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Abstract— This paper proposes a real-time, robust and efficient
3D model-based tracking algorithm. A non linear minimization
approach is used to register 2D and 3D cues for monocu-
lar 3D tracking. The integration of texture information in a
more classical non-linear edge-based pose computation highly
increases the reliability of more conventional edge-based 3D
tracker. Robustness is enforced by integrating a M-estimator
into the minimization process via an iteratively re-weighted least
squares implementation. The method presented in this paper
has been validated on several video sequences as well as in
visual servoing experiments considering various objects. Results
show the method to be robust to large motions and textured
environments.

I. INTRODUCTION

This paper addresses the problem of robust real-time model-
based tracking of 3D objects by integrating texture information
in an edge-based process. This fundamental vision problem has
applications in many domains such as, but not restricted to,
robotics, industrial applications, medical imaging, augmented
reality,. . . Most of the available tracking techniques can be
divided into two main classes: feature-based and model-based.
The former approach focuses on tracking 2D features such as
geometrical primitives (points, segments, circles,. . . ), object
contours [13], regions of interest [10]. . . The latter explicitly
uses a model of the tracked objects. This can be a CAD
model [2], [3], [5], [6], [16], [18] or a 2D template of the
object. This second class of methods usually provides a more
robust solution. Indeed, the main advantage of the model-
based methods is that the knowledge about the scene (the
implicit 3D information) allows improvement of robustness
and performance.

Classically, the problem is solved using registration tech-
niques that allow alignment of 2D image data and a 3D model.
Relying only on edge information provides good results when
tracking sharp edges even if there are illumination changes.
However, it can lead to jittering and even to erroneous pose
estimation if the environment or the object is highly textured.

Texture information is widely used to track an object in an
image sequence. Contrarily to edge-based trackers, it is well
adapted to textured objects and does usually not suffer from
jittering. However, this solution is not appropriate for poorly
textured objects and is mainly exploited in 2D tracking, such as
the KLT algorithm [25] or region of interest tracking [9], [15],
[1]. Points or regions of interest can also be used within a 3D
model-based tracking as reported in [14], [27]. Nevertheless
these approach may become inappropriate on poorly textured
objects. Furthermore they usually lack of precision if scale
changes.

As one can note, model-based trackers can be mainly
divided in two groups, the edge-based ones and the textured-
based one. Both have complementary advantages and draw-
backs. The idea is then to integrate both approaches in the
same process.

The most classical approached to consider multiple cues in
a tracking process are probabilistic techniques. Most of these
approaches rely on the well known Kalman filter, its non-
linear version the extended Kalman filter (EKF) [17], [26].
Let note that some methods rely on a particle filtering as [13]
or PMHT [23]. Although these approaches are appealing and
widely used, there exists other approaches that does not rely on
probabilistic framework and though the objectives are similar,
the theoretical aspect are very different and can hardly be com-
pared. In [27] the proposed model-based approach considers
both 2D-3D matching against a keyframe as in a classical
model-based approach but considering multiple hypothesises
for the edge tracking and 2D-2D temporal matching. The work
of [21] extend the tracker of [14] to integrates contour infor-
mation. Motion and edges may be used together to improve
tracking results as in [8], [20]. The texture information has
also been exploited in [24] to find the projected contour of a
3D object.

The framework presented in this paper also fuses a classical
model-based approach based on the edge extraction [4] and
a temporal matching relying on the texture analysis [9] in
a similar manner as done in [22] for 2D tracking. Indeed,
estimating both pose and camera displacement introduces an
implicit spatio-temporal constraint the simple model-based
tracker lacks of. The merging is however handled in a different
way than in [27] or [21] and does not require points of interest
extraction in each image. In this paper, pose and camera
displacement computation is formulated in terms of a full
scale non-linear optimization. This general framework is used
to create an image feature based system which is capable of
treating complex scenes in real-time. To improve robustness,
a robust estimation based on M-estimator [12] is integrated in
a robust control law.

In the remainder of this paper, Section II presents the
principle of the approach and the Section III how to perform
a camera pose or displacement estimation. The details of the
integration of the camera displacement estimation in the pose
computation process are given in Section IV. In order to
validate this approach the tracker is tested on several realistic
image sequences as well as input to a 2 1/2 D visual servoing
experiments.
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II. MODEL-BASED TRACKING BY A NON-LINEAR
MINIMIZATION

The fundamental principle of the proposed approach is to
integrate a camera displacement estimation based on the tex-
ture information in a more classical camera pose computation
process that relies on edge-based features. This is achieved by
minimizing a non-linear criterion. This Section is dedicated to
the description of this general framework.

The approach consists of estimating the real camera pose
cMo or displacement by minimizing the error ∆ between
the observed data s∗ and the current value s of the same
features computed using the model according to the current
pose/displacement:

∆ =

N∑

i=1

ρ
(
si(r) − s∗i

)2
, (1)

where ρ(u) is a robust function [12] introduced in the objective
function in order to reduce the sensitivity to outliers (M-
estimation) and r is a vector-based representation of the pose
cMo.

Iteratively Re-weighted Least Squares (IRLS) is a common
method of applying the M-estimator. It converts the M-
estimation problem into an equivalent weighted least-squares
problem. The error to be regulated to 0 is then defined as:

e = D(s(r) − s∗), (2)

where D is a diagonal weighting matrix given by D =
diag(w1, . . . , wk). The weights wi reflect the confidence in
each feature and their computation is based on M-estimators
and is described in [3], [5].

A virtual camera, defined by its position r in the object
frame, can be virtually moved in order to minimize this error.
At convergence the position of the virtual camera will be
aligned with the real camera pose. This can be achieved by
considering a simple control law given by:

v = −λ(D̂L̂s)
+D

(
s(r) − s∗

)
, (3)

where v is the velocity screw of the virtual camera and Ls

is the interaction matrix or image Jacobian related to s and
defined such as ṡ = Lsv. Rodrigues’ formula is then used to
map the velocity vector v to its corresponding instantaneous
displacement allowing the pose to be updated. To apply the
update to the displacement between the object and camera, the
exponential map is applied using homogeneous matrices cMo

that describe the pose resulting in:

cM
t+1
o = cM

t
o ev (4)

where t denotes the number of iteration of the minimization
process.

Depending on the nature of the features, this approach can
solve a pose computation problem or a camera displacement
one. Combining both approaches allows to introduce a spatio-
temporal constraint in the pose estimation by considering
information in the current and past images and the underlying

multi-view geometrical constraints. The next Section is dedi-
cated to the choice of visual features and to their role in the
proposed method.

III. FEATURES CHOICE: HYBRID TRACKER

Any kind of features can be considered within the proposed
control law as soon as it is possible to compute its corre-
sponding interaction matrix Ls. The combination of different
features is achieved by adding features to vector s and by
“stacking” each feature’s corresponding interaction matrix into
a large interaction matrix of size nd× 6 where n corresponds
to the number of features and d their dimension:


ṡ1

...
ṡn


 =




Ls1
...

Lsn


v (5)

The redundancy yields a more accurate result with the com-
putation of the pseudo-inverse of Ls as given in (3).

The first Subsection is dedicated to the edge-based fea-
tures used in a classical pose computation. The following
one presents the texture-based features for the displacement
estimation.

A. Edge-based features for a pose computation

The use of edge-based features enables to perform a pose
computation as in a classical model-based tracker [3], [5],
[18]. To illustrate the principle, consider the case of an object
with various 3D features oP (for instance, oP are the 3D
coordinates of these features in the object frame). The ap-
proach consists of estimating the real pose by minimizing the
following error ∆ between the observed data s∗ (the position
of a set of features in the image in the pose computation case)
and the position s of the same features computed by forward-
projection according to the current pose:

∆ =

N∑

i=1

ρ
(
prξ(r,

o Pi) − s∗i
)2

, (6)

where prξ(r,
o P) is the projection model according to the

intrinsic parameters ξ and camera pose r. At convergence, the
virtual camera reaches the pose r̂ which minimizes the error
∆ (r̂ will be the real camera’s pose).

In the case of an edge-based model-based tracker, this
framework allows to deal with different kinds of geometrical
features and the derivation of the corresponding interaction
matrices (or Jacobian) can be found in [3], [5], [18]. In
this paper, we consider features corresponding to a distance
between the forward-projection of the contours of a CAD
model and local point features obtained from a 1D search
along the normal to the contour. In this case the desired
values of these distances are equal to zero. The assumption
is made that the contours of the object in the image can be
described as piecewise linear segments. All distances are then
treated according to their corresponding segment. This process
is described in [4].

The edge-based model-based tracker corresponds to a clas-
sical method for pose computation. It is fast, efficient, robust



to illumination changes. However, it is mainly a mono image
process which leads to some issues. If the geometrical features
can not be accurately extracted without any ambiguity, the
tracker may lack of precision. As a consequence, it may be
sensitive to the texture of the object or the background and
prone to jittering.

B. Texture-based features for a camera displacement compu-
tation

The idea is then to introduce in the tracker a spatio-temporal
constraint in order to correct the drawbacks of the edge-based
tracker presented in the previous paragraph. This is achieved
by a camera displacement estimation based on the image
intensity matching between two images and incorporated in
the same framework.

Assuming two images 1 and 2, our goal will be to estimate
the camera pose 2Mo considering the pose in the previous im-
age 1Mo. Since 2Mo = 2M1

1Mo updating the displacement
2M1 is equivalent to update the pose 2Mo as long as the pose
is known in the first image.

Whereas for pose estimation the goal is to minimize the
error between the features observed in the image and their
forward projection onto the image plane, for camera displace-
ment estimation the idea is to minimize the error between
the grey level value at the location position (p1) in the first
image I1 and the one observed in the second image I2 at
the location of the corresponding features transfered from I1

in the I2 through a 2D transformation 2tr1 which relies on
the camera displacement 2M1 and the geometrical multi-view
constraints. For such features, equation (1) is then given by:

∆ =
N∑

i=1

ρ
(
I1(p1i

) − I2(
2tr1(p1i

))
)2

, (7)

where N is the number of considered pixels. At convergence,
the virtual camera has realized the displacement 2̂M1 which
minimizes this error. The details (the 2D transformation, the
interaction matrix,...) are presented in the next Section.

Such a process enables the integration of the texture-based
features for the camera displacement estimation in the control
law used for the pose computation process following (5).

IV. INTEGRATING THE CAMERA DISPLACEMENT
ESTIMATION IN THE POSE COMPUTATION

This Section presents the details of the integration of the
displacement estimation in the pose computation process. The
resulting algorithm is from now called the hybrid tracker. The
points to be investigated are the 2D transformation and the
interaction matrix associated to (7). The texture model and
details about data processing are also given.

A. Point transfer

The geometry of a multi-view system (or of a moving
camera) introduce very strong constraints in feature location
in the different view. In the general case, the point transfer
can be achieved considering the epipolar geometry and the
essential or fundamental matrices (see, for example, [11]). In

this paper we restrict ourselves to the less general case where
point transfer can be achieved using an homography. Since
any kind of 3D motion must be considered, this means that
the texture lies on a plane in the 3D space. In that case, a
point p1 in image I1 expressed in homogeneous coordinates
p1 = (1u,1 v,1 w), is transfered in image I2 as a point p2 by:

p2 = 2tr1(p1) = αK−1 2H1Kp1, (8)

where K is the intrinsic camera parameters matrix and 2H1

is an homography (defined up to scale factor α) that defines
the transformation in meter coordinates between the images
acquired by the camera at pose 1 and 2. Once a camera
displacement is generated, the homography 2H1 is given by:

2H1 = (2R1 +
2t1

1d
1n>), (9)

where 1n and 1d are the normal and distance to the origin of
the reference plane expressed in camera 1 frame. 2R1 and
2t1 are respectively the rotation matrix and the translation
vector between the two camera frames. We finally get p2 =
2tr1(p1) = (2u,2 v,2 w) that is used for the next iteration of
the minimization process.

B. Interaction matrix

The interaction matrix LI(p2) is the interaction matrix that
links the variation of the grey level value to the camera motion.
It is given by [9]:

LI(p2) =
∂I(p2)

∂r
= ∇xI

>

2 (p2)
∂p2

∂r
, (10)

where ∇xI2(y) is the spatial image gradient of the image I2

at the location y and ∂p2

∂r
= Lp2

is the interaction matrix of
an image point expressed in pixel coordinates. Lp2

is given
by :

Lp2
=

(
fx 0
0 fy

)
.

(
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z (1 + y2) −xy −x

)

(11)
fx and fy are the focal ratio of the camera and (x, y) denotes
the meter coordinates of the image point p2 whose pixel loca-
tion in the image is given by (

2u
2w

,
2v
2w

). The depth information
Z is computed at each iteration: 1/Z =

1d−2t1
> 1n

(2R1
1n)> [x,y,1]>

.

C. The object model

The displacement estimation has been presented for two
images I1 and I2. In practice, I2 is the current image for which
the camera pose has to be estimated and I1 is a reference
image of the tracked plane. There is a reference image for
each plane πi with texture to track on the object. The model
of the object is then composed of the CAD model for the
edge-based part of the tracker and the reference images for the
texture-based one. A pose computation is performed for each
reference image using the edge-based model-based tracker to
get the plane parameters with respect to the camera frame
needed in (9) and the depth computation.



D. Outlier detection

Since grey level is sampled on Harris points, a small camera
motion with respect to the object can lead to a large image
intensity change. To avoid the systematic elimination of the
most interesting points of the pattern, it is classical (as in ro-
bust motion estimation algorithm) to perform a normalization
of the vector ∆ which is used to compute the weight wi of
the matrix D. This normalization is given by:

∆′ =
(
. . . ,

I1(p1i
) − I2(

2tr1(p1i
))

‖ ∇I1(p1i
) ‖

, . . .
)

(12)

Furthermore, the global illumination in the reference images
may be different when the tracking is performed. To enforce
the M-estimation process, the grey level mean of a reference
image is adapted when the associated plane becomes visible.

E. Merging edge-based and texture-based information

As already said, any kind of features can be considered
within the proposed framework using (5). If both edge-based
and texture-based features and their associated interaction
matrices are stacked as in our hybrid tracker, a scaling [7]
must be performed to take into account the different unit of the
considered cue (meter and pixel intensity). Indeed, the error
associated with a texture point (grey level value) and the one
associated with the edge locations (point-to-contour distance)
are of a different order of magnitude. Therefore, the set of
the errors associated with an edge-based feature (resp. a grey
level value) is normalized such as these values belong to the
interval [−1; 1].

V. EXPERIMENTS AND RESULTS

This Section presents some tracking results where our hy-
brid tracker is compared to the edge-based one and the texture-
based one. These two latter trackers use in the minimization
process only the kind of feature associated with. The three
first experiments are show object tracking in video sequences.
In the fourth experiment tracking is performed during a
positioning task by visual servoing. Thanks to the rejection
of the outliers, the output of the hybrid tracker is at least as
good as the output of the best single-cue tracker.

In all the reported experiments, the edge locations and
texture points used in the minimization process are displayed
in the first image (blue crosses for the grey level sample
locations and red crosses for the edge locations). In the next
images, only the forward-projection of the model for a given
pose is displayed in green.

A. Rice box sequence

In the considered image sequence, tracking the rice box is a
very complex task since the object achieve a complete rotation.
If the tracking begins to drift, it may be difficult to rectify
the error since the features to be tracked change. The object
contours are permanently partially occluded by the hands or
hardly visible: the edge-based tracker ends to lose the object
(see Figure 4a). The texture-based tracker also fails to track
the object quite quickly (see Figure 4b). However the hybrid
tracker enables to track the object correctly (see Figure 4c).

The camera pose parameters evolution is shown in Figure 1a
and the evolution of the number of grey level samples used
in the control law per face in Figure 1b. These curves are
quite smooth and the output of the tracking is not prone to
jittering. Let us note that the object being hand-held, the output
can not be perfectly regular. Figure 1c shows an example
of specularities the tracker has to deal with. The grey level
samples in the concerned area are considered as outliers by
the M-estimators. 240 points are tracked in each case, the
hybrid tracker runs at an average frame rate of 25 Hz (see
Figure 1d).
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Fig. 1. Rice box sequence. (a) camera pose parameters, (b) evolution of the
number of grey level samples per face used in the control. The hybrid approach
succeeds a tracking without jittering, which is illustrated by the smoothness of
these curves. (c): example of specularity. The outliers are displayed in green
and the inliers in blue for the grey level samples or red for the edge locations.
(d): evolution of the time tracking

B. Cylinder sequence

Tracking texture on plane does not restrict this approach to
boxes tracking: the new object to track is a cylinder. This is
also a quite difficult test since there are misleading edges for
the edge-based tracker that fails quickly (see Figure 5a). Even
if there is only one plane, the texture-based tracker is quite
robust (see Figure 5b). However, as its accuracy depends on
the pose computed for the reference image, it is less accurate
than the hybrid one (see Figure 5c). In this latter case, the
edge helps the tracker to better fit the object. Let us note that
the texture is required in this experiment to estimate correctly
the 6 parameters of the pose. Indeed, when using only the
edge-based features in the tracking process of a cylinder, the
rotation along the cylinder axis is not taken into account. Let
us note that tracking is achieved at 30Hz.

C. Visual servoing experiment

The hybrid tracker has been used successfully in 2 1/2 D
visual servoing experiments [19]. Figure 6 presents an example
of such an application. A desired position of the object in
the image is given and the camera mounted on a 6 d.o.f
robot moves from an initial position to the desired one by



minimizing the error between the desired position of the object
in the image (red box) and the current one (green box). The
precision of the tracking is a key point of the success or failure
of such a task. Only the hybrid tracker succeeds to track the
object and achieve an accurate position
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Fig. 2. Visual servoing experiment using the hybrid algorithm. (a) Evolution
of the camera velocity (mm/s and deg/s) (b) Evolution of the error.

pose tx ty tz rx ry rz

desired 560.9 507.9 110.1 10.7 42.9 0.0
obtained 553.6 506.0 107.7 10.2 42.8 0.9

Fig. 3. Visual servoing experiment using the hybrid algorithm. Desired
camera pose and the obtained one. tx, ty and tz are the position parameters
in millimeters and rx, ry and rz are the orientation parameters in degrees.

In Figure 2(a), the evolution of the camera velocity is given
and Figure 2(b) shows the task error decreasing. This leads to
a precise positioning: the desired pose and the obtained one
are given in Figure 3. The error in the positioning is below
1 centimeter for the position parameters and 1 degree for the
orientation ones.

VI. CONCLUSION AND PERSPECTIVES
From two classical model-based trackers, a new hybrid one

has been built, exploiting both edge extraction and texture
information to obtain a more robust and accurate pose com-
putation. The integration of the texture-based camera motion
estimation in the edge-based camera pose estimation process
enables a robust and real-time tracking. M-estimators are
added in the tracking process to enforce the robustness of the
algorithm to occlusions, shadows, specularities and misleading
backgrounds. The effectiveness of the proposed approach has
been tested on various image sequence and within visual
servoing positioning tasks.

We are now interested in extending this spatio-temporal
tracking to texture lying on non-planar structures to track a
wider range of objects. As any improvement in the treatment
of a kind of feature in the tracking process leads also to a
better hybrid tracker, we also study a multi-scale model of the
textured plane to enforce the robustness to scale changes.
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Fig. 4. Rice box sequence. Images for (a): the edge-based tracker, (b): the texture-based one, (c): the hybrid one. Only the hybrid tracker succeeds to track
correctly the object all along the sequence, despite the specularities and the misleading environment. The grey level samples are represented in the first image
by blue crosses and the edge location by red points.
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Fig. 5. Cylinder sequence. Images for (a): the edge-based tracker, (b): the texture-based one, (c): the hybrid one. The hybrid tracker is the better one, despite
the specularities and the misleading environment. For the initial images, the grey level samples are represented by blue crosses and the edge location by red
points if an edge is detected or a black one otherwise

(a) (b) (c) (d)

Fig. 6. Visual servoing experiment, (a) Initial image. Final images for (b): the edge-based tracker, (c): the texture-based one, (d): the hybrid one. The desired
(resp current) position of the object in the image is given by the red (resp green) drawing. Only the hybrid tracker succeeds to track the object and achieve a
accurate positioning.


