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Abstract 

 
This paper presents the work performed in the context 
of the VIMANCO ESA project. It has the objective of 
improving the autonomy, safety and robustness of 
robotics system using vision. The approach we propose 
is based on an up-to-date recognition and 3D tracking 
method that allows to determine if a known object is 
visible on only one image, to compute its pose and to 
track it in real time along the image sequence acquired 
by the camera, even in the presence of varying lighting 
conditions, partial occlusions, and aspects changes. 
The robustness of the proposed method has been 
achieved by combining an efficient low level image 
processing step, statistical techniques to take into 
account potential outliers, and a formulation of the 
registration step as a closed loop minimization scheme. 
This approach is valid if only one camera observes the 
object, but can also be applied to a multi-cameras 
system. Finally, this approach provides all the 
necessary data for the manipulation of non cooperative 
objects using the general formalism of visual servoing, 
which is a closed loop control scheme on visual data 
expressed either in the image, or in 3D, or even in both 
spaces simultaneously. This formalism can be applied 
whatever the vision sensor configuration (one or 
several cameras) with respect to the robot arms (eye-
in-hand or eye-to-hand systems). The global approach 
has been integrated and validated in the Eurobot 
testbed located at ESTEC. 
 
 

2. Background, Objectives and Overall 
Approach 
 

Future Space Automation and Robotics applications 
require the use of vision to perform their calibration 
and the required precise interactions with the 
environment. Consequently, vision is compulsory to 
increase the autonomy of the space robotics agents. 

The VIMANCO activity is mainly targeted to 
EUROBOT, whose purpose is to prepare and assist 
EVAs on the International Space Station. A typical 
scenario for the EUROBOT is to place an APFR 
(Adjustable Portable Foot Restraint) at given locations 
on the ISS. This involves walking on the handrails and 
inserting the APFR into a specific fixture called a WIF. 
In this context, vision is an enabling technology both 
for the autonomy and the safety of EUROBOT: 
� First, although the positions of the handrails and 

fixtures are well known, there will be some 
inaccuracy in the placement of the robot, 
increasing with movements. Vision processing of 
images would allow the EUROBOT to know the 
precise positions of the objects to grasp and where 
to insert or place them. This is a prerequisite to 
perform the grasping or insertion task itself. 

� Second, object recognition would provide the 
EUROBOT with the ability to check the 
environment with respect to its a priori knowledge 
and detect discrepancies. Extending this concept, it 
would allow the EUROBOT to “know” position of 
astronauts with respect to itself, representing very 



valuable information for advanced safety 
functionalities. 

The European Robotic Arm (ERA) already 
performs insertion tasks using vision, however, it 
requires a specific visual target to process the position 
of the objects to grasp. In the case of the EUROBOT, it 
is not possible to put a target on every single object. 
Vision has therefore to cope with non-cooperative 
objects, i.e. objects that are not equipped with optical 
markers. 

The use of vision in space has to tackle several 
specific problems and in particular the extreme light 
difference in images. This means that direct sunlight 
makes objects appear very bright while shadows are 
totally dark. Vision algorithms must be very robust in 
coping with effect of shadows moving in the imaged 
scene to allow safe and stable manipulation at anytime. 
Another major space problem is lack of computing 
power for processing images. Resource (i.e. energy, 
volume, mass) and environmental constraints (i.e. 
thermal dissipation, radiation compatibility) limit 
performance of computers that may be used in space. 

In this framework, the main objectives of the 
VIMANCO activity are first, to define a Vision System 
Architecture applicable to EUROBOT taking into 
account the characteristics of the EUROBOT 
environment and the applicability of the vision 
techniques to the EUROBOT operations, second to 
implement a Vision Software Library allowing Vision 
Control for Space Robots and finally to breadboard the 
specific HW/SW and to demonstrate it on the ESTEC 
EUROBOT testbed.  

 

 
Figure 1: For Vision Based Manipulation of a non-
cooperative object three steps are required: Object 
Recognition, Object Tracking and Visual Servoing 

 

 

 

  

   

 
Figure 2: VIMANCO system architecture 

 
To meet the Vision Control objectives, various steps 

are then required: first the object of interest has to be 
detected and recognized in the image acquired by the 
camera. This recognition step must also provide a 
coarse localization of the object in both 2D and 3D 
with respect to the camera. Usually this recognition 
step is time consuming and the result of the localization 
is not precise enough to be considered for controlling 
the robot. Therefore we propose to consider a tracking 
process. Once the object is known, it is possible to 
track it, over frames and at video rate, using 3D model-
based tracking algorithms. These algorithms can use a 
unique camera but can also consider stereo with small 
or wide baseline. Finally the output of this algorithm 
(precise 2D and 3D localization) can be used to control 
the movement of the robot according to a predefined 
task. We now describe the three different steps. 

Figure 2 illustrates the global VIMANCO system 
design. It is composed by:  
� The Vision System. It consists of a stereo pair of 

cameras attached on a mechanical support and two 
independent cameras. The stereo camera and each 
of the two independent cameras dispose an 
illumination device. 

� The Vision System Simulator. It is a 3D graphic 
tool used to reconstruct the robotic system and its 
environment to produce virtual images. It 
simulates as faithful as possible the Vision System 
mounted on the targeted robotic system.  

� The Vision Processing and Object Recognition 
Library. It implements all functionality needed for 
Object Recognition, Object Tracking and Visual 
Servoing. It provides also the means to control 
their execution and to communicate with the other 
systems.  



� The A&R Simulator. It replaces the robot 
controller functionality that is needed to validate 
and demonstrate the whole approach. In real 
operations the A&R Simulator is replaced by the 
corresponding A&R Controller.  

� The Control Station. It provides the HMIs that 
allow the operator to run the VIMANCO 
simulations. It allows activating Actions/Tasks on 
the A&R Simulator, to configure, monitor and 
control the Vision System Simulator and to 
visualize the acquired images.  

 

3. Object Recognition 
 

The goal of Object recognition is, as clearly stated 
in the name, the art of finding back specific objects 
when seen in new situations or different images. It is a 
subject that has been studied in computer vision since 
its early days (about fifty years ago). Most systems in 
those days worked rather ad-hoc on simplified objects 
such as polygons and polyhedrons. The research 
community has come a long way since then. In general 
the task of recognizing an object is made difficult 
because of the possible variability of the camera’s 
internal parameters, its position and orientation, the 
illumination conditions and even the constellation of 
the visible objects. 

In the VIMANCO activity Object Recognition has 
been designed and implemented as follows:  
� During the mission preparation phase, the off-line 

training performed in which the objects to be 
recognized are modeled using features and their 
corresponding feature descriptors and 3D 
coordinates 

� During operations, the on-line object recognition is 
based on the same procedure of feature extraction 
and description and an additional feature matching 
and verification step. 

During the off-line training the Object Recognition 
component describes the objects to be recognized using 
local invariant features. A specific application with a 
HMI front-end is employed for this. The algorithm and 
corresponding data flow of this application are shown 
in Figure 3. 

 
Figure 3: Object Recognition: Off-line training 

 
Figure 4: On-line Object Recognition 

 
The input to the system consists of images of the object 
to be modelled. For every image a set of features is 
extracted first, using the Feature Extraction component. 
These will typically be affine invariant or rotation-scale 
invariant features like MSER, IBR, SIFT or SURF 
regions. When these features are extracted, a feature 
descriptor can be computed for each of them. The 
Feature Description component is used to this end. The 
output consists of a feature descriptor for each feature, 
containing the description of this feature. 
In order to initialize the camera pose for Object 
Tracking, 3D-2D correspondences will be computed 
later. These can be used to compute the camera pose 
w.r.t. the object. Since feature matching is performed in 
the images, we need to assign 3D coordinates to every 
feature. We do so using a specifically dedicated 
graphical tool to Assign 3D-Coordinates. 
As depicted in Figure 3, the data-flow between the 3 
components of the off-line training step is 
straightforward. An image of the object is the only 
input of the system. The location of the features is an 
extra input for the description phase. In order to 
compute the 3D coordinates of the features, a 
(simplified) 3D model of the object is needed as well. 
During real operation, the system needs to identify 
objects in the image or certify their presence. This is 
the goal of the object recognition phase, implemented 
in the Object Recognition activity. The data flow 
diagram of this activity is shown in Figure 4. We 
recognize the first two components of this phase. The 
Feature Extraction and Feature Description 
components are identical to those in the off-line 
training phase. Indeed, the first step in recognizing an 
object in an image consists of locating features in this 
image and describing these features using the same 
algorithm as before. The newly found feature 
descriptors can then be matched to the feature 
descriptors of the objects in the database. This is done 
in the Feature Matching component. The result of this 



component consists of matches between features, i.e. 
2D-2D correspondences. These results can contain 
mismatches, while other (correct) matches might have 
been missed. This can be ameliorated by the 
Verification component, which will output its result in 
the form of matches between 3D coordinates (found by 
the Assign 3D Coordinates component in the pre-
processing phase) and 2D coordinates (of the features 
extracted in the target image. These 3D-2D 
correspondences can be used to compute an 
initialization of the camera pose w.r.t. the object. 
The data flow is clear from Figure 4. Features and 
feature descriptors are extracted from the target image 
and are matched to the model features, i.e. the features 
extracted in the model images during the off-line 
training phase. The resulting 2D-2D correspondences 
are checked in the verification step to yield 3D-2D 
correspondences. 
 

4. Object Tracking 
 

Elaboration of object tracking algorithms in image 
sequences is an important issue for applications related 
to robot vision based control or  visual servoing and 
more generally for robot vision. A robust extraction 
and real-time spatio-temporal tracking process of visual 
cue is indeed one of the keys to success of a visual 
servoing task. To consider visual servoing this spatial 
robotics context, it is fundamental to handle “natural” 
scenes without any fiducial markers but with complex 
and non cooperative objects in various illumination 
conditions. The goal of object tracking is then to 
determine the position in every image acquired by a 
camera of particular object (which has been previously 
recognized). This position may be defined in the image 
space (we then have a 2D tracking algorithm) or in 3D 
with respect to the camera or to a world frame (we then 
have a 3D tracking algorithm). Note that when a 3D 
localization is available, then the 2D position is also 
available.  

In our work 3D model-based tracking is used since 
it is usually more robust and it is then more suitable for 
the considered application. Furthermore such algorithm 
provides both 2D and 3D localization of the tracked 
object and it is then very suitable for any kind of 
vision-based control algorithms. 

In particular, the Object Tracking component allows 
the localisation, at video rate, of a given object, by 
using for each frame one (or more) current image(s) of 
this object acquired by one (or more) camera(s), a 
CAD model of the considered object and its previous 
localisation. The pose estimation is based on the robust 
virtual visual servoing technique in which the visual 

features are the distances between the object contour 
and the current set of extracted points. In practice, a 
virtual camera is moved from the previously 
determined pose to a pose where the projected contour 
of the object matches the set of extracted points. At 
convergence, the current pose of the camera gives the 
pose of the object. 

The used control law is very similar to the one used 
in the Visual Servoing component, excepted that a 
robust estimator is directly included into the control 
law in order to correctly reject potential outliers and to 
estimate the pose of the tracked object with a good 
precision. 

Figure 5 illustrates the block diagram of the Object 
Tracking algorithm.  

 
Figure 5: Object Tracking component 

 

5. Visual Servoing 
 

Basically, vision-based robot control or visual 
servoing techniques consist in using the data provided 
by one or several cameras in order to control the 
motions of a dynamic system. Such systems are usually 
robot arms, or mobile robots, but can also be virtual 
robots, or even a virtual camera. A large variety of 
positioning tasks, or mobile target tracking, can be 
implemented by controlling from one to all the n 
degrees of freedom of the system. Whatever the sensor 
configuration, which can vary from one on-board 
camera on the robot end-effector to several free-
standing cameras, a set of k measurements has to be 
selected at best, allowing controlling the m degrees of 
freedom desired. A control law has also to be designed 
so that these measurements s(t) reach a desired 
value s*, defining a correct realization of the task. A 
desired trajectory s*(t) can also be tracked. The control 
principle is thus to regulate to zero the error vector s(t)-
s*(t) . With a vision sensor providing 2D 
measurements, potential visual features are numerous, 
since as well 2D data (coordinates of feature points in 
the image, moments, ...) as 3D data provided by a  
localization algorithm exploiting the extracted 2D 
features can be considered. It is also possible to 



combine 2D and 3D visual features to take the 
advantages of each approach while avoiding their 
respective drawbacks. Figure 6 illustrates the block 
diagram of the Visual Servoing algorithm. 

If the task is specified as a 3D displacement in the 
robot end-effector frame (called after the hand), or as a 
pose between the hand or the camera and the observed 
object, an accurate calibration of the camera and of the 
eye-hand pose has to be performed, so that the task can 
be expressed as an accurate pose to reach between the 
camera and the object. 

A coarse camera and eye-hand calibration is 
sufficient in the case where the task is specified as a 
particular position of the object in the image. In 
practice, this can be obtained using an off-line teaching 
by showing step where the end-effector is moved once 
at its desired position with respect to the object and the 
corresponding image is stored. In that case, the data 
extracted from the vision sensor will be biased due to 
the calibration errors, but the robustness of the visual 
servoing with respect to calibration errors will allow to 
move accurately the arm so that the final image 
corresponds to the desired one, ensuring a correct 
realization of the task. 

 

 
Figure 6: Visual Servoing component 

 

6. The Vision System 
 

The Vision System supports the characterisation of 
the object-recognition and the visual servoing 
algorithms developed in this activity. Since the system 
is meant as a tool for EUROBOT, the Vision System 
mimics the EUROBOT setup. 

We consider a camera-setup as shown in Figure 7: a 
stereo pair of digital cameras attached on a mechanical 
support and two independent digital cameras to be 
attached to the end effector of two of the EUROBOT 
testbed arms. In order to match as perfectly as possible 
the ideal illumination characteristics of the cameras, the 
stereo pair and each independent camera will be 
provided with an individually regulated illumination 
sub-system, consisting of hallogen head-lights.  

 
Figure 7: The VIMANCO arm camera vision system 

 
7. Vision System Simulator 
 

The development and the validation of the vision 
algorithms that implement the previous objectives 
requires images at each new robot position as input and 
a robot to execute the required control output. 
Disposing such a hardware configuration for the 
development and the first tuning of the algorithms is 
impracticable since very time consuming: a vision 
simulator that provides the possibility first to produce 
realistic virtual images from a synthetic environment 
and second to control a simulated robot in this 
environment has been developed and integrated for 
testing and tuning the vision algorithms.  

 

 
Figure 8: The VIMANCO Vision System Simulator HMI  

 
In particular the VIMANCO Vision System Simulator 
provides the means (see Figure 8 and Figure 9):  
� To model in 3D the elements of a robotised cell. It 

includes the robots and payloads to be manipulated 
and the models of vision sensors (cameras and 
stereo head). Images quality parameters associated 
to a camera are adjustable, e.g. noise, distortion, 
glare for testing in various conditions. Lighting 
sources associated to cameras but also celestial 
objects (the sun and the moon) are modelled as 
well. 



� To specify the ambient conditions allowing to 
consider and to adjust direct sunlight intensity and 
direction, ambient light and surface reflexivity 
characteristics.  

� To control the movement of a robot, and so of the 
attached cameras, based on external inputs. 

� To provide realistic images to external systems in 
real-time compatible with the temporal constraints 
imposed by the application of vision based control 
to move a robot. 

 

 
Figure 9: User selected cameras views may be 

displayed in parallel with the robotic cell free view 
 

The main visualisation technologies and tools used 
for the Vision Simulator include material and 
compositor scripting, advanced scene manager, meshes 
support, resources manager and XML loaders to ease 
the configuration.  

The Material Scripting component is used to declare 
and maintain material assets outside the Vision System 
Simulator source code. Each material has a unique 
name and can be assigned to any surface in the scene 
when it is modelled using an offline tool (i.e. 3D Studio 
Max). In the rendering loop the Vision System 
Simulator parses the material script attached to each 
polygon and executes the instructions given in it to 
determine the final surface properties. Material 
scripting supports:  
� Vertex and fragment programs (shaders), both 

low-level programs written in assembler, and high-
level programs written in Cg, DirectX9 HLSL, or 
GLSL and provides automatic support for many 
commonly bound constant parameters like 
worldview matrices, light state information, object 
space eye position etc. 

� The complete range of fixed function operations 
such as multi-texture and multi-pass blending, 
texture coordinate generation and modification, 
independent color and alpha operations for non-

programmable hardware or for lower cost 
materials. 

� Multiple pass effects, with pass iteration if 
required for the closest 'n' lights. 

� Multiple material techniques with automatic 
fallback in case the best technique is unsupported 
by the used hardware. 

� Material LOD. 
� Load textures from PNG, JPEG, TGA, BMP or 

DDS files, including unusual formats like 1D 
textures, volumetric textures, cubemaps and 
compressed textures (DXT/S3TC)  

The Scene Manager component is in charge of the 
contents of the scene which is to be rendered. It is 
responsible for organising the contents using whatever 
technique it deems best, for creating and managing all 
the cameras, movable objects, lights and materials 
(surface properties of objects), and for managing the 
'world geometry' which is the sprawling static geometry 
usually used to represent the immovable parts of a 
scene. Scene manager features include: 
� Highly customisable, flexible scene management 

not tied to any single scene type.  
� Hierarchical scene graph; nodes allow objects to 

be attached to each other and follow each others 
movements, articulated structures etc. 

� Multiple shadow rendering techniques, both 
modulative and additive techniques, stencil and 
texture based, each highly configurable and taking 
full advantage of any hardware acceleration 
available. 

� Scene querying features 
 

  
Figure 10: a) Cast shadows off all lights, spotlight 

power 1.4 b) Cast shadows on the spot light 
 
9. Experimental results 
 

The performance of the Object Recognition, the 
Object Tracking and the Visual Servoing have been 
extensively tested using a classical 6-axis robot at 
IRISA-INRIA Rennes ([6]) and the Eurobot testbed 
located at ESTEC (see Figure 11) with respect to 
different camera positions, illumination conditions and 
occlusions. We present here after the results on two 
objects: a mockup of the Articulated Portable Foot 
Restraint (APFR) and a mockup of a handrail.  



 
Figure 11: The Eurobot testbed at ESTEC 

 
Figure 12 presents model images of the APFR used 

to train the Object Recognition system. These images 
have been taken from one position but with different 
illumination conditions.  
 

  
 

  
Figure 12: Object Recognition: model images taken from the 

same position with different illumination conditions 
 
Figure 13 shows the modeling process with one of 
these images. SURF features are found and described 
in the image. The 3D coordinates of these features are 
computed by registering a 3D model of the object with 
the current viewpoint and reading out the Z-buffer. 
When features are computed for all model images, 
these features are combined into a single image, shown 
in Figure 14. 
 

 
Figure 13: The process of modeling an image, using SURF 
features and registration of a 3D model to compute the 3D 

coordinates of the features 

 
Figure 14: One model image holds the combination of all 

features, computed from all illumination conditions. 
 
During experiments, at different initial robot positions 
images where taken from a substantially different 
viewpoint and different illumination conditions (see 
Figure 15).  
 

 
 

 
 

 
 

 
 

Figure 15: Images taken from different viewpoints with 
different illumination conditions 

 
It should be noted that the employed SURF features 
are, while fast to extract and describe, only invariant 
under rotation and scale changes. The substantial out-
of-plane rotation that can be seen in the images is 
mathematically not covered by the features but, the 
experiments showed that a reasonable amount of 
robustness of the features still allows the images to be 
matched.  
For the first three images of Figure 15 the object 
position has been computed with a sufficient precision 
to allow the initialization of the Object Tracking/Visual 
Servoing. We used the combined model image to 
match against. In the employed strategy, matches are 
searched between model and target image and then 
only the matches are kept that are consistent with the 
3D model of the object. This consistency is computed 
with a camera-RANSAC algorithm that computes the 
pose of the camera as well. Figure 16 shows the inliers 



to the RANSAC algorithm for the second image. The 
resulting pose is illustrated in Figure 17.  
 

 
Figure 16: Inliers of the camera-RANSAC for the second 

image using relative matching 
 

  
Figure 17: Original image and virtually rendered image 

computed by the camera-RANSAC algorithm 
 
The computation of the position of the APFR in the 
fourth image of Figure 15 was not possible because the 
object is overexposed due to the reflection of the metal.  
 
Object Tracking and Visual Servoing are tested 
performing five positioning tasks toward the same 
desired position under different initial positions and 
illumination conditions. For each positioning task we 
repeated the positioning five times in order to check 
experiment repeatability. Measurements are provided 
using the INRIA Afma Robot which precision is 0.1cm 
for translation and 0.5 degree in rotation.  
This robot is able to provide the position of the camera 
in the robot reference frame that is given by the 
homogeneous matrix cMf .  
Accuracy measurements are then handled in two step:  
� Measurement of the desired camera 3D position 

cdMf . 
� Measurement of the camera final position cMf 
� The accuracy is then given by cdMc  = cdMf  

fMc  = 
cdMf  

cMf
-1.cdMc actually measures the position of 

the final camera position with respect to the 
desired one.  

The results of two experiments are illustrated hereafter: 
 

 Tx Ty Tz Rx Ry Rz 
init 0.389 0.147 0.4427 0.4032 0.4493 0.116 
Exp1 -0.0018 0.001 -0.0004 0.003 0.007 -0.002 
Exp2 -0.0021 0.000 0.0002 0.002 0.007 -0.003 
Exp3 -0.0018 0.001 -7.2e-06 0.004 0.007 -0.002 
Exp4 -0.0016 0.0008 -5.6e-07 0.002 0.006 -0.002 
Exp5 -0.0022 0.0010 -1.8e-05 0.003 0.008 -0.003 

 

Initial Image Final Image 

  
 
 

 Tx Ty Tz Rx Ry Rz 
init 0.4647 0.12104  0.5001 0.403 0.449 0.116 
Exp1 -0.0122 -0.0248 0.0032 -0.088 0.045 -0.012 
Exp2 -0.0077 -0.0079 0.0037 -0.023 0.025 -0.009 
Exp3 -0.0099 -0.0073 0.0038 -0.020 0.033 -0.011 
Exp4 -0.0090 -0.0059 0.0034 -0.017 0.031 -0.010 
Exp5 -0.0104 -0.0086 0.0039 -0.024 0.034 -0.012 

 
Initial Image Final Image 

  

 
For additional experimental results with the APFR we 
refer the reader to [6] while videos are available to the 
INRIA - Lagadic site (http://www.irisa.fr/lagadic). 
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