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Abstract: The aim of a Software Transactional Memory (STM) is to discharge the programmers from
the management of synchronization in multiprocess programs that access concurrent objects. To that end, a
STM system provides the programmer with the concept of a transaction: each sequential process is decom-
posed into transactions, where a transaction encapsulates a piece of sequential code accessing concurrent
objects. A transaction contains no explicit synchronization statement and appears as if it has been executed
atomically. Due to the underlying concurrency management, a transaction commits or aborts. Up to now,
few papers focused on the definition of consistency conditions suited to STM systems. One of them has
recently proposed the opacity consistency condition. Opacity involves all the transactions (i.e., the com-
mitted plus the aborted transactions). It requires that (1) until it aborts (if ever it does) a transaction sees
a consistent global state of the concurrent objects, and (2) the execution is linearizable (i.e., it could have
been produced by a sequential execution -of the same transactions- that respects the real time order on the
non-concurrent transactions).

This paper is on consistency conditions for transactional memories. It first presents a framework that
allows defining a space of consistency conditions whose extreme endpoints are serializability and opacity. It
then extracts from this framework a new consistency condition that we call virtual world consistency. This
condition ensures that (1) each transaction (committed or aborted) reads values from a consistent global
state, (2) the consistent global states read by committed transactions are mutually consistent, but (3) the
consistent global states read by aborted transactions are not required to be mutually consistent. Interestingly
enough, this consistency condition can benefit lots of STM applications as, from its local point of view,
a transaction cannot differentiate it from opacity. Finally, the paper presents and proves correct a STM
algorithm that implements the virtual world consistency condition. Interestingly, this algorithm distinguishes
the serialization date of a transaction from its commit date (thereby allowing more transactions to commit).
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Consistency condition, Incremental snapshot, Linearizability, Lock, Opacity, Serializability, Shared object,
Software transactional memory, Transaction.
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Sur les critères de cohérence des mémoires transactionelles

Résumé : Ce rapport commence par analyser les critères de cohérence proposés à ce jour pour les mémoires
transactionnelles. A partir d’une vue synthétique de ces derniers, il propose un nouveau critère appelé monde
virtuel. Plus faible que l’opacité (un critère très intéressant proposé dernièrement), le critère monde virtuel
en garde l’esprit, à savoir qu’ indépendamment du fait qu’une transaction soit validée ou avortée, celle-ci
ne lit jamais de valeurs incohérentes. Un protocole qui garantit ce critère est ensuite présenté et prouvé
formellement correct.

Mots clés : Atomicité, Contrôle de la concurrence, Etat global cohérent, Mémoire transactionnelle, Object
partagé, Opacité, Transaction, Validation, Verrou.
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1 Introduction

Software transactional memory The concept of Software Transactional Memory (STM), originally pro-
posed in [33], originates from the observation that programmers were missing something for the applications
made up of concurrent processes that access shared data structures (base objects). Roughly speaking, the
“only” tool they were proposed to solve their synchronization problems is a set of locks that allow the pro-
cesses to prevent conflicting accesses to shared objects. But, due to the difficulty to manage them, locks are
not a panacea. If a single lock controls a large set of data, it reduces drastically the parallelism, while many
locks used to control fine grain data are difficult to master and error-prone. On another side, the recent ad-
vances in technology (e.g., more particularly in multicore architectures) have given rise to a new momentum
to practical and theoretical research in concurrency and synchronization that constitutes a large application
domain strongly related to STM systems [3, 12, 16].

The STM approach is a middleware approach that allows the programmers to write their applications
in terms of transaction-based processes1 . Fundamentally, it provides a “new programming construct that
offers a higher-level abstraction for writing parallel programs” [25]. More precisely, an application program
is made up of processes (or automata), each process being defined as (or decomposed into) a sequence of
transactions, where a transaction is a sequential piece of code that, while accessing any number of shared
base objects in a concurrency context, appears as being executed atomically. The code of a transaction is
not known in advance and a priori no two transactions have the same code. The job of the programmer is
only to define the units of computation that are the transactions. He does not have to worry about the fact
that the base objects can be concurrently accessed by transactions. Except when he defines the beginning
and the end of a transaction (that are the only synchronization points known by a process), the programmer
is not concerned by synchronization. It is the job of the STM system to ensure that transactions execute as if
they were atomic (in addition to transactions, a process can contain additional code, but we do not consider
such a possibility in this paper). At the programming level, the transactions are a way to structure each
process into a sequence of atomic processing units, each transaction being defined as a synchronization-free
sequential code.

A STM system is a software device whose inputs are process-generated transactions, that produces a
corresponding run that, to be meaningful, has to satisfy some properties. Each set of properties defines
a particular STM system. Of course, a solution in which a single transaction at a time would execute,
trivially implements transaction atomicity but would be irrelevant from an efficiency point of view. So, a
STM system has to do “its best” to execute as many transactions per time unit as possible. Similarly to a
scheduler, a STM system is an on-line algorithm that does not know the future. If the STM is not trivial
(i.e., it allows several transactions that access the same objects in a conflicting manner to run concurrently),
this intrinsic limitation has a price, namely, it can direct transactions to abort in order to guarantee both
transaction atomicity and object consistency. From a programming point of view, an aborted transaction has
no effect (it is up to the process that issued an aborted transaction to re-issue it or not; usually, a transaction
that is restarted is considered as a new transaction).

STM consistency The major part of the STM systems that have been designed so far are mainly efficiency-
oriented. They strive to improve the number of transactions that are committed per time unit. As far as the
correctness condition they ensure is concerned, they implement serializability [7, 27], or variants of it (e.g.,
[5, 17, 32]). Very little effort has been devoted to precisely define the properties a STM implementation has
to satisfy.

It has recently been suggested that a transaction, whatever its fate (commit or abort), should not obtain
values of the objects it reads from an inconsistent global state of the shared memory [11]. This consis-

1Differently, in classical transactional systems (such as database), there is no structuring notion of process.
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4 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

tency condition has been formalized and investigated in [14], where it has been given the name opacity.
Intuitively, this means that the values read by any transaction have to be mutually consistent. (As a side
effect, a transaction that aborts has to be “reduced” by the STM system to a consistent read prefix.) Several
algorithms that have been proposed do implement the opacity property [8, 11, 19, 21, 30, 34] (some of them
have been designed before the property was explicitly formulated, while others considered it as their explicit
consistency condition).

Content of the paper Serializability and opacity can be seen as two extreme consistency conditions. Se-
rializability (mainly used in database) involves only the committed transactions and states that an execution
is correct if it could have been produced by a sequential execution of the committed transactions. Strict
serializability is a strengthening that adds the requirement that the “witness” sequential execution should
respect the real time order of non-concurrent transactions.

In a database system, a transaction is usually the result of a query formulated in a specific language.
Differently, a transaction T in a STM system can be any (correct) piece of code. Correct means that, if the
objects in the shared memory are mutually consistent and T is executed in a concurrency-free context, it
behaves correctly, i.e., T provides the invoking process with correct values, and (if any) the modifications
of the base objects issued by T are in agreement with their specification. If, in a concurrency context, a
transaction is allowed to read object values that are mutually inconsistent, albeit its code is correct, it can
be directed to behave arbitrarily before being aborted (e.g., entering an infinite loop or dividing by zero.)
Moreover, it can be difficult (or even impossible in some cases) to distinguish an arbitrary behavior from a
correct behavior of a transaction.

Opacity solves this problem by preventing any transaction from reading an inconsistent state of the base
objects. If it is about to read an object whose current value would make inconsistent its previous reads, a
transaction is aborted. Reducing each aborted transaction to such a consistent read prefix, opacity involves
all the transactions (committed and reduced aborted transactions) and requires that the corresponding execu-
tion be equivalent to a sequential execution that respects the real time order on non-concurrent transactions.

The paper first introduces a consistency condition space that lies between serializability and opacity,
explores and investigates it, and shows that there are consistency conditions that, while weaker than opacity,
can benefit STM systems. Among these consistency conditions, virtual world consistency seems particularly
interesting. As opacity, this condition involves all the transactions (all the committed transactions and the
reduced aborted transactions). Intuitively, it requires that (1) all the committed transactions be serializable,
and (2) each (reduced) aborted transaction T reads values that are mutually consistent when considering
its causal past only. It is important to see that while all the committed transactions have the same witness
sequential execution, each aborted transaction has its own witness sequential execution that involves only
its past. Two aborted transactions can have different witnesses, both providing them with consistent values,
but may be incompatible with respect to each other, hence the name “virtual world”.

Then, replacing serializability of committed transactions by strict serializability, and requiring the wit-
ness sequential execution of each aborted transaction to respect or not real time defines a family of consis-
tency conditions.

The paper presents then an algorithm that constructs a virtual world consistent STM system. This
algorithm never aborts a write-only transaction, and (differently from the algorithms that ensure opacity)
makes a distinction between the serialization time of a transaction and its commit time. This feature can
open the way to a new family of STM algorithms.

Irisa
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Roadmap The paper is made up of 6 sections. Section 2 presents the computation model and introduces
base definitions. Section 3 introduces a general framework from which is defined a space of consistency
conditions. Virtual world consistency is one of the conditions that lies in this space. Then, Section 4
presents an algorithm implementing a virtual world consistent STM system. This algorithm is proved correct
in Section 5. Finally, Section 6 concludes the paper.

2 Computation model and base definitions

2.1 Processes and base objects

From an application point of view, a system is made up of a set of n processes p1, . . . , pn, plus a set of base
concurrent objects accessed by atomic read and write operations. There is no assumption on the respective
speed of processes, except they are neither zero, nor infinite: the processes are asynchronous.

2.2 Transactions and base events

Transaction A transaction is a piece of code that is produced on-line by a sequential process (automaton),
that is assumed to be executed atomically (commit) or not at all (abort). This means that (1) the transactions
issued by a process are totally ordered, and (2) the designer of a transaction has not to worry about the
management of the base objects accessed by the transaction. Differently from a committed transaction, an
aborted transaction has no effect on the shared objects. A transaction can read or write any base object.
Such a read or write access is atomic. The set of the objects read by a transaction defines its read set.
Similarly the set of objects it writes defines its write set. A transaction that does not write base objects is a
read-only transaction, otherwise it is an update transaction. A transaction that issues only write operations
is a write-only transaction.

As in [7], we consider that the behavior of a transaction T can be decomposed in three sequential steps2:
it first reads data objects, then does local computations and finally writes new values in some objects, which
means that a transaction can be seen as a software read modify write() operation that is dynamically defined
by a process3 . The read set is defined incrementally, which means that a transaction reads the objects of
its read set asynchronously one after the other (between two consecutive reads, the transaction can issue
local computations that take arbitrary, but finite, durations). We say that the transaction T computes an
incremental snapshot4 . This snapshot has to be consistent which means that there is a time frame in which
these values have co-existed (as we will see later, different consistency conditions consider different time
frame notions). If it is about to read a new object whose current value would make inconsistent its current
incremental snapshot, the transaction T is directed to abort. If it is not aborted during its read phase, T

issues local computations. Finally, if T is an update transaction, and its write operations can be issued
in such a way that T appears as being executed atomically, the objects of its write set are updated and T

commits; otherwise, T is aborted. So, each aborted transaction is reduced to a read prefix. When, at the
model level in the following, we speak about an aborted transaction, we implicitly refer to such a
prefix. Independently of consistency reasons, a transaction T can also be aborted by the process that issued

2This model is for reasoning, understand and state properties on STM systems. It only requires that everything appears as
described in the model. It does not preclude an implementation where a transaction writes some objects before reading other
objects. In that case, a transaction that aborts has to undo its previous writes.

3Different read modify write() operations are provided by some processors. Classical examples of such operations provided
by hardware are the instructions test&set(), fetch&increment(), and compare&swap(). Their read set is equal to their write set,
and contain a single atomic register. Moreover, their internal computation is defined once for all.

4The incremental approach to compute a snapshot reads asynchronously (separately) one object after the other. Differently, in
[1, 4, 20], the whole set of the base objects to be atomically read is globally defined at the time of the snapshot invocation.
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6 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

it. (From our point of view, namely the definition of consistency conditions for STM systems, we consider
that such aborts include the case where transactions are aborted in order to improve the global efficiency5.)

Events at the shared memory level Each transaction generates events defined as follows.

• Begin and end events. The event denoted BT is associated with the beginning of the transaction T ,
while the event ET is associated with its termination. ET can be of two types, namely AT and CT ,
where AT is the event “abort of T ”, while CT is the event “commit of T ”.

• Read events. The event denoted rT (X)v is associated with the atomic read of X (from the shared
memory) issued by the transaction T . The value v denotes the value returned by the read. If the value
v, or T , is irrelevant rT (X)v is abbreviated rT (X), or r(X)v or r(X). The notation rT (X)v ∈ T , or
r(X)v ∈ T , or r(X) ∈ T , is used to express that rT (X)v is an event of T .

• Write events. The event denoted wT (X)v is associated with the atomic write of the value v in the
shared object X (in the shared memory). If the value v is irrelevant wT (X)v is abbreviated wT (X).
Without loss of generality we assume that no two writes on the same object X write the same value.
We also assume that all the objects are initially written by a fictitious transaction. Similarly to the
previous item, the notation wT (X)v ∈ T , or w(X)v ∈ T , or w(X) ∈ T , is used to express that
wT (X)v is an event of T .

At the shared memory level, only the events such as BT , ET , rT (X)v and wT (X)v are perceived. Let
H be the set of all these events. Moreover, as rT (X)v and wT (X)v correspond to the execution of base
atomic operations, the set of all the begin, end, read and write events can be totally ordered. This total order,
denoted Ĥ = (H,<H), is called a shared memory history.

2.3 Execution histories

Transaction history The execution of a set of transactions is represented by a partial order P̂O =
(PO,→PO ) that expresses a structural property of the execution of these transactions capturing the or-
der of these transactions as issued by the processes and in agreement with the values they have read. More
formally, we have:

• PO is the set of transactions, and

• T1→PO T2 (we say “T1 precedes T2”) if:

1. (Process order.) Both T1 and T2 have been issued by the same process, and T1 is a committed
transaction that has been issued before T2.

2. (Read from order.) ∃ wT1(X)v ∧ ∃ rT2(X)v. (There is an object X whose value written by
T1 has been read by T2.)

3. (Transitivity.) ∃T : (T1→PO T ) ∧ (T →PO T2).

Remark When we look at the partial order P̂O , it is important to notice that, while all the committed
transactions issued by a process are totally ordered, there is no precedence edge that originates from an
aborted transaction. For the committed transactions issued by a process, this expresses the fact that those
have been sequentially issued by that process and are possibly causally related. Roughly speaking, this total
order defines what that process “really did”. Differently, whatever the values read by an aborted transaction

5This is the case for example in the system TL2 [11] where a transaction can be sacrificed (aborted) to increase the number of
transactions that are committed per time unit. This occurs when a transaction tries to lock an object that is already locked.

Irisa
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(a priori those can be mutually consistent or not), those values do not have to “causally” impact the future
in a systematic way (except if a process voluntarily takes them into account in its next transaction).

As we can see, an important difference between classical (e.g., database) transactions and STM transac-
tions lies in the fact that in a STM the transactions are issued by processes. (In a database, there is no notion
of process that relates transactions.) Of course, in a STM system, it could be possible to ask a process to
indicate which of its transactions are process-order related. This possibility would add flexibility (and could
be relevant for some applications) but does not change fundamentally the process-based model previously
introduced.

Independent transactions and sequential execution Given a partial order P̂O = (PO,→PO) that mod-
els a transaction execution, two transactions T1 and T2 are independent (or concurrent) if neither is ordered
before the other: ¬(T1 →PO T2) ∧ ¬(T2 →PO T1). An execution such that→PO is a total order, is a
sequential execution.

Committed transaction history A committed transaction history (in short c-history) is a partial order ĈH

as defined above where the set of transactions (denoted CH) is made up of all the committed transactions.
Moreover,→PO is then denoted→CH .

An example of such a partial order is described in Figure 1, where a committed transaction is depicted
by a big black dot. The “time line” of each process is indicated with a slim long horizontal arrow. The
precedence edges of the →PO relation are indicated with black arrows. Assuming that the transactions
access the base objects x, y and z, some read-from edges are indicated by labeled arrows where the label
indicates the object written and read respectively by the endpoint transactions (the corresponding object
values are not represented). Transitivity edges are not represented.

T 3
3

p1

p2

p3

p4

T 1
1 T 2

1

T 1
2

T 1
4

T 4
3

T 2
4

T 1
3

T 2
3

T 2
2

z

y

xy

z

y

x

x

Figure 1: A partial order ĈH = (CH,→CH ) (only committed transactions)

Complete transaction history A complete transaction history (in short ca-history) is a partial order ĈAH

as defined above where the set of transactions (denoted CAH) is made up of all the committed or aborted
transactions. The order relation→PO is denoted→CAH . Let us observe that→CH⊆→CAH .

Let T be an aborted transaction. If T reads, we have directed edges T ′ →CAH T where T ′ is a committed
transaction. Moreover, it follows from (1) the fact that an aborted transaction T does not write the shared
memory, and (2) the definition of the process order relation, that there is no outgoing edge from an aborted
transaction T .

Figure 2 describes a ĈAH partial order in which the aborted transactions are depicted with squares
(those are denoted T ′

2
, T ′

3
and T ′

4
). When considering T ′

2
, the figure shows that it reads two values one

produced by T 2
1

, the other by T 4
3

. The arrow from T 1
2

to T ′

2
is a process order edge (and there is no process

edge from T ′

2
to T 2

2
).
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2 T 2
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T 1
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T 2
3
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3T 3

3
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p2

p4

p3

T 2
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4

x
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x
y

T ′3

T ′2
z
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Figure 2: A partial order ĈAH = (CAH,→CAH ) (committed and aborted transactions)

2.4 Additional base definitions

Real time order Let →RT be the real time relation defined as follows: T1 →RT T2 if ET1 occurs
before BT2 (ET1 <H BT2). This relation (defined on the whole set of transactions, or only the committed
transactions) is a partial order. In the particular case where it is a total order, we say that we have a real
time-complying sequential execution.

Considering that the space/time diagrams depicted in the previous Figures 1 and 2 are real time diagrams,
we see that T 1

1
→RT T 4

3
, while the executions of T 1

2
and T 1

4
overlap in real time.

Linear extension A linear extension Ŝ = (S,→S) of a partial order P̂O = (PO,→PO) is a topological
sort of this partial order, i.e.,

• S = PO (same elements),

• →S is a total order, and

• (T1→PO T2)⇒ (T1→S T2) (we say that→S respects→PO).

As an example the sequence T 1
3

T 2
3

T 1
2

T 1
1

T 1
4

T 2
1

T 3
3

T 4
3

T 2
2

T 2
4

is a linear extension of the partial order
described in Figure 1. (Let us notice that this linear extension does not respect real time order.)

Legal transaction The notion of legality is crucial for defining a consistency condition. It expresses the
fact that a transaction does not read an overwritten value. More formally, given a linear extension Ŝ, a
transaction T is legal in Ŝ if, for each rT (X)v ∈ T , there is a committed transaction T ′ such that:

• T ′ →S T and wT ′(X)v ∈ T ′, and

• There is no transaction T ′′ such that T ′ →S T ′′ →S T and wT ′′(X) ∈ T ′′.

If all the transactions are legal, the linear extension Ŝ is legal.
In the following, a legal linear extension of a partial order, that models an execution of a set of transac-

tions, is sometimes called a sequential witness (or witness) of that execution.

Causal past of a transaction Given a partial order P̂O defined on a set of transactions, the causal past
of a transaction T , denoted past(T ), is the set including T and all the transactions T ′ such that T ′ →PO T .
Let us observe that, if T is an aborted transaction, it is the only aborted transaction contained in past(T ).

Irisa
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3 A framework for defining a family of STM consistency conditions

The previous definitions constitute a general framework from which it is possible to state consistency con-
ditions suited to STM systems. These conditions concern the safety property of a STM system: they allow
to decide whether a given execution is correct or not6.

3.1 Considering only the committed transactions

This section uses the previous framework to state classical consistency conditions encountered in the context
of database transactions. As they all impose constraints only on the transactions that commit, this section
considers only the c-history ĈH = (CH ,→CH ) associated with a set of transactions.

Serializability [7, 27] A given transaction execution, modeled by the c-history ĈH = (CH ,→CH ), is
serializable if it has a linear extension ĈS = (CH ,→CS ) that is legal.

The linear extension ĈH represents a sequential witness execution on which all the committed transac-
tions agree. If each transaction is made up of a single read or a single write (in which case, no transaction
should be aborted), serializability boils down to the consistency condition called sequential consistency [24].

Strict Serializability [7, 27] A given transaction execution, modeled by the c-history ĈH = (CH ,→CH ),
is strict serializable if it has a linear extension ĈS = (CH ,→CS ) that (1) is legal, and (2) respects the real
time order on the committed transactions (i.e., T1 →RT T2 ⇒ T1 →CS T2). (So, when compared to
serializability, the strictness attribute adds consistency with respect to real time.)

If each transaction consists of a single operation on a predefined object defined by a sequential specifica-
tion, e.g. a stack, a queue, or a register (then, the transactions are no longer dynamically defined), the strict
serializability condition boils down to linearizability [18] (and, as before, no transaction should be aborted).
(It is shown in [28] that sequential consistency can be interpreted as “lazy linearizability”).

Causal consistency [29] Causally consistent transactions have been introduced for collaborative applica-
tions where the fact that all the transactions have to agree on the very same linear extension is a stronger
consistency requirement than necessary.

A given transaction execution, modeled by the c-history ĈH = (CH ,→CH ), is causally consistent if,
for every process pi, there is a linear extension ĈS i = (CH ,→CSi

) that is legal.
The fundamental difference with serializability is that causal consistency allows each process p i to have

its own consistent view of the execution (as witnessed by ĈS i). If (assuming there are n processes) ĈS 1 =
. . . = ĈSn we obtain serializability. On another side, if each transaction is reduced to a single read or a
single write, (1) as indicated before no transaction needs then to be aborted, and (2) we obtain a causally
consistent read/write shared memory [2]. (A consistency condition, called causal serializability, that lies
between serializability and causal consistency is described in [29]. This condition is causal consistency plus
the property that, for every object X , all the transactions see the write operations on X in the same order.)

6These conditions do not state when a transaction has to commit or abort. For the interested reader, a property, named obliga-
tion that forces a transaction to commit at least in “good circumstances” is presented in [21], together with a STM protocol that
ensures it. An ideal STM system should never abort a transaction unless necessary for correctness. A corresponding metric, called
permissiveness, has been introduced in [13] to compare STM systems (intuitively a STM system A is more permissive than a STM
system B if, among the transactions that could be committed in a given execution, A aborts less transactions than B).
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10 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

3.2 Considering all the transactions

The previous consistency conditions (used mainly for database transactions) place no requirements on the
aborted transactions. It appears that, in the context of STM, these conditions can be too weak. A stronger
consistency condition has recently been informally introduced in [11]. It states that the values read by any
transaction, whatever its fate (commit or abort), must be mutually consistent. This condition has been given
the name opacity in [14] where it is formally defined and deeply investigated7 .

So, given an execution of a set of transactions, and its complete history ĈAH = (CAH ,→CAH ), this
section uses the proposed framework not only to redefine opacity, but also to present new conditions weaker
than opacity but strong enough to be meaningful and practically relevant. Basically, a condition has to
formulate precisely a consistency notion for the set of values read by a (committed or aborted) transaction.

Opacity [14] A given execution ca-history ĈAH = (CAH ,→CAH ) is opaque if it has a linear extension
ĈAS = (CAH ,→CAS ) that (1) is legal and (2) respects the real time order on all the transactions.

It is easy to see that opacity is strict serializability applied to all the transactions (an aborted transaction
being reduced to a read prefix, as indicated in previous sections). So, in the following we call it real time
opacity. STM protocols ensuring such an opacity consistency can be found in [11, 19, 30].

Virtual (or logical) time opacity The idea of this new consistency condition is to weaken opacity by not
demanding its witness linear extension to comply with real time.

To be realistic (and meaningful) we have to ask the witness linear extension ĈAS to respect the order in
which every process has issued its transactions (committed and aborted). To that end let us define for each
process pi the relation →i as follows: T1 →i T2 if both have been issued by pi and T1 has been issued
first. We are now in order to define virtual (or logical) time opacity.

A given execution ca-history ĈAH = (CAH ,→CAH ) is virtual time opaque if it has a linear extension
ĈAS = (CAH ,→CAS ) that (1) is legal and (2) respects the relation “→i” of each process pi. (It is easy to
see that virtual time opacity is serializability applied to both the committed transactions and the appropriate
read prefixes of the aborted transactions.)

A family of new consistency conditions: virtual world consistency Real time or virtual time opacity
requires that all the transactions (be them committed or aborted) see the same witness execution ĈAS that
complies with the (real or virtual) time notion considered. Weaker and meaningful consistency definitions
that take into account aborted transactions are actually possible, and even desirable for STM systems. More
precisely, we obtain the following family of consistency conditions.

• For the committed transactions: Either serializability or strict serializability can be considered.

• An aborted transaction T is virtual world consistent if there is a linear extension ŜT of the partial
order past(T ) that is legal.

An execution of a set of transactions is virtual world (resp., strong virtual world) consistent if (1) all the
committed transactions are serializable (resp., strict serializable), and (2) each aborted transaction is virtual
world consistent.

Let us observe that the witness ŜT (from which T has been suppressed) is not required to be a prefix of
the legal linear extension associated with the whole set of the committed transactions. It is easy to see that,
while virtual world consistency is weaker than opacity, it remains a meaningful consistency condition as it
requires that the object values read by each aborted transaction be mutually consistent.

7Let us observe that opacity rules out implementations that would allow domino effect and cascading aborts.
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The idea that underlies this family of consistency conditions is the following. It guarantees that, in
addition to the committed transactions, every aborted transaction reads values from a consistent global state
of the shared memory. This state is consistent in the sense that, for each aborted transaction T , it appears
in some legal history that is a witness for T . This does not means that this state has really appeared in the
shared memory; it only means that, from the point of view of the aborted transaction, the execution could
have passed through this state. Hence, the name virtual world consistency. The important point is here
that each of several aborted transactions T1 (T2, etc.), sees a consistent global state (from which it reads
the values of the objects in its read set) as given by a linear extension ŜT1 (ŜT2, etc.): each witness linear
extension represents a possible “virtual world” that can be different from the other witness linear extensions.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

xp1

p2

T 1
1 T 3

1T ′1

T 1
2

past(T ′1)

y

T 3
2T ′2T 2

2

y

x

past(T ′2)

T 2
1

Figure 3: Examples of causal pasts

A simple example appears in Figure 3. The process p1 has issued four transactions, the three of them
(T 1

1
, T 2

1
and T 3

1
) that have been committed have written x, while the one that has been aborted has read x

and y. Similarly, the three transactions of p2 that have been committed have written y and the one that has
been aborted has read x and y. The causal pasts of T ′

1
and T ′

2
are indicated on the figure (transactions on the

left part of the corresponding dotted line). It is easy to see that ST ′

1
= T 1

1
T 1

2
T 2

1
T ′

1
is a legal linear extension

for past(T ′

1
), while ST ′

2
= T 1

2
T 1

1
T 2

2
T ′

2
is a legal linear extension for past(T ′

2
). Both T ′

1
and T ′

2
have read

their values from consistent global states, but while each is consistent, these global states cannot occur in the
same execution. They belong to two different -but consistent- virtual worlds (in the example, one of these
virtual worlds actually occurs, the one associated with the linear extension T 1

2
T 1

1
T 2

1
T 2

2
). (It easy to see

that the linear extension Ŝ′

T ′

1

= T 1

2
T 1

1
T 2

1
T ′

1
satisfies the real time requirement while Ŝ′

T ′

2

= T 1

2
T 1

1
T 2

2
T ′

2

does not as it misses T 2

1
that precedes T 2

2
in real time order.)

One of the main interests of virtual world consistency lies in the fact that it prevents bad phenomena
from occurring without requiring all the transactions (committed or aborted) to agree on the same witness
execution. Let us assume that, when executed alone and it reads a consistent state of the objects, each
transaction behaves correctly (e.g. it does not entail a division by 0, does not enter an infinite loop, etc.).
As, due to the virtual world consistency condition, no transaction (committed or aborted) reads from an
inconsistent state, it cannot behave incorrectly despite concurrency; it can only be aborted. This is a first
class requirement for transactional memories.

3.3 Transaction systems vs message-passing systems

If we consider each transaction as an atomic event produced by a process, and the read-from relation as corre-
sponding to message exchanges (carrying new values of the objects) the partial order on a set of transactions
P̂O = (PO,→PO ) is the equivalent of Lamport’s happened before relation [23]. Views of distributed
computations where base events are “packed together” to define “bigger atomic events” (similarly to -but
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12 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

differently from- transactions) are presented in [15] and [22]. Similarly, the notion of causal past associ-
ated with a transaction is nothing else than the causal past notion associated with events in message-passing
distributed computations [26, 31].

In the same vein, the existence of a legal extension does correspond to the notion of consistent observa-
tion as defined in [31]. Finally, the consideration of several linear extensions of a partial order corresponds
to the existence of several consistent sequential observations of the same message-passing execution. Let us
recall that, in a message-passing distributed system, if several processes simultaneously launch independent
global state computations, these processes can obtain different consistent global states [9] (this has given rise
to the possibly and definitely modalities for detecting unstable properties on the global states of a distributed
application [6, 10]). Here, the “equivalent” is the possible existence of several different but consistent virtual
worlds.

4 A STM protocol that ensures virtual world consistency

This section presents an algorithm that consumes on-line the text of transactions submitted by processes and
produces runs that satisfy virtual world consistency, which (as we have seen) is stronger than serializabil-
ity (as it adds constraints on the aborted transactions) but weaker than both real time opacity and virtual
time opacity (as it does not require that the very same linear extension be a witness for all the aborted
transactions8 .

4.1 The STM system interface

The STM system provides the transactions with four operations denoted beginT (), X.readT (), X.writeT (),
and try to commitT (), where T is a transaction issued by a process pi, and X a base object.
• beginT () is the first operation issued by a process pi when it starts a new transaction T .

• X.readT () is invoked by the transaction T to read the base object X . That operation returns a value
of X or the control value abort (in which case T is aborted).

• X.writeT (v) is invoked by the transaction T to update X to the new value v. As we will see, that
operation never forces a transaction to immediately abort. It always returns ok.

• If a transaction attains its last statement (as defined by the user) it executes try to commitT (). That
operation decides the fate of T by returning commit or abort. (Let us notice, a transaction T that
invokes try to commitT () has not been aborted during an invocation of X.readT ().)

4.2 The STM system variables

Shared control variables To implement the previous operations, the STM system uses the following
atomic control variables. The shared objects accessed by the transactions, and the shared control variables
-i.e., all the variables kept in shared memory- are denoted with uppercase letters. (Local variables will be
denoted with lowercase letters with an appropriate process/transaction index.)

• A logical clock denoted CLOCK . Initialized to 0, it can be read and increased.

• A lock per base object X . Locks are assumed to be fair (assuming each lock is eventually released,
every transaction that requires a lock eventually gets it).

• A set RSX per base object X . This set, initialized to ∅, contains the ids of the transactions that have
read X since the last update of X . A transaction adds its id to RSX to indicate a possible read/write
conflict.

8The structure of the algorithm is similar to the one presented in [19] that satisfies opacity.
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On the Consistency Conditions of Transactional Memories 13

• Each base object X is made up of two fields: X.value denotes its current value, while X.date denotes
the logical date at which that value has been written.

• A control variable MAX DATET , initialized to +∞, is associated with each transaction T . It keeps
the smallest date at which an object read by T has been overwritten. Let us notice that there are n

such variables, namely one per process pi.

• A shared token SEQ , that contains a sequence of 4-uples denoted < ser date , rs, ws, commit date >.
This token is used by a transaction when it invokes try to commitT ()). To keep it consistent, the ac-
cesses to this token are protected by a lock. SEQ contains a list (which can be garbage collected) of
4-uples, one for each committed transaction T , the meaning of which is the following:

– rs and ws are the read set and the write set of T , respectively.

– ser date and commit date are two dates defined from the clock: ser date is the serialization
date of T , while commit date is the date at which it has been committed. The serialization
dates provide the witness linear extension for the committed transactions [18].

It is important to see that, contrarily to protocols that ensure opacity (such as [11, 19]), the
serialization date and the commit date of a committed transaction are not required to be the
same. We can have ser date ≤ commit date (this allows more transactions to commit).

Local control variables Each process manages the following local variables. To make the presentation
clearer, one is indexed with the process name, while the others are indexed with the transaction name. T

denotes the transaction (if any) currently issued by pi and not yet terminated.

• last commit datei is the commit date of the last committed transaction issued by pi.

• lrsT and lwsT are sets where pi keeps track of the objects read and written by T , respectively.

• For each object accessed by T , pi keeps a copy lc(X) in its local memory. This copy has two fields
denoted lc(X).value and lc(X).date.

• min dateT contains the greatest date of the objects read so far by T . It is initialized to the current
value of last commit datei . When T is about to read a new object from the shared memory, the
pair (min dateT ,MAX DATET ) allows pi to check if adding this new read to T ’s current snapshot
preserves or not consistency.

• The pair of local variables (to commit T , to writeT ) is used by pi when it executes try to commitT ().
Their meaning is as follows: to commit T is a boolean that, when evaluated to true, indicates that (1)
the transaction T can be committed, and (2) only the objects in the subset to write T ⊆ lwsT have to
be written in the shared memory.

4.3 The STM protocol

The algorithms implementing the four operations that constitute the STM system (beginT (), X.readT (),
X.writeT (v) and try to commitT ()) are described in Figure 4. They rely on two basic ideas:

• As in other protocols (e.g., STM or discrete event simulation), one is to associate a time window with
each transaction. If this window becomes empty, the transaction has to be aborted.

• The second one (as already announced) consists in not directing a transaction that commits to be seri-
alized to its commit time. Distinguishing serialization time and commit time allows more transactions
to be committed and (as we will see) can save write into the shared memory.
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operation begin
T
():

(01) min dateT ← last commit datei ; MAX DATET ← +∞.
===========================================================================
operation X.readT ():
(02) if (there is no local copy of X) then
(03) allocate local space lc(X) for a copy;
(04) lock X; lc(X)← X; RSX ← RSX ∪ {T}; unlock X;
(05) lrsT ← lrsT ∪ {X};
(06) min dateT ← max(min dateT , lc(X).date);
(07) if (min dateT > MAX DATET ) then return(abort) end if
(08) end if;
(09) return (lc(X).value).
===========================================================================
operation X.writeT (v):
(10) if (there is no local copy of X) then allocate local space lc(X) for a copy end if;
(11) lc(X).value← v;
(12) lwsT ← lwsT ∪ {X};
(13) return (ok).
===========================================================================
operation try to commit

T
():

(14) lock all the objects in lrsT ∪ lwsT ; lock the lock protecting SEQ and CLOCK ;
(15) to commitT ← true ; to writeT ← lwsT ;
(16) for each < ser date , rs, ws, c date > ∈ SEQ such that min dateT < c date do
(17) if ser date ≤ min dateT

(18) then to commitT ← to commitT ∧ (ws ∩ lrsT = ∅)
(19) else to commitT ← to commitT ∧ (rs ∩ lwsT = ∅); to writeT ← to writeT \ ws end if;
(20) end for;
(21) if (¬to commitT ) then release all the locks; return(abort) end if;
(22) for each T ′ ∈ ∪X∈to writeT

RSX do MAX DATET ′ ← min(MAX DATET ′ ,CLOCK ) end for;
(23) CLOCK ← CLOCK + 1; commit dateT ← CLOCK ;
(24) for each X ∈ to writeT do X ← (lc(X ).value, commit dateT ); RSX ← ∅ end for;
(25) SEQ ← SEQ · < min dateT , lrsT , lwsT , commit dateT >;
(26) last commit datei ← commit dateT ;
(27) release all the locks;
(28) return(commitT ).

Figure 4: A STM algorithm that satisfies virtual world consistency

The operation X.beginT () When it starts a new transaction T , pi sets the initial values of its time window:
min dateT is set to last commit datei and MAX DATET is set to +∞. Then, min dateT can only
increase, while MAX DATET can only decrease.

The operation X.readT () When T invokes X.readT (), it obtains the value of X currently kept in the
local memory if there is one (lines 02 and 09). Otherwise, T first allocates space in its local memory for
a copy of X (line 03), obtains the value of X from the shared memory and updates RSX accordingly (line
04). The update of RSX allows T to announce a read/write conflict that will occur with the transactions that
will update X . This line is the only place where possible future read/write conflicts are announced in the
STM algorithm.

Then, T updates its local control variables lrsT (line 05) and min dateT (line 06) in order to keep them
consistent. Finally, T checks its time window (line 07) to know if its snapshot is consistent. If the time
window is empty, the value it has just obtained from the memory can make its current snapshot inconsistent
and consequently T aborts.
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The operation X.writeT () The text of the algorithm implementing X.writeT () is very simple. If there
is no local copy of X , a corresponding space is allocated in the local memory (line 10); let us remark that
this does not entail a read of X from the shared memory. Then, T updates the local copy of X (line 11),
and records X in lwsT (line 12). It is important to notice that an invocation of X.writeT () is purely local:
it involves no access to the shared memory, and cannot entail an immediate abort of the corresponding
transaction.

The operation try to commitT () This operation works as follows. First T locks all the objects in its
read and write sets (according to a predefined total order in order to prevent deadlocks), plus the lock that
protects SEQ and CLOCK (line 14). Let us notice that if T ’s time window was not empty after T ’s last
read operation, it cannot become empty later. This is due to the facts that transactions are committed in
mutual exclusion and that a committing transaction T ′ cannot change the variable MAX DATET of T to
a value lower than the current value of CLOCK (line 22 of T ′’s try to commit operation), this value being
necessarily at least as big as the dates of the objects already read by T . Thus, T ’s time window cannot
become empty after its last read operation.

Then, the process pi checks to see if T can be serialized at the date min dateT with its write taking
effect at the next clock value, i.e. CLOCK + 1 (see lines 23-24). But, as the serialization dates of the
committed transactions are different from their commit dates, we have to be careful that linearizing T at
min dateT does not falsify the consistency of the transactions that have been already committed (lines 15-
21). To that end, min dateT is compared to the serialization date (ser date) of each committed transaction.
Let < ser date, rs, ws, c date > be the 4-uple associated with such a transaction T ′ ∈ SEQ (line 16). If
c date < min dateT , linearizing T ′ at min dateT cannot create problems for these transactions: the write
of T ′ occurred at c date, the writes of T occur at CLOCK + 1 and T ′ is “naturally” serialized before T .
If c date > min dateT , the situation is different, and depends on the respective values of ser date and
min dateT (Figure 5).

ser date (linearization date of T ′)
Case 1

c date (commit date of T ′)

CLOCKmin dateT

Case 2

︸
︷︷

︸

Dates associated with T ′ ∈ SEQ

︸
︷︷

︸

Dates associated with T

ser date (linearization date of T ′)

Figure 5: Respective position of min dateT and ser date

• Case 1: ser date ≤ min dateT (line 18). In that case, T can safely be serialized after T ′ if between
min dateT and the time at which T ′ has been committed (c date), T ′ has not written into an object
read by T , which is operationally checked by the predicate ws ∩ lrsT = ∅.

• Case 2: ser date > min dateT (line 19). In that case, T can safely be serialized before T ′ if between
min dateT and the time ser date at which T ′ is serialized, T has not overwritten the values read by
T ′, i.e., if rs∩ lwsT = ∅. Moreover, if this predicate is true, T does not have to write into the objects
written by T ′ (as, in that case, T ′ has overwritten the objects in lwsT ′ ∩ lwsT , and these objects have
been written by T ′ at its commit date c date). The local variable to write is used to record the objects
that T has to write.
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If to commitT is false, T cannot be correctly serialized and is consequently aborted. Otherwise, it
commits. The commit step is made up of the lines 23-26: T increases the clock, writes their new values
into the objects X ∈ to writeT (and resets accordingly their RSX sets), adds the 4-uple associated with T

(namely < min dateT , lrsT , lwsT ,CLOCK >) to SEQ, and increases last commit datei to the present
commit date (which is the current value of CLOCK ). All the locks are finally released (line 27) and the
value commit is returned (line 28).

Garbage collecting SEQ A garbage collector can be implemented to eliminate the 4-uples of SEQ that
become irrelevant. This can be done using a shared array (with one entry per process) that records the
date min dateT of each live transaction T . The garbage collector removes the transactions ∈ SEQ whose
commit date c date is smaller than min(min dateT such that T is live). Note that the reads of the array do
not have to be atomic (thereby, not demanding an expensive snapshot operation).

4.4 From virtual world to strong virtual world consistency

It appears that a simple modification to the algorithm described in Figure 4 provides a variant that guarantees
strong virtual world consistency (which means that it ensures that the committed transactions are now strict
serializable). This modification is the following: The local variable last commit date i of each process pi

is suppressed (so, line 26 disappears), and the update of min dateT at line 01 becomes min dateT ←
CLOCK . (The word “serialization” has then to be replaced by “linearization” in the description of the
protocol).

5 Proof of the protocol

The proof is in two parts. It is first shown that the set of committed transactions accepts a legal linear
extension Ŝ = (S,→S) that respects the partial order on the committed transactions (Section 5.2). It is then
shown that each aborted transaction T reads from a global state that is consistent.

5.1 Preliminary definitions
• Considering a complete execution, C denotes the set of all its committed transactions, and A denotes

the set of all its aborted transactions.

Let us observe that, given an execution of the STM system described in Figure 4, C is exactly the set
of transactions that define SEQ .

• Let us recall that the set Ĥ = (H,<H) (Section 2.2) is the total order on the set H of all the base
events (begin, read, write and end) issued by the transactions.

• Let →proc be the partial order defined as follows: T →proc T ′ if T and T ′ have been issued by the
same process and T has been issued before T ′ (process order).

• Let
X
→rf be the partial order defined as follows: T

X
→rf T ′ if T ′ reads from X the value v that has

been written by T (read-from order), so we have wT ′(X)v <H rT (X)v. Moreover,→rf =
⋃

X

X
→rf .

• Let us recall that, when we consider the transaction partial order P̂O = (PO,→PO) defined in
Section 2.3, we have PO = C ∪ A and→PO is the transitive closure of

(
→proc ∪ →rf

)
.
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5.2 The committed transactions can be totally ordered

To obtain a legal linear extension Ŝ = (S,→S), the total order→S is defined as follows. The transactions
in SEQ are ordered by their ser date dates. If two transactions have the same ser date value, they are
tie-broken by their commit date values (which are unique, as CLOCK is increased at each successful
try to commit operation, line 23).

Lemma 1 ∀T ∈ SEQ : ser dateT < commit dateT .

Proof
Let τ be the time just before the transaction T executes line 23 (where it increases CLOCK and defines

its commit date). Let t be the value of CLOCK at time τ . We have the following.

• CLOCK can only increase, and can be increased by only one process at a time.

• At time τ , all the (logical) dates in the system associated with the date field of any object are≤ t. This
follows from the previous item and lines 23-24 executed by a transaction when it updates an object.

• At time τ , the min dateT ′ local variable of any transaction T ′ (including T ) is ≤ t. This follows
from the previous item and line 06 when executed by T . Hence, as ser date T is the last value of the
non-decreasing variable min dateT , it is ≤ t.

It follows from the last item that, after the transaction T has executed line 23, commit dateT = t+1, which
proves the lemma. 2Lemma 1

Lemma 2 ∀T, T ′ ∈ C : (T →proc T ′)⇒ (T →S T ′).

Proof Let pi be the process executing T and T ′. Let T ′′ be the last transaction committed by pi when T ′

starts. We have the following.
The variable min dateT ′ is initialized at commit dateT ′′ (lines 01 and 26). During the try to commit()

operation, ser dateT ′ takes the value of min dateT ′ (line 25). Because min dateT ′ never decreases, we
have commit dateT ′′ ≤ ser dateT ′ , and thus, because of Lemma 1, commit dateT ′′ < commit dateT ′ .
It follows from this fact and the definition of→S that ∀T, T ′ ∈ C : (T →proc T ′) ⇒ (T →S T ′), which
proves the lemma.

2Lemma 2

Lemma 3 ∀T, T ′ ∈ C : (T
X
→rf T ′)⇒ (T →S T ′).

Proof As T
X
→rf T ′, and the write of a transaction occurs just before its commit time, we conclude that T

commits before T ′ reads the value it has written in X . We consequently have the following.

T →rf T ′ ⇒ commit dateT ≤ ser dateT ′ (lines 24 by T and 06 by T ′),

(Due to Lemma 1) ⇒ ser dateT < ser dateT ′ ,

(By definition of the serialization order) ⇒ T →S T ′.

2Lemma 3

Lemma 4 ∀T, T ′ ∈ C : (T
X
→rf T ′)⇒

(
@T ′′ : (w(X) ∈ T ′′) ∧ (T →S T ′′ →S T ′)

)
.

PI n ˚ 1917



18 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

Proof The proof is by contradiction. Let us suppose that such a transaction T ′′ exists. As T
X
→rf T ′ we

also have (
wT (X) <H rT ′(X)

)
∧

(
(wT ′′(X) <H wT (X)) ∨ (rT ′(X) <H wT ′′(X))

)
.

We consider two cases: wT ′′(X) <H wT (X) and rT ′(X) <H wT ′′(X).

• Case wT ′′(X) <H wT (X).
It follows from this case assumption that T ′′ was committed before T , and we have:

(
wT ′′(X) <H wT (X) <H rT ′(X) ∧ T →S T ′′

)
⇒

(
wT (X) 6∈ T (line 19)

)
⇒

(
T 6

X
→rf T ′

)
,

which contradicts the initial assumption, and consequently proves the lemma.

• Case rT ′(X) <H wT ′′(X).
If T ′ is committed before T ′′, T ′′ is not allowed to commit (due to line 19). If T ′′ is committed before
T ′, T ′ is not allowed to commit either (due to line 18). It follows that such a transaction T ′′ cannot
exist, which contradicts the initial assumption and concludes the proof of the lemma.

2Lemma 4

Lemma 5 The set C of all committed transactions accepts a legal linear extension →S that respects the
partial order→PO on these transactions.

Proof The proof follows from the definition of the total order→S (serialization dates), and the Lemmas 2,
3 and 4. 2Lemma 5

5.3 The aborted transactions read consistent values

We now prove that for each aborted transaction T , past(T ) has a legal linear extension that respects→PO.
For a committed transaction T , let commit dateT be its commit date value (recorded in T ’s entry in SEQ).
Because CLOCK always increases, we can use its value as a date. We use this “date view” of CLOCK in
the following way: date t corresponds to the time instant at which CLOCK is increased and reaches value
t. commit dateT is then the time at which T increases CLOCK (line 23).

For a transaction T , let MAX T (t) be the value of MAX DATET at CLOCK ’s time t.

Lemma 6 ∀T1, T2 ∈ C : T1 ∈ past(T2)⇒ commit dateT1 < commit dateT2.

Proof We consider three cases.

• Read-from order. Let us assume that T1 →rf T2. As T2 reads from T1, it follows that T1 has
committed before T2. As CLOCK is increased at each commit (line 23), we have commit date T1 <

commit dateT2.

• Process order. Let us assume T1→proc T2. As (1) CLOCK is updated at each commit (line 23), and
(2) T1 and T2 are from the same process, we have commit date T1 < commit dateT2.

• Transitivity. this case follows trivially from the previous ones.

It follows from these items that ∀T1, T2 ∈ C : T1 ∈ past(T2) ⇒ commit date T1 < commit dateT2.
2Lemma 6

Lemma 7 ∀T ∈ C ∪ A : ∀T ′ ∈ C :
(
MAX T (commit dateT ′) < commit dateT ′

)
⇒

(
T ′ 6∈ past (T )

)
.
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Proof It follows from ∀T ∈ C ∪ A : ∀T ′ ∈ C :
(
MAX T (commit dateT ′) < commit dateT ′

)
that (1)

T ′ 6→rf T (due to line 07 executed by T and line 24 executed by T ′), and (2) T ′ 6→proc T (due to the fact
that T is already started at time commit dateT ′ , line 01 by T ), from which we conclude that T ′ cannot be
T ’s immediate predecessor in the partial order →PO. The facts that MAX DATET can only decrease (at
line 22) and that ∀T1, T2 ∈ C : T1 ∈ past (T2) ⇒ commit dateT1 < commit dateT2 (Lemma 6) show
that T ′ cannot be T ’s predecessor in→PO, and thus T ′ 6∈ past(T ), which proves the lemma. 2Lemma 7

Definition Let→T be the total order→S (defined on committed transactions) (1) restricted to the transac-
tions in past(T ), and (2) augmented with the pairs (T ′, T ) such that ∀T ′ ∈ past(T ) : T ′ 6= T ⇒ T ′ →T T .
Because T is the only aborted transaction in past (T ),→T is a total order on past(T ). Let PT be the set of
the transactions in past(T ). T̂ = (PT ,→T ) is then a linear extension of past(T ).

Lemma 8 ∀T ∈ A, past(T ) accepts a legal linear extension that respects the partial order→PO.

Proof In order to prove that T̂ is legal and respects→PO, we have to prove that ∀T1, T2 ∈ past(T ):

(1) (T1→proc T2)⇒ (T1→T T2),

(2) (T1→rf T2)⇒ (T1→T T2), and

(3) ∀X :
[
(T1

X
→rf T2)⇒ @ T3 ∈ past(T ) :

(
(w(X) ∈ T3) ∧ (T1→T T3→T T2)

)]
.

We first show that ∀T1, T2 ∈ past (T ) : T1→proc T2⇒ T1→T T2. If T1 and T2 are both committed
transactions, Lemma 2 applies and the fact that→T respects→S shows that T1 →proc T2 ⇒ T1 →T T2.
Because ∀T ′ : T →proc T ′ ⇒ T ′ 6→rf T (T cannot read a value written by a transaction started after it
ended), past(T ) does not contain any transaction T ′ such that T →proc T ′. By definition of→T , we have
T1 ∈ past (T ) ∩ C ⇒ T1→T T , thus T1→proc T2⇒ T1→T T2.

We show then that ∀T1, T2 ∈ past(T ) : T1→rf T2⇒ T1→T T2. If T1 and T2 are both committed
transactions, Lemma 3 applies and the fact that→T respects→S shows that T1→rf T2⇒ T1→T T2. Be-
cause T is the only aborted transaction in past(T ), @ T ′ : T →rf T ′, so it remains to consider only the case
T2 = T . By definition of→T , we have T1 ∈ past (T ) ∩ C ⇒ T1→T T , thus T1→rf T2⇒ T1→T T2.

We show now that ∀T1, T2 ∈ past(T ) : ∀X : T1
X
→rf T2 ⇒ @ T3 ∈ past(T ) : (w(X) ∈ T3) ∧

(T1 →T T3 →T T2). If T1, T2, T3 ∈ C, Lemma 4 shows that such a T3 cannot exist. Moreover, as T is
an aborted transaction, @ T ′ : T →rf T ′ and @ X : w(X) ∈ T . Hence, the only case to consider is T2 = T .

Due to the lock on CLOCK and SEQ , the committed transactions are committed sequentially. Con-
sequently, there is a total order on committed transactions (denoted →C ) defined by the values of their
variables commit date (as recorded in SEQ).

According to the order on T1 and T3 with respect to→C , we consider two cases, namely, T1 →C T3
and T3 →C T1. In both cases, due to the assumptions stated in the item (2) we are proving, we also have

T1
X
→rf T and T1→T T3.

• Case T1
X
→rf T , T1→T T3, and T1→C T3 (T1 is committed before T3). We have

T1
X
→rf T ⇒ T ∈ RSX at time commit dateT3,

(because T3 executes the lines 22-23 after T executes line 04)

⇒ MAX T (commit dateT3) < commit dateT3,

⇒ T3 6∈ past(T ) (Lemma 7), from which it follows that this case cannot occur.

PI n ˚ 1917



20 D. Imbs & J.R. Gonzales de Mendı́vil & M. Raynal

• Case T1
X
→rf T , T1→T T3 and T3→C T1 (T3 is committed before T1).

In that case, it follows from T3 →C T1 that, when T1 executes line 19, X is suppressed from

to writeT1, and consequently w(X) 6∈ T1. Hence, we cannot have T1
X
→rf T , which contradicts the

assumption. As previously, this case cannot occur, which completes the proof of the lemma.

2Lemma 8

Theorem 1 The algorithm described in Figure 4 ensures the virtual world consistency condition.

Proof The proof follows from the Lemmas 5 and 8. 2Theorem 1

5.4 On the non-triviality of the protocol

Due to the predefined order used by the transaction to acquire locks, no transaction can deadlock, and
consequently, every transaction terminates (i.e., commits or aborts). Moreover, it is possible to show that,
in an execution with an infinite number of transactions, an infinite number of transactions are committed,
which means that the proposed STM system is not trivial (a trivial STM system has executions where all the
transactions are aborted).

6 Conclusion

This paper was motivated by the definition of consistency conditions for software transactional memories.
Its first contribution is the presentation of a simple but general framework from which a family of consis-
tency conditions can be defined. This family includes the classical consistency conditions encountered in
traditional transactions systems (serializability and strict serializability) [7, 27], and the opacity condition
that has been designed for STM applications [11, 14].

The second contribution is the definition (from this framework) of a new consistency condition, called
virtual world consistency. This new condition demands that (1) the committed transactions be serializable
(or strict serializable), and (2) each aborted transaction reads values from a global state it perceives as
consistent. Hence, while both virtual world consistency and opacity require the aborted transactions to read
consistent snapshot of values, virtual world consistency is weaker as it does not require that the committed
and the aborted transactions agree on a unique sequence of consistent global states. Two transactions that
abort can see two different (and possibly incompatible) consistent global states. This new condition is
relevant for a large class of STM applications as no transaction sees an inconsistent global state (it is weaker
than opacity while preserving its spirit).

The third contribution of the paper is a protocol that implements an instance of the virtual world consis-
tency condition (the one where committed transactions have to be serializable). Interestingly enough, this
protocol uncouples the serialization time and the commit time of every transaction (thereby providing addi-
tional flexibility that can allow more transactions to commit). From a theoretical point of view, it would be
interesting to know if such an uncoupling is possible or impossible for the protocols that implement opacity.
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A A variant

Aim This section presents a variant of the algorithm described in Figure 4 where a transaction T that
commits is not required to be serialized at its min dateT date. This allows transactions that would have
been aborted with the base algorithm to commit. This is obtained at the price of a more involved algorithm.

The modification The modified algorithm is presented in Figure 6. The operations beginT (), X.readT ()
and X.writeT (v) are identical (they are kept on the figure for completeness). Only the algorithm asso-
ciated with the operation try to commitT () has to be modified. Its code relies heavily on the value of
MAX DATET = +∞. More precisely, we have the following.

• MAX DATET = +∞.
In that case, the transaction T is committed without any other test (MAX DATET = +∞means that
no value read by T has been overwritten). T is then serialized using the current value of CLOCK as
ser dateT (lines 16-19, similarly to lines 22-25 in the base algorithm; as shown by line 19, we then
have ser dateT = commit dateT − 1).

• MAX DATET 6= +∞.
In that case, min dateT and MAX DATET are updated according to the transactions in SEQ. As
far as the serialization time if T is concerned, we have the following.

– T has to be serialized before any transaction T ′ such that T has read the value of an object before
T ′ overwrote it. MAX DATET is then updated accordingly (line 22).

– T has to be serialized after any transaction T ′ such that T writes an object whose value has been
read or written by T ′; min dateT is then updated accordingly (line 23).

Then, if T ’s time window becomes empty, T is aborted (line 25). Otherwise, T is committed (lines
26-29, again similarly to lines 22-25 in the base algorithm).
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operation begin
T
():

(01) min dateT ← last commit datei ; MAX DATET ← +∞.
===========================================================================
operation X.readT ():
(02) if (there is no local copy of X) then
(03) allocate local space lc(X) for a copy;
(04) lock X; lc(X)← X; RSX ← RSX ∪ {T}; unlock X;
(05) lrsT ← lrsT ∪ {X};
(06) min dateT ← max(min dateT , lc(X).date);
(07) if (min dateT > MAX DATET ) then return(abort) end if
(08) end if;
(09) return (lc(X).value).
===========================================================================
operation X.writeT (v):
(10) if (there is no local copy of X) then allocate local space lc(X) for a copy end if;
(11) lc(X).value← v;
(12) lwsT ← lwsT ∪ {X};
(13) return (ok).
===========================================================================
operation try to commit

T
():

(14) lock all the objects in lrsT ∪ lwsT ; lock the lock protecting SEQ and CLOCK ;
(15) if MAX DATET = +∞ then
(16) for each T ′ ∈ ∪X∈lwsT

RSX do MAX DATET ← min(MAX DATET ′ ,CLOCK ) end for;
(17) CLOCK ← CLOCK + 1; commit dateT ← CLOCK ;
(18) for each X ∈ lwsT do X ← (lc(X).value , commit dateT ); RSX ← ∅ end for;
(19) SEQ ← SEQ · < commit dateT − 1, lrsT , lwsT , commit dateT >

(20) else
(21) for each < ser date , rs, ws, c date > ∈ SEQ such that min dateT < c date do
(22) if (ws ∩ lrsT 6= ∅) then MAX DATET ← min(MAX DATET , ser date − 1) end if;
(23) if ((rs ∪ ws) ∩ lwsT 6= ∅) then min dateT ← max(min dateT , ser date) end if
(24) end for;
(25) if (min dateT > MAX DATET ) then release all the locks; return(abort ) end if;
(26) for each T ′ ∈ ∪X∈lwsT

RSX do MAX DATET ← min(MAX DATET ′ ,CLOCK ) end for;
(27) CLOCK ← CLOCK + 1; commit dateT ← CLOCK ;
(28) for each X ∈ lwsT do X ← (lc(X).value , commit dateT ); RSX ← ∅ end for;
(29) SEQ ← SEQ · < min dateT , lrsT , lwsT , commit dateT >

(30) end if;
(31) last commit datei ← commit dateT ;
(32) release all the locks;
(33) return(commitT ).

Figure 6: A variant that commits more transactions
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