
HAL Id: hal-00350215
https://hal.archives-ouvertes.fr/hal-00350215

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSL Paradigm for Domains of Services: A Study of
Communication Services
Charles Consel, Laurent Réveillère

To cite this version:
Charles Consel, Laurent Réveillère. A DSL Paradigm for Domains of Services: A Study of Commu-
nication Services. Domain-Specific Program Generation, Springer Verlag, pp.165-179, 2004, Lecture
Notes in Computer Science, State-of-the-Art Survey. �hal-00350215�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50201536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00350215
https://hal.archives-ouvertes.fr


A DSL Paradigm for Domains of Services:
A Study of Communication Services

Charles Consel and Laurent Réveillère

INRIA – LaBRI
ENSEIRB – 1, avenue du docteur Albert Schweitzer

Domaine universitaire - BP 99
F-33402 Talence Cedex, France
{consel,reveillere}@labri.fr

Home page: http://compose.labri.fr

Abstract. The domain of services for mobile communication terminals
has long become a fast-moving target. Indeed, this domain has been
affected by a continuous stream of technological advances on aspects
ranging from physical infrastructures to mobile terminals. As a result,
services for this domain are known to be very unpredictable and volatile.
This situation is even worse when considering services relying heavily on
multimedia activities (e.g., games, audio and/or video messages, etc.).
Such an application area is very sensitive to a large variety of aspects
such as terminal capabilities (graphics, CPU, etc.), bandwidth, service
provider’s billing policies, QoS, and user expectations.

To address these issues, we present a paradigm based on domain-specific
languages (DSLs) that enables networking and telecommunication ex-
perts to quickly develop robust communication services. Importantly, we
propose implementation strategies to enable this paradigm to be sup-
ported by existing software infrastructures.

Our DSL paradigm is uniformly used to develop a platform for com-
munication services, named Nova. This platform addresses various do-
mains of services including telephony services, e-mail processing, remote-
document processing, stream processing, and HTTP resource adaption.

1 Introduction

Recent technological advances in physical infrastructures and terminals make it
possible to offer a vast variety of communication services. In particular, many
wireless technologies, like GPRS, UMTS, 802.11 and Bluetooth, ensure sufficient
bandwidth for multimedia applications dealing with audio and video streams [1,
2]. Furthermore, handheld computers are getting smaller and smaller and are
beginning to offer performance competing with low-end PCs in terms of graphi-
cal capabilities and computing power. Also, handheld computers and telephone
terminals are converging, as suggested by the number of applications they both
offer (schedules, address books, note books, etc.). These trends should rapidly
turn these two devices into one.



2

In fact, looking at the future of telecommunications, the question is no longer
when customers will have a communication terminal with enough bandwidth to
run multimedia applications. As reported by several major telecommunication
players [3], this situation will occur in the near future with UMTS terminals, or
comparable technologies. Rather, the critical question is: What services should
a communication terminal offer?

Not only is this question not answered today, but, as in any emerging area,
the needs and expectations of customers are unpredictable and volatile.

Services are unpredictable because communication terminals offer possibilities
that average customers do not actually grasp. In fact, the logic that dictates the
dynamics of the market is not based on technical considerations. For example,
SMS-based services represent a rather unexpected booming sector considering
that typing messages on the primitive keyboard of a GSM phone is a notoriously
laborious process. Yet, SMS messages have proved to be a lasting fad generating
sizable revenues.

Services are volatile because the capabilities of communication terminals enable
an endless set of potential services; to a large extent, human creativity is the
limit in creating new services! As a consequence, offering a fixed set of services is
a limiting factor to the dissemination of the technology. In fact, like services for
Intelligent Networks, time-to-market will surely be a key competitive advantage
when tracking customer needs for new services.

Unpredictability and volatility make the supply of new services vital. In the
context of telecommunications, the platform owners should not constrain third-
party service providers. Instead, they should encourage them to participate in
the service creation process so as to increase and diversify the supply of new
services. Currently, platforms are often closed to potential service providers be-
cause conventional models rely on controlling the market from the platform to
the end-users. Beyond economical reasons, platform openness is prohibited be-
cause it compromises the robustness of the platform.

Our Approach

To address the key issues of service creation, we introduce a paradigm based on
domain-specific languages (DSLs). A DSL is developed for a domain of services.
It provides networking and telecommunication experts with dedicated syntax
and semantics to quickly develop robust variations of services within a particu-
lar domain. Because of a critical need for standardization, the networking and
telecommunication area critically relies on a protocol specification to define a
domain of services. Our approach aims to introduce variations in a domain of
services without requiring changes to the protocol. Furthermore, the DSL is re-
stricted so as to control the programmability of variations. Finally, we describe
how the most common software architecture of the networking and telecommu-
nication area, namely the client-server model, can be extended to support our
DSL paradigm.



3

We use our DSL paradigm to develop the Nova platform that consists of dif-
ferent domains of services, namely, telephony services, e-mail processing, remote-
document processing, stream and HTTP resource adapters. A DSL has been
developed for each domain of services; the definition of this domain of services
is itself derived from a specific protocol.

To illustrate our presentation, we consider services dedicated to access mail-
boxes remotely. Such services allow an end-user to access messages stored on a
remote server. In fact, there are many ways in which these services can be real-
ized. One domain of services is defined by the Internet Message Access Protocol
(IMAP) [4, 5]. We show that variations need to be introduced in this domain of
services to adapt to a variety of user requirements. We develop a DSL to enable
service variation to be introduced without compromising the robustness of the
e-mail server.

Overview

Section 2 identifies the key requirements of a platform for communication ser-
vices. Section 3 describes how to introduce and control programmability in such
a platform. Section 4 presents strategies to introduce programmability in the
client-server model. Section 5 shows how it scales up to a complete platform for
communication services. Section 6 discusses lessons learned during the develop-
ment of Nova. Section 7 gives concluding remarks.

2 Requirements

In this section, we present the key requirements that a platform should fulfill to
successfully address the rapidly evolving domain of communication services.

Openness. Most families of services are bound to evolve, often rapidly and
unpredictably in emerging domains such as multimedia communications. To ad-
dress this key issue, a platform for communication services has to be open. This
openness should enable a wide variety of services to be easily introduced. In fact,
each community of users ought to be offered specific services, applications and
ways of communicating that reflect their interests, cultural backgrounds, social
codes, etc.

Robustness. An open platform for communication services is destined to be
shared and fueled by as many service providers as possible. As in the context
of software providers, service providers can either be companies, or individuals
devoted to some community, as illustrated by the development effort of Linux.
Like software, new services can only spread without restrictions if safety and
security are guaranteed. For example, in the context of telephony services, a
buggy or malicious call-processing service may crash (or compromise) the entire
underlying signaling platform.



4

Composability. When developing a software system, a programmer typically
delegates some treatments to specific software components. Similarly, when de-
veloping a sophisticated service, one would want to combine some sub-families
of services. As a consequence, different services should not interfere and should
be able to be combined and used intensively without degrading the performance
of the platform.

Scalability. Our target platform should be scalable with respect to various
aspects. It should be open enough to cover most emerging user needs; its robust-
ness should be demonstrated in the context of a sizable community of service
providers, and address the critical properties of each domain of services; finally,
the platform should offer appropriate support for a wide range of communication
services.

3 The DSL Paradigm

In this section, we present the main aspects of our DSL paradigm, starting from
a protocol and ending with a DSL.

3.1 From a Protocol to a Domain of Services

A protocol goes beyond the definition of the rules and conventions used by a
server and a client to interact. A protocol is the outcome of a careful analysis
of a domain of services. It introduces the fundamental abstractions of a target
domain of services in the form of requests. These abstractions are parameterized
with respect to specific client data. These parameters and the server responses
suggest key data types for the domain of services. Examining a protocol to
determine its domain of services is a valuable approach because communication
services in networking and telecommunications are systematically based on a
protocol.

For example, the Internet Message Access Protocol (IMAP) defines a domain
of services for remote access to mailboxes [4, 5]. This domain of services aims to
provide a user with access to messages stored on a remote server.

A protocol for communication services is traditionally implemented as a
client-server architecture, typically over a network of machines. A client sends a
request to the server to access a specific service. The server processes incoming
requests and sends responses back to the corresponding clients. A protocol is
detailed enough to allow a client to be implemented independently of a given
server. In fact, a client commonly corresponds to different implementations so as
to provide various subsets of the domain of services. These variations enable the
client to adapt to specific constraints or user preferences. In contrast, although
there usually exists different implementations of a server, these implementations
tend to cover the entire domain of services.

In the IMAP case, there exists various client implementations that support
the IMAP protocol, ranging from simple e-mail reading tools targeted toward



5

embedded systems (e.g., Althea [6]) to integrated Internet environments (e.g.,
Microsoft Outlook [7] and Netscape Messenger [8]) for workstations.

3.2 Variations of a Domain of Services

A given protocol may correspond to a variety of client and server implemen-
tations to account for customer needs. Although these implementations offer
service variations on either a client or the server side, they must all be in
compliance with the underlying protocol to make the client-server interaction
possible. As such, these implementations can be viewed as a program family;
that is, programs that share enough characteristics to be studied and developed
as a whole [9]. Commonalities mainly correspond to the processing of the re-
quests/responses that have formats and assumptions specified by the protocol.
Variabilities on the server side consist of defining different semantics for client
requests. On the client side, variabilities correspond to implementing different
treatments for server responses.

In the IMAP case, our goal is to identify variations characterizing a scope of
customized accesses to a mailbox. We explore these variations systematically by
considering the various levels involved in accessing a mailbox, namely, an access-
point, a mailbox, a message, and its fields (i.e., message headers and message
parts). At each level of this hierarchical schema, we study what programmability
could be introduced with respect to the requests of the IMAP protocol. We refer
to the programmability of each level as a view.

This hierarchical approach to views enables user preferences to be defined
comprehensively: from general coarse-grained parameters, such as the terminal
features, to the specific layout of a message field. A view at a given level may
treat a message field as an atomic entity, e.g., deciding whether to drop it. At
another level, a view may trigger specific treatments for parts of a message field.

3.3 From Variations of a Domain of Services to a DSL

Enabling service variations to be introduced in a protocol relies on the ability to
easily and safely express a variation. To this end, we propose to use DSLs as a
programming paradigm. This kind of languages has been successfully developed
and used in a wide spectrum of areas [10].

Many approaches, such as family analysis, have been developed to drive the
design of a DSL with respect to a specific program family [11, 12, 9, 13]. These
approaches aim to discover both commonalities and variations within a program
family to fuel the design process of a DSL. A step toward a methodology for
DSL development has been presented by Consel and Marlet [14]. Recently, this
approach has been revisited to structure the development of DSLs on the notion
of program family [15].

In the context of the IMAP case, we have designed a DSL, named Pems,
that enables a client to define views on remote mailboxes, specifying how to
adapt mailbox access to constraints or preferences like device capabilities and



6

available bandwidth. For example, one can filter out messages with respect to
some criteria to minimize the length of the summary of new messages received.

view accesspoint PDA {
Mobility = YES;
Screen = 320 * 240;
Color = NO;
Bandwidth = 10MB/s;
Mailbox_view = nomadic(1MB);

}

view mailbox nomadic(size s) {
if (From == "joe@mail.fr")

bind boss;
if (Size > s)

ignore;
bind tiny;

}

view message boss {
From as cst("The Boss!");
Date;
Subject;
Body;
Attachment[] as bwImages(30KB);

}

view field Attachment bwImages(size s) {
if (Attachment.size > s)

return "Attachment too big:" +
Attachment.size;

if (Attachment.type in "image/.*")
return blackwhite(Attachment.value);

ignore;
}

Fig. 1. Pems example

As illustrated by the example shown in Figure 1, the Pems language makes it
possible to define views at four different levels: access-point, mailbox, message,
and message field. An access-point consists of a set of parameters such as the
client terminal features, the characteristics of the link layer, and a mailbox view.
A mailbox view aims to select the messages that belong to the view. It consists
of a list of condition-action pairs. When a condition matches, the corresponding
action is performed. An action can either drop the current message or assign it a
category of messages for its processing. The message view defines a set of fields,
relevant to the client, for a given category of messages. Also, a view may be
assigned to some fields to trigger specific treatments. Finally, the field view aims
to convert field values into some representation appropriate to the access-point.

The IMAP example illustrates how our DSL paradigm makes a protocol
open to variations to cope with user needs. Thanks to the abstractions and no-
tations provided by Pems, one can easily write customized services for accessing
a mailbox. Moreover, various verifications can be performed on a service be-
fore its deployment to preserve the robustness of the underlying platform. In
the IMAP case, the Pems compiler checks various program properties such as
non-interference, resource usage, and confidentiality.

4 A Software Architecture to Support Programmability

Now that service variations can be introduced without changing the protocol, we
need to study a software architecture that can support the programming of these
variations. Because most protocols for communication services are implemented
using a client-server model, we propose to examine strategies aimed to introduce



7

programmability in this model. These adaptations of an existing software archi-
tecture should demonstrate that our DSL paradigm is a pragmatic approach to
introducing service variations. In fact, each of these strategies has been used in
Nova as illustrated later in this section and in Section 5.

Although adaptations could either be done on the client side or the server
side, we concentrate on the latter to relieve the client terminal from adaptation
processing and the network from unnecessary data.

4.1 Script-Enabled Server

Scripting languages are commonly used to introduce variations on the server
side. Scripts (e.g., CGI scripts [16]) can be parameterized with respect to some
client data. However, this strategy is limited because scripting languages are
often unrestricted, and thus, only the server administrator can introduce service
variations. Such a limitation clearly contradicts our openness requirement.

One strategy to map our DSL paradigm into a script-enabled server is to
compile a DSL program into a script, as proposed by the Bigwig project in the
domain of Web services [17]. This strategy has two main advantages: it makes
programmability more widely accessible without sacrificing robustness, and it
allows the existing support for programmability to be re-used. Of course, not
all servers are combined with a scripting language; and, even if they are, the
purpose of this language may not coincide with the service variations that need
to be addressed.

The script-enabled server approach has been used in Nova to introduce pro-
grammability in the domain of telephony services as described in Section 5.1.

4.2 Proxy Server

An alternative approach to defining service variations consists of introducing a
proxy server that runs client programs and invokes the unchanged server. Client
programs are written in a scripting language or a general-purpose language. Ro-
bustness of the platform is guaranteed by the physical separation of the server
and the proxy: they run on different machines. This approach still has a number
of drawbacks. First, it consumes bandwidth for communications between the
proxy and the server. Second, it requires very tight control of resource consump-
tion (e.g., CPU and memory) to prevent one script from interfering with others.
Third, a buggy script can compromise the server by overflowing it with requests.

Our DSL paradigm could also be beneficial in the context of proxy servers.
The idea is to have the proxy run DSL programs, as opposed to running programs
written in an arbitrary language. Because the DSL programs are safe, the proxy
can even run on the same machine as the one hosting the server, and thus
eliminate network latency.

As described in Section 5.3, the HTTP resource adapters of Nova rely on the
proxy server approach to introducing programmability.



8

4.3 Programmable Server

To further integrate programmability in the server, we proposed to directly make
the server programmable [18]. To do so, our strategy consists of enabling the se-
mantics of a request to be, to some extent, definable. The processing of a request
can be seen as parameterized with respect to a service variation that takes the
form of a DSL program. The DSL restrictions guarantee that service variations
do not compromise server robustness. Also, in contrast with a proxy-based ap-
proach, this tight integration of service variations in the server minimizes per-
formance overhead.

We have modified the implementation of an existing IMAP server to make
it programmable. A client can introduce its own service variations in the form
of a Pems program. This DSL program is deployed and run in the server, after
being checked.

The implementation of Pems is traditional: it consists of a compiler and a
run-time system. The compiler is a program generator that takes a Pems program
and performs a number of verifications to fulfill the robustness requirements on
both the server and client sides. The Pems program is then translated into C
code. Finally, this C code is compiled and loaded into the server when needed.

An original IMAP server [19] has been made programmable so that code
can be dynamically loaded to extend its functionalities. Yet, binding a service
implementation to a particular context is a remaining key issue. Indeed, it is
orthogonal to the software architecture used to support programmability. This
issue is detailed elsewhere [18].

5 The Nova Platform

To assess our approach, we have used the DSL paradigm to develop a pro-
grammable platform for communication services, named Nova. It consists of a
programmable server and a DSL for each target application domain. Five appli-
cation domains are currently covered by Nova: e-mail processing, remote docu-
ment processing, telephony services, streams, and HTTP resource adapters. Let
us briefly present these different application areas.

5.1 Call Processing

Telephony services are executed over a signaling platform based on the Ses-
sion Initiation Protocol (SIP). We have designed a dialect of C to program call
processing services, named Call/C. In contrast with a prior language, called
CPL [20], our DSL is a full-fledged programming language based on familiar syn-
tax and semantics. Yet, it conforms with the features and requirements of a call
processing language as listed in the RFC 2824 [21]. In fact, our DSL goes even
further because it introduces domain-specific types and constructs that allow
verifications beyond the reach of both CPL and general-purpose languages. The
example shown in Figure 2 illustrates the use of the Call/C language to program



9

a call forwarding service. This service is introduced by defining a behavior for
the incoming request1 of the SIP protocol. When a call is received, the incoming
entry point is invoked with information about the caller. In this call forwarding
service, the incoming call is redirected to sip:dana@labri.fr. If this redirection
is itself redirected, then the location of the new call target is analyzed. If the lo-
cation is not a voice-mail address, then the redirection is performed. Otherwise,
the call is redirected to the callee’s voice-mail sip:john@voicemail.labri.fr.

response incoming(call in) {
response res = forward(in, sip:dana@labri.fr);
switch(res.kind) {

case redirect:
if (! match(res.contact, ".*@voicemail.*") {

return forward(in, res.contact);
}

default:
return forward(in, sip:john@voicemail.labri.fr);

}
}

Fig. 2. Call/C example

The script-enabled server approach is commonly used for programming tele-
phony services in a SIP-based signaling platform. Examples include SIP CGI,
SIP servlets and Microsoft’s proprietary SIP programming API.

Being a high-level domain-specific language for telephony services, Call/C
is not biased towards any particular signaling platform or telephony service
programming model. This neutrality renders Call/C retargetable in that it may
generate code for different programming layers and scripting languages.

Our current implementation of the Call/C language in Nova targets two very
different programming layers, namely SIP CGI, with C as a scripting language,
and SIP Servlets.

5.2 Remote Document Processing

Accessing a document stored on a remote server may involve various processing
before getting the document in a format appropriate for a specific sink (i.e., a
local machine or a device). The target format could depend on a variety of param-
eters, such as the capabilities of the access-point and the available bandwidth. To
address these issues, we have developed a simple protocol for remote-document
processing, named RDP, and a language aimed to define both conversion rules
and sinks for documents, called RDPL.

The RDP server facilitates the process of converting documents into forms
in which they are required (for example, a 1024x786 jpeg image with 32-bit color
to a 160x200 image with 256 colors suitable for a PDA). Besides, RDP enables

1 Strictly speaking, a call is initiated with the request Invite of the SIP protocol.



10

the server to redirect documents to specific sinks (for example, a PDF file may
be redirected to a printer, or a fax machine).

An RDPL program specifies two main parts, as illustrated by the example
presented in Figure 3. The first part is a list of sinks and a definition of their
capabilities (e.g., overleaf printing in the case of a printer). The second part is a
filter graph that defines the intermediate steps and the filters used for the format
conversion of a document. Filters can be combined to perform a wide range of
transformations.

SINK printer1 {
Help "Printer on the 1st floor";
Interface printer1_spooler;
Capa Overleaf bool;
Help Overleaf "Print retro/verso?";
Capa Priority integer;
Help Priority "0: Normal 1: High";
Format ps;
Spool /var/spool/documentqueue;

}

Formats {
ps, txt, mp3, jpg, gif, png, ogg, pdf, wav;

}

Filters {
txt ps enscript;
txt mp3 txt2mp3;
jpg gif convert;
jpg png convert;
gif png convert;
gif jpg convert;
wav mp3 lame;
mp3 wav mp3play_wrapper;
wav ogg oggencode;
ogg wav oggplay_wrapper;

}

Fig. 3. RDPL example

5.3 HTTP Resource Adaptation

More and more devices are being used to access HTTP resources (e.g., PDAs,
cell phones, and laptops). Such devices have different capabilities in terms of
memory, computation power, graphic rendering, link layer, etc. In addition to
classical HTML pages, HTTP resources may also include sound, image, and
video. We have designed and developed a language, called Hades, for specifying
the adaptation of HTTP resources to the features of a target access-point.

The example shown in Figure 4 illustrates the use of Hades. It specifies that
video content must be removed and that images are to be replaced by a link to
an image converted into gray-scale jpeg format.



11

accesspoint PDA {
Mobility = YES;
Screen = 320 * 240;
Color = NO;
Bandwidth = 10MB/s;

image {
changeFormat("JPEG");
grayscale();

}

html {
image {

externalize ("[IMAGE]");
}

video {
remove();

}
}

}

Fig. 4. Hades example

The ICAP protocol [22] was designed to facilitate better distribution and
caching for the Web. It distributes Internet-based content from the origin servers,
via proxy caches (ICAP clients), to dedicated ICAP servers. These ICAP servers
focus on specific value-added services such as access control, authentication, lan-
guage translation, content filtering, and virus scanning. Moreover, ICAP enables
adaptation of content in such a way that it becomes suitable for other less pow-
erful devices such as PDAs and mobile phones.

Our implementation of the Hades language relies on the ICAP protocol. We
have developed a compiler that takes an Hades program and generates code to
be loaded in an ICAP server. The Squid Web proxy is used as an ICAP client
to enable the HTTP resource adaptation specified by the Hades program.

5.4 Stream Processing

The last application area covered by Nova is stream adaptation. We have de-
veloped a language to specify multimedia stream processing, named Spidle [23].
This language is used to program a server that adapts a stream to particular
features of a target access-point.

filter RPE_Encoding {
interface {

stream inout bit[40][16] e;
stream out bit[13][3] xMc;
stream out bit[1][6] xmaxc;
stream out bit[1][2] Mc;

}
instantiate {

merger Padding pad;
filter Weighting w;
filter RPE_Grid_Selection gs;
filter APCM_Quantization q;
filter APCM_Inverse_Quantization iq;
filter RPE_Grid_Positioning gp;

}

[...]

[...]

map {
e -> pad.si;
pad.so -> w.e;
w.x -> gs.x;
gs.xM -> q.xM;
gs.Mc -> gp.Mc;
gs.Mc -> Mc;
q.man -> iq.mant;
q.exp -> iq.exp;
q.xMc -> iq.xMc;
q.xMc -> xMc;
q.xmaxc -> xmaxc;
iq.xMp -> gp.xMp;
gp.ep -> e;

}
}

Fig. 5. Spidle example



12

The example shown in Figure 5 consists of a Spidle program that defines a
network of stream tasks. Flow declarations specify how stream items flow within
stream tasks (i.e., graph nodes) and across stream tasks (i.e., graph edges), as
well as the types of these stream items.

A stream task can either be a connector or a filter. Connectors represent
common patterns of value propagation. Filters correspond to transducers; they
can either be primitive or compound. A primitive filter refers to an operation
implemented in some other programming language. This facility enables exist-
ing filter libraries to be re-used. A compound filter is defined as a composition
of stream filters and connectors. This composition is achieved by mapping the
output stream of a task to the input stream of another task.

6 Assessment

In this section, we review the lessons learned from our experience in developing
Nova. We provide some insights obtained from the study of the different domains
of services supported by Nova. Some performance and robustness aspects are
discussed and related to existing works. Finally, we address some of the issues
raised by the introduction of domain-specific languages.

6.1 Introducing Programmability

The most favorable situation to introduce programmability is when a server is al-
ready programmable via a scripting language. A DSL can then simply be viewed
as a high-level abstraction of an existing programming layer. This layer is used
as the target of the DSL compiler, as shown in the case of Call/C. However,the
compilation approach is only possible, if the target layer fulfills the program-
ming requirements needed to express the desired service variations. Otherwise,
a proxy-based approach can be used. This approach is interesting because, fol-
lowing the case of the scripting language, it does not entail changes in the origin
server. This approach has been successfully used to write adaptations of HTTP
resources in Hades. However, a proxy-based strategy is limited in that some
functionalities require to directly manipulate the server state. Furthermore, in-
troducing a proxy incurs either a CPU overhead, if the proxy runs on the server
machine, or a network overhead, if the proxy runs on a remote machine. In the
former case, an additional process is needed to adapt requests and responses,
and computations may be wasted, if data are produced by the origin server but
pruned by the proxy. In the latter case, communications between the server and
the proxy generate network traffic that may increase latency. These potential
problems motivate a third approach to introducing programmability: modifying
the server to make it programmable. Beyond collapsing a server and a proxy, this
approach enables programmability to reach potentially all of the functionalities
of the server. Furthermore, experience shows that it does not incur significant
overhead in terms of execution time, and does not introduce any network over-
head, as discussed by the authors [18].



13

As can be observed, the DSL paradigm to programming servers is flexible
and can adapt to existing infrastructures with techniques ranging from compiler
retargetting to parameterization of server functionalities.

6.2 Performance

Traditional compilation techniques are applicable to DSLs. In fact, it has been
shown that DSL features can enable drastic optimizations, beyond the reach of
general-purpose languages [24].

In the IMAP case, we have conducted some experiments to assess the perfor-
mance and bandwidth usage of the programmable server approach. The results
of these experiments show that no significant performance overhead is introduced
in the programmable IMAP server, compared to its original version [18]. In the
Call/C example, we showed that DSL invariants enabled many target-specific
optimizations when generating code for a given programming layer [25].

6.3 Robustness

Our approach assumes that service developers may not be trusted by the owner
of the server. Furthermore, when the domains of services involve ordinary users,
as in the case of Nova, the developer may not be an experienced programmer.
As a consequence, the DSL should guarantee specific properties so as to both
preserve the integrity of the server and prevent a faulty service to corrupt or
destroy user data. Notice that, most of these requirements would not be achiev-
able in the context of general-purpose languages because of their unrestricted
expressiveness [14].

In the application area of stream processing, Consel et al. [23] showed that
the degree of robustness of a Spidle program goes beyond what can be achieved
with an equivalent program written in a general-purpose language. For example,
stream declarations are checked to guarantee that the composition of stream
procedures are compatible with respect to both their types and the flowing
direction of stream items.

6.4 Cost of DSL Introduction

Let us now present the key issues raised by using DSLs as a paradigm to address
domains of communication services.

Cost of DSL invention. In our approach, a DSL is developed for each target
domain of services. This systematic language invention introduces a cost in terms
of domain analysis, language design and implementation. Traditionally, domain
analysis and language design require significant efforts. In contrast, our approach
relies on a key existing component: a protocol in the target domain. This protocol
paves the way for the domain analysis by exposing the fundamental abstractions.
It also suggests variations in the domain of services, feeding the language design
process.



14

Learning overhead. Some effort is usually required for learning a new language.
However, unlike a general-purpose language, a DSL uses domain-specific nota-
tions and constructs rather than inventing new ones. This situation increases the
ability for domain experts to quickly adopt and use the language [14].

Programming interface. The five DSLs currently included in Nova have a textual
representation and a C-like syntax. Yet, writing programs in these DSLs can use
other representations. For example, one could use an existing framework such
as XML to reduce the learning curve for users familiar with these notations.
Also, textual forms could be abstracted by visual forms. That is, a DSL may
have a graphical representation and be supported by an appropriate graphic-
user interface. For example, we have developed a graphical front-end for the
development of Spidle programs.

7 Conclusions and Future Work

Communication services are well-known to be very unpredictable and volatile. To
cope with features, we propose a paradigm based on domain-specific languages.
This paradigm enables networking and telecommunication experts to quickly
develop variations for a domain of services defined by a protocol. We have used
this paradigm to uniformly develop a programmable platform for communica-
tion services, named Nova. Our paradigm relies on the client-server architecture
to support a protocol, as is usual for communication services. We proposed var-
ious strategies to introduce programmability in this software architecture. The
dedicated nature of the DSL enables critical properties to be checked on DSL
programs so as to ensure the robustness of the underlying server.

Nova is currently targeted at five application areas, namely, telephony, e-mail,
remote document processing, stream processing, and HTTP resource adaptation.
This preliminary work suggests that our approach scales up in terms of applica-
tion areas that it can cover. Moreover, the DSL approach has shown to be very
effective for making properties, critical to a domain, verifiable by design of the
language.

We have started studying the composability of our approach. The study has
been conducted in the context of the programmable IMAP server. This server
has been combined with the RDP server to transform message fields (typically
attached documents) to a format that fits the capabilities of a device. These
preliminary studies showed that composing programmable servers does not raise
any difficulties. In fact, this is not surprising since the client-server architecture
has long proved that it is composable. And, in essence, our approach just adds
a setup phase to deploy a DSL program in the server. Once the deployment is
done, the server behaves as usual, processing requests and sending responses.

Acknowledgment

This work has been partly supported by the Conseil Régional d’Auquitaine under
Contract 20030204003A.



15

References

1. Ghribi, B., Logrippo, L.: Understanding GPRS: the GSM packet radio service.
Computer Networks (Amsterdam, Netherlands: 1999) 34 (2000) 763–779

2. Mock, M., Nett, E., Schemmer, S.: Efficient reliable real-time group communication
for wireless local area networks. In Hlavicka, J., Maehle, E., Pataricza, A., eds.:
Dependable Computing - EDCC-3. Volume 1667 of Lecture Notes in Computer
Science., Springer-Verlag (1999) 380

3. O’Mahony, D.: Umts: The fusion of fixed and mobile networking. IEEE Internet
Computing 2 (1998) 49–56

4. IETF: Internet Message Access Protocol (IMAP) - version 4rev1 (1996) Request
for Comments 2060.

5. Mullet, D., Mullet, K.: Managing IMAP. O’REILLY (2000)

6. Althea: An IMAP e-mail client for X Windows. http://althea.sourceforge.net
(2002)

7. Microsoft: Microsoft Outlook. http://www.microsoft.com/outlook (2003)

8. Netscape: Netscape Messenger. http://wp.netscape.com (2003)

9. Parnas, D.: On the design and development of program families. IEEE Transactions
on Software Engineering 2 (1976) 1–9

10. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices 35 (2000) 26–36

11. McCain, R.: Reusable software component construction: A product-oriented
paradigm. In: Proceedings of the 5th AiAA/ACM/NASA/IEEE Computers in
Aerospace Conference, Long Beach, California (1985)

12. Neighbors, J.: Software Construction Using Components. PhD thesis, University
of California, Irvine (1980)

13. Weiss, D.: Family-oriented abstraction specification and translation: the FAST
process. In: Proceedings of the 11th Annual Conference on Computer Assurance
(COMPASS), Gaithersburg, Maryland, IEEE Press, Piscataway, NJ (1996) 14–22

14. Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. In Palamidessi, C., Glaser, H., Meinke, K., eds.: Proceedings of the
10th International Symposium on Programming Language Implementation and
Logic Programming. Volume 1490 of Lecture Notes in Computer Science., Pisa,
Italy (1998) 170–194

15. Consel, C.: From a program family to a domain-specific language (2004) In this
volume.

16. IETF: The WWW common gateway interface version 1.1. http://cgi-
spec.golux.com/ncsa (1999) Work in progress.

17. Brabrand, C., Møller, A., Schwartzbach, M.I.: The <bigwig> project. ACM Trans-
actions on Internet Technology 2 (2002)

18. Consel, C., Réveillère, L.: A programmable client-server model: Robust extensi-
bility via dsls. In: Proceedings of the 18th IEEE International Conference on Au-
tomated Software Engineering (ASE 2003), Montréal, Canada, IEEE Computer
Society Press (2003) 70–79

19. University of Washington: Imap server. ftp://ftp.cac.washington.edu/imap/ (2004)

20. Rosenberg, J., Lennox, J., Schulzrinne, H.: Programming internet telephony ser-
vices. IEEE Network Magazine 13 (1999) 42–49

21. IETF: Call processing language framework and requirements (2000) Request for
Comments 2824.



16

22. IETF: Internet content adaptation protocol (icap) (2003) Request for Comments
3507.

23. Consel, C., Hamdi, H., Réveillère, L., Singaravelu, L., Yu, H., Pu, C.: Spidle: A DSL
approach to specifying streaming application. In: Second International Conference
on Generative Programming and Component Engineering, Erfurt, Germany (2003)

24. Eide, E., Frei, K., Ford, B., Lepreau, J., Lindstrom, G.: Flick: A flexible, opti-
mizing IDL compiler. In: Proceedings of the ACM SIGPLAN ’97 Conference on
Programming Language Design and Implementation, Las Vegas, NV, USA (1997)
44–56

25. Brabrand, C., Consel, C.: Call/c: A domain-specific language for robust internet
telephony services. Research Report RR-1275-03, LaBRI, Bordeaux, France (2003)


