buffer overflow (in this case wmax = 600 MSS and the buffer size is

INRIA
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Fig. 7 – Distribution of w0,wc0 and wd0 (µτ̃ = 400 MSS, wmax = 600 MSS,
p = 4 · 10−5)
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Fig. 8 – Distribution of w0,wc0 and wd0 (µτ̃ = 400 MSS, wmax = 600 MSS,
p = 5 · 10−6)

200 MSS for the simulations). In this case the distribution of wc0 is smaller than
the distribution of wd0 , the opposite of what happens in the previous two cases.

Figure 9 shows the steady state distribution of Yn for different values of
p with θ = 430 MSS and wmax = 2000 MSS. Again the dotted lines represent
the same distribution for the corresponding ns-2 simulations. As expected, with
increasing drop probabilities, each distribution is strictly greater than all the
previous ones. In Figures 8 and 9 while the probabilistic models have a sharp
jump for w = 215 MSS and w = 430 MSS the simulations (dotted lines) have
smaller jumps. This is caused the oscillations of the sending window during
phase 2 in the simulations. As mentioned in section 2 this is consistent with the
CTCP algorithm but it is not taken into account by the probabilistic model.
While it is, at least in principle, possible to incorporate this aspect into the
model, we prefer using a simpler model with a constant value during phase 2
given that the differences between this simplified model and the simulations are
not significant (especially as far as the throughput is concerned).
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Fig. 9 – Steady state distribution of Yn (µτ̃ = 400 MSS, wmax = 600 MSS)
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Fig. 10 – Coefficient of variation of Yn for CTCP and Reno (µτ̃ = 220 MSS,
wmax = 2000 MSS)

Figure 12 shows the average value and the standard deviation of Yn for
CTCP.

Figures 11 and 10 show the variance and the coefficient of variations (CoV)
for CTCP and Reno. In both cases the difference between the deterministic and
probabilistic model is more pronounced than in the case of the average window
(response function). This can be explained by the fact that the average window
depends only the first moment of Yn while the variance and the CoV depend on
the second moment as well. For the CoV, in particular, the difference between
the two models is significant. For small values of p the CoV of CTCP is smaller
than Reno but for larger values of p the opposite is true indicating that for
p > 10−4 CTCP might not be the best solution. Note that the height and the
location of the peak of the CoV for CTCP are a function of θ.

Figures 13 and 14 show the distribution of w0 and Yn for TCP Reno under
the same conditions : µτ̃ = 400 MSS and buffer size 200 MSS. These distribu-
tions have been computed using a Markov chain similar to the one presented
in section 3.1 but with only one state variable, given that Reno uses only one
component for its sending window.
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Fig. 11 – Variance of Yn for CTCP and Reno (µτ̃ = 220 MSS, wmax =
2000 MSS)
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Fig. 12 – Standard deviation and average of Yn for CTCP (µτ̃ = 220 MSS,
wmax = 2000 MSS)
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Fig. 13 – Distribution of w0 for TCP Reno (µτ̃ = 400 MSS)
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Fig. 14 – Distribution of Yn for TCP Reno (µτ̃ = 400 MSS)

5 Conclusions and Future Work

In this paper we have presented a Markovian model of CTCP under random
losses. This kind of model is a first attempt to roughly assess the impact of
varying network conditions on a CTCP connection. The network is seen as a
black box randomly dropping packets, due to buffer overflows. This model could
also be used to describe the impact of transmission errors in some ”challenging
environments” (e.g. wireless networks) as expected from new TCP versions [11].

In this first analysis, we have assumed that the loss arrivals follow a simple
Bernoulli process. We have computed the distribution of the sending window on
loss events with a Markovian model, and then the average throughput. Using
Palm Calculus we have computed the steady state distribution of the window. Its
value has a direct influence on the buffer occupancy and on the jitter experienced
by all the flows sharing the same bottleneck link.

This analysis can be extended in many ways. The Bernoulli loss process could
be replaced with a more bursty and realistic process. In this case, multiple losses
could take place during the same round-trip time, and the recovery time could
be longer. We could also consider time-outs in the case of high loss rates, as in
[16]. A similar analytical study could also be applied to the other TCP versions,
currently under standardization, comparing their efficiency and their robustness.
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