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Abstract:

Machine learning heavily relies on the ability to learn/approximate real functions.
State variables, the perceptions, internal states, etc, of an agent are often represented
as real numbers; grounded on them, the agent has to predict something, or act in some
way. In this view, this outcome is a nonlinear function of the inputs. It is thus a very
common task to fit a nonlinear function to observations, namely solving a regression
problem. Among other approaches, the LARS is very appealing, for its nice theoret-
ical properties, and actual efficiency to compute the whole l1 regularization path of a
supervised learning problem, along with the sparsity. In this paper, we consider the
kernelized version of the LARS. In this setting, kernel functions generally have some
parameters that have to be tuned. In this paper, we propose a new algorithm, the Equi-
Correlation Network (ECON), which originality is that while computing the regular-
ization path, ECON automatically tunes kernel hyper-parameters; thus, this opens the
way to working with infinitely many kernel functions, from which, the most interesting
are selected. Interestingly, our algorithm is still computationaly efficient, and provide
state-of-the-art results on standard benchmarks, while lessening the hand-tuning bur-
den.

Key-words: supervised learning, non linear function approximation, non parametric
function approximation, kernel method, LARS, l1 regularization

∗ Both authors are with INRIA Lille - Nord Europe , University of Lille , LIFL, France



Le réseau équi-corrélé : un nouvel algorithme LARS

noyauté avec un réglage automatique des paramètres

des noyaux

Résumé : Un ingrédient important de l’apprentissage automatique est la capacité
à apprendre et représenter une fonction réelle. Variables d’états, perceptions, états in-
ternes, etc., d’un agent sont souvent représentées par un nombre réel ; avec ces données,
l’agent doit prédire quelque chose, ou agir. Ainsi, cette prédiction est une fonction non
linéaire des variables d’entrées. Il s’agit donc d’ajuster une fonction non linéaire à des
observations, donc d’effectuer une régression. Parmi d’autres approches, l’algorithme
LARS possède de nombreuses qualités, depuis ces propriétés formelles à son efficacité
pour calculer le chemin de régularisation l1 complet en apprentissage supervisé (clas-
sification, ou régression) et la parcimonie des solutions obtenues. Dans ce rapport,
on considère une version noyautée, ou plutôt “featurizée”, du LARS. Dans ce cadre,
les noyaux ont généralement des (hyper-)paramètres qui doivent être réglés. Nous
proposons un nouvel algorithme, le réseau équi-corrélé (ECON pour Equi-Correlated

Network) qui, en calculant le chemin de régularisation, règle au mieux ces hyper-
paramètres ; cela ouvre la porte à la possibilité de travailler avec une infinité de noyaux
potentiels parmi lesquels seuls les plus adéquats sont sélectionnés. Notons que ECON
demeure efficace en terme de temps de calcul et espace mémoire, et fournit des résultats
exprimentaux au niveau de l’état de l’art, tout en diminuant le travail de paramétrage
“à la main”.

Mots-clés : apprentissage supervisé, approximation de fonctions non linéaires, ap-
proximation de fonctions non paramétrique, méthode à noyau, LARS, régularisation
l1



The Equi-Correlated Network 3

1 Introduction

The design of autonomous agents that are able to act on their environment, and to
adapt to its changes, is a central issue in artificial intelligence, since its early days. To
reach this goal, reinforcement learning provides a very appealing framework, in which
an agent learns an optimal behavior by interacting with its environment. A central
feature of such reinforcement learners is their ability to learn, and represent a real
function, hence perform a regression task. So, even if the regression problem is not
the full solution to the reinforcement learning problem, it is indeed a key, and basic,
component of such learning agents. More generally, in machine learning, regression
and classification are very common tasks to solve. While focusing on regression here,
the algorithm we propose may be directly used for supervised classification.

Let us formalize the problem of regression. In this problem, an agent has to rep-
resent, or approximate a real function defined on some domain D, given a set of n
examples (xi, yi) ∈ D × R. It is then supposed that there exists some deterministic
function y, and the yi are noisy realization of y. The agent has to learn an estimator
ŷ : D → R so as to minimize the difference between ŷ and y. There are innumerable
ways to derive such a ŷ (see [4] for an excellent survey).

One general approach is to look for an estimator which is a linear combination of
K basis functions {gk : D → R}k and we search for ŷ ≡

∑k=K
k=1 wkgk. This is very

general, and encompasses multi-layer perceptrons with linear output, RBF networks,
support vector-machines and (most) other kernel methods, ...

The set of basis functions may be either fixed a priori, thus does not rely on the ex-
amples (parametric approach), or may evolve, and adapt to the examples (non paramet-
ric approach), such as in Platt’s Resource-Allocating Network [8], in Locally Weighted
Projection Regression [12], in GGAP-RBF [5], or Grafting [7]. Either parametric, or
not, the form of the estimator ŷ is the same. However, in parametric regression, we
look for the best wk given the set of K basis functions gk, whereas in non parametric
regression, we look at the wk, the gk, and K altogether. In this case, it is customary
to look for the sparsest solutions, that is, ŷ in which the number of terms is as little as
possible.

To find the best parameters wk, the l2 norm is very often used as the objective func-
tion to minimize: given a set of examples (X ,Y) ≡ {(xi, yi)}, l2 =

∑i=n
i=1 (ŷ(xi) −

yi)
2. To obtain a sparse solution, it is usual to use an l1 regularization: l1(

∑k=K
k=1 wkgk) ≡

∑k=K
k=1 |wk|. By combining both terms, we obtain the objective function: min

∑i=n
i=1 (ŷ(xi)−

yi)
2 + λ

∑k=K
k=1 |wk|, with λ a regularization constant. This minimization problem is

known as the LASSO problem [11]. Finding the optimal λ is yet an other problem to
be solved. Instead of choosing arbitrarily, and a priori the value of λ and solve the
LASSO with this value, we may dream of solving this minimization problem for all
λ’s. Actually this dream is a reality: the LARS algorithm [1] is a remarkably efficient
way of computing all possible LASSO solutions. The LARS computes the l1 regular-
ization path, that is, basically all the solutions of the LASSO problem, for all values
of λ ranging from 0 to +∞. Though dealing with infinity, the LARS is a practical al-
gorithm, that runs in a finite amount of time, and is actually very efficient: computing
the regularization path turns out to be only a little more expensive that computing the
solution of the LASSO for a single value of λ.

Initially proposed with the gk basis functions being the attributes of the data, the
algorithm has been extended to arbitrary finite sets of basis functions, such as kernel
functions [3]. As basis functions, Gaussian kernels are very popular, but many other
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4 Loth Manuel and Preux Philippe

kernels may be used1. Hence, basis functions generally have (hyper-)parameters that
have to be tuned, that is, g(x) is really a g(θ,x). For the moment, a kernel with
two different values of parameters are considered as different (i.e., g(θ1, ) 6= g(θ2, )
when θ1 6= θ2). In this paper, we extend the kernelized-LARS algorithm to handle
the problem of tuning the hyper-parameters automatically. So, instead of providing
the (infinite) set of basis function to the kernelized-LARS and let it choose the best
ones, we merely provide one basis function, which is thus a function (of θ). During
the resolution of the LASSO, our algorithm then uses the kernel with the adequate
parameters, in each term of ŷ it appears in. For some reasons that will be clarified in
this paper, we name our algorithm the “Equi-Correlated Network”, ECON for short.

In the sequel of this paper, we will first present the idea of l2, l1 minimization
(the LASSO problem), and the LARS algorithm that computes the regularization path.
Based on that, we present the ECON algorithm, accompanied with details on prac-
tical implementation issues. Then, we provide some experimental results, before we
conclude.

2 Background

This section serves as introducing the necessary background on the LASSO problem,
and the LARS algorithm.

In the following, we use the following notations:

• vectors are written in bold font, e.g., θ, x,

• the ith scalar component of a vector is written in regular font with a subscript,
e.g., θi, xi,

• the ith component of a list of vectors is written in bold font with a subscript, e.g.,
θi, xi,

• matrices are written in capital bold font such as X, XT denotes its transpose, xi

its ith line, and xi its ith column.

1Here, a kernel function is a fairly general function that maps a couple of points in the domain to the set
of real numbers. It is not assumed that it is a Mercer kernel, as in the SVM literature.

INRIA



The Equi-Correlated Network 5

2.1 l2-l1 path: the LARS algorithm

Algorithm 1: LARS algorithm

Input: vector y = (y1, ...yn), matrix X of predictors
Output: a sequence of linear models using an increasing number of attributes
Normalize X so that each line has mean 0 and standard deviation 1
λ← very large positive value
r← y // residual

w← () // solution to the LASSO

A ← {} // set of selected attributes

X̃← [] // submatrix of X with selected attributes

s← () // vector of the signs of correlations of

selected attributes

while not (some stopping criterion or λ = 0) do

∆w←
(

X̃TX̃
)−1

s

∆r←∆wTX̃

∆λ← lowest positive among

1. λ

2. − wj

∆wj
, j ∈ 1..K

3. λ−〈xi,r〉
1−〈xi,∆r〉 , i ∈ 1..P, i /∈ A

4. λ+〈xi,r〉
1+〈xi,∆r〉 , i ∈ 1..P, i /∈ A

w← w + ∆λ∆w

r← r−∆λ∆r

λ← λ−∆λ
switch ∆λ from do

case (2)

remove j-th element from w, X̃, s,A
K ← K − 1

case (3)

append xi to X̃, 0 to w, +1 to s, i to A
K ← K + 1

case (4)

append xi to X̃, 0 to w, −1 to s, i to A
K ← K + 1

Let X be a P × n matrix representing n sampled elements from D ≡ R
P . xi

contains the value of the ith attribute for all n elements, and xi contains the value of
the attributes of xi.

Let us consider an estimator ŷ ≡ XT w,w ∈ R
P . The Least Absolute Shrinkage

and Selection Operator (LASSO) consists in minimizing the squared l2 norm of the
residual subject to a constraint on the l1 norm of w:

RR n° 6794



6 Loth Manuel and Preux Philippe

minimize ‖y −XTw‖22 =

n
∑

i=1

(yi − 〈xi,w〉)
2

s.t. ‖w‖1 =

P
∑

j=1

|wj | < c ,

which is equivalent to

minimize ‖y −XTw‖22 + λ‖w‖1 (1)

The union of a convex loss function and a linear regularization term has the property
that the greater λ, the sparser the solution (the more components of w are zero), hence
the Selection property of the LASSO.

Efron et al., have shown that the whole set of solutions to the LASSO (that is
w(λ),∀ λ ∈ [0,+∞)) can be efficiently computed in an iterative fashion by the Least
Angle Regression (LARS)[1], providing the l1 regularization path.

In a few words, the LARS is based on the fact that this set of solutions w(λ) is
continuous and piecewise linear w.r.t. λ, and characterized by the equicorrelation of all
selected attributes:

for all λ ∈ [0,∞), let w be the solution of eq. (1), we have:

∀i ∈ 1..P,

{

wi 6= 0 ⇒ |〈xi, y −XTw〉| = λ
wi = 0 ⇒ |〈xi, y −XTw〉| ≤ λ

This implies that from any point of the path, the evolution of w(λ) as λ decreases
is linear as long as no new attribute enters the solution and none leaves it.

For λ = 0, the solution of the LASSO problem turns out to be the least-square
solution: weights are not penalized, so that all attributes may be used in ŷ. For λ =
+∞, in order to have a finite value of the objective function, all weights should be set
to 0: no attribute is selected. The idea of the LARS is actually to start with λ = +∞,
hence all weights set to 0, and no attribute in ŷ, and decrease λ until some weight is
no longer 0. For this value λ = λ1, the corresponding attribute enters the “active set”
A; actually, the value of λ1 may be computed directly, thanks to the linear property of
w(λ). Then, we obtain λ2, etc., ...; at each such value, an attribute enters the active
set, or an attribute may also leave the active set. When P terms are involved in ŷ, the
algorithm may stop. But, the LARS can also be stopped as soon as a certain proportion
of the attributes are used in ŷ, providing a certain accuracy, e.g., measured on a test set.

We can not describe with much more details the algorithm as well as its properties,
and refer the interested reader to [1]. The resulting procedure is sketched as Algo-
rithm 1. This algorithm is computationally efficient, since its cost is quadratic in the
size of the active set, which is upper bounded by the number of attributes P .

2.2 Kernelizing the LARS algorithm

For the moment, data have been represented by their attributes. This representation
being quite arbitrary, we can actually represent data in many other way. A principled
way to achieve this is to introduce a kernel. Let us note g : D ×D → R such a kernel
function. A good intuition of a kernel is a way to measure the dissimilarity between two
data. Such a function may have, and generally has, some (hyper)-parameters θ. Setting

INRIA



The Equi-Correlated Network 7

these parameters to some value, we may represent a data by (g(θ,x1), ...g(θ,xn)). We
may also use various values of the parameters, various g functions, and we end-up with
data being shattered in a space with a much higher dimensionality than the original one;
we denote this dimension by M . Then, each data is represented by such M features,
instead of the P ≪ M original attributes. There is absolutely no problem to use this
representation instead of the original one, and use it in the LARS algorithm. This has
already been investigated (see [3]).

The problem is that M may be quite large, so that the M×M matrix X may become
huge. In particular, it is difficult to set the hyper-parameters a priori, so that we end-up
having to consider kernels with different parameter settings as different kernels. This
becomes cumbersome.

However, instead of that, we can consider one kernel function parameterized by
its hyper-parameters, and let the algorithm find their best values. We would therefore
restrict considerably the number of attributes per data to consider, hence the size of the
matrix X, having to deal with a minimization problem instead. This is precisely what
we propose in this paper. Based on the kernelized-LARS, the next section details this
point.

3 The Equi-Correlated Network algorithm

As explained in the introduction, we now want to be able to perform kernel hyper-
parameters automatic tuning. In short, with regards to Algorithm 1, the matrix of
predictors X can no longer be constructed explicitly, since it would contain an (non
denumerable) infinite number of rows, and columns. In this section, we describe our
algorithm, ECON. Then, we discuss some issues related to the approximate minimiza-
tion being done in ECON.

3.1 ECON

The core of the LARS algorithm consists in computing, at each step, the minimum
positive value of a function on a finite support, that is, steps 3 and 4 in the while loop
in Algorithm 1. We have to replace:

min
i∈1..P

(

λ− 〈xi, r〉

1− 〈xi,∆r〉

)+

and min
i∈1..P

(

λ + 〈xi, r〉

1 + 〈xi,∆r〉

)+

by

min
θ∈Rl

ξ+(θ) =

(

λ− 〈φ(θ), r〉

1− 〈φ(θ),∆r〉

)+

and

min
θ∈Rl

ξ−(θ) =

(

λ− 〈φ(θ), r〉

1− 〈φ(θ),∆r〉

)+

where φ(θ) =
(

g(θ,x1), . . . , g(θ,xn)
)T

.
If g is continuous and differentiable, ξ+ and ξ− are continuous and differentiable

everywhere except at rare unfeasible points.

RR n° 6794



8 Loth Manuel and Preux Philippe

The minimization can actually be conducted over the function ξ(θ) = min
(

ξ+(θ), ξ−(θ)
)

,
which is also continuous and looses differentiability only at the frontiers where arg min (ξ+(θ), ξ−(θ))
changes.

Thus, the main task becomes to minimize, at each step, a relatively smooth function
of R

l, l being the number of hyper-parameter of one unit of the network, that is, l = |θ|.
This comes in striking contrast to the usual minimization task for sigmoidal networks
that is done in the space of all weights of the network. This minimization problem
is discussed in section 4.2. Having no closed-form solution, we have to contend our-
selves either with a local minimum, or an approximate value of a global minimum. We
investigate this issue in the next section.

3.2 The risks of approximate minimization and some workarounds

When applying the LARS algorithm on a finite and computationaly reasonable number
of attributes/features, one can perform an exact minimization of the step ∆λ, thus
computing the exact path of solutions to the LASSO and benefiting safely from its nice
properties.

As ECON performs an approximate minimization over R
l, some features may be

missed and attain a higher correlation than the one of active features. Two distinct cases
should be considered: either the selected feature is in the immediate neighbourhood of
the minimizer, which has been missed only by the limited precision of the minimization
algorithm, or it is in the neighbourhood of a local but not global minimum.

In the first case, the missed features can generally safely be considered as being
equivalent to the one selected. Although they have and may keep a correlation higher
than λ, this correlation will stay in the neighbourhood of λ, as the correlation is a
continuous function of θ. An illustration of the harmless nature of such misses is
the fact that RBF networks are succesfully used with predefined features of which the
centers form a regular grid overD, and the bandwidth is also common, and set a priori.
In our algorithm, the missed features can be considered as if they had been deliberately
left out from the start, and still represent by far less than the gaps in between the grid
and list of bandwidth in such algorithms.

The second case, where a local but not global minimum is found, is more critical.
A specific feature is missed and probably will not be recovered in subsequent steps.
Indeed, the principle of selecting features by searching for the first one that becomes
equicorrelated as λ decreases, precludes from finding a feature already more correlated
than active ones. It is generally specific and not represented by a similar active feature,
and its correlation should decrease slower than λ or even increase, and the value of ξ
for this feature will be negative, meaning it was equicorrelated at a previous point in
the regularization path. We propose a workaround that has yet no strong theoretical
guarantees against possible side effects, but has proven its efficiency in experiments.
The first idea is to relax the positiveness condition about ξ(θ), applying this constraint
only to its denominator, which implies that at a given step on the path, we also look
for features with an absolute correlation greater than λ, i.e., missed in previous steps.
The relaxed constraint separates the two causes for negativeness of ξ: an absolute cor-
relation greater than λ, or the fact that it cannot reach λ along the current direction of
weight change. The second idea is that when such a feature is found, instead of trying
to ride the regularization path back to the point where it was missed, the feature is in-
corporated at the present point (λ does not change), and, to keep up with the soundness
of the algorithm, this feature is considered having been penalized from the start, so that

INRIA



The Equi-Correlated Network 9

the right point to include it when solving the weighted LASSO is the present point. By
penalization and weighted LASSO, we mean the following:

minimize
n

∑

i=1

(yi − 〈xi,w〉)
2 + λ

M
∑

j=1

pj |wj |

where pj’s are penalization factors assigned to each weight beforehand. This im-
plies that the path of solutions is now characterized by the correlation of all active fea-
tures being equal in absolute value to λ times their penalization. Thus, when a feature
is forgotten and caught back at a later point, we set this point to be the legitimate one
by assigning to the feature a penalization coefficient equal to its absolute correlation
divided by λ.

4 Practical implementation

In this section, we deepen some implementation related issues about ECON.

4.1 The bias

It is useful to add a bias term w0 in the general model ŷ. This can be seen as a weight
associated to the particular feature constantly equal to 1. Unlike regular features, it can-
not be normalized, as its standard deviation is zero. But its particularity and uniqueness
allows it to have a dedicated treatment as: we can use the notion of penalization again
and decide it will be almost not penalized — no penalization at all would fail the com-
putations. The algorithm starts by setting λ to a very large value, by far larger than the
correlation of any regular feature, and arbitrarily decide that this extreme point of the
regularization path is the one to include the bias, by setting its penalization to 1/λ. In
the following of the algorithm, the deactivation/reactivation of this feature need not be
reconsidered.

4.2 Optimization algorithm

As an optimization algorithm to apply at each step, DiRect [6] appears to be a good
choice for several reasons. DiRect minimizes a function over a bounded support by
recursively dividing this support into smaller hyperrectangles (boxes). The choice of
the box to split is based on both the value of the function at its center and the size of
the box.

The first appealing property is that it can limit the search to a given granularity—by
setting a minimal size for the boxes—which is sufficient for our needs: we do not seek
a precise minimum, but rather to ensure that the region of the global minimum is found,
and DiRect has proven to be good at the global search level but rather slow for local
refinement.

The second reason is that it is not gradient-based, although it needs and exploits
smoothness of the function to minimize. Despite the fact that ξ inherits the differen-
tiability property of g almost everywhere, its gradient shows noticeable discontinuities
at non-differentiable points. ξ is continuous and regular nonetheless, except at unfea-
sible points, which can be handled by DiRect, by systematically dividing rectangles of
which the center is unfeasible to ξ.

RR n° 6794



10 Loth Manuel and Preux Philippe

An objection to the use of DiRect could be the constraint to restrict the search to a
bounded support. This is not an issue for RBF, as the hyper-parameters consist in the
coordinates of the center and the bandwidth parameters. The first ones can be naturally
bounded by the bounds of the training points, and the latter ones can be bounded by
the width of the training set.

4.3 ECON-RBF networks

We name “Equi-Correlation RBF networks” (ECON-RBF) the case in which Gaussian
kernels are used in ECON. ECON-RBF offer far more expressiveness than classical
fixed RBF networks. In the latter, the units are usually set in advance, with a single and
common bandwidth, and centers forming a grid in D. ECON-RBF allow not only to
choose on the fly the centers in the whole domain (or actually among a dense grid), but
also to select for each unit specific bandwidth(s), common to all dimensions or not, or
a whole correlation matrix:

g = e−
1

2
(x−c)T

Σ(x−c)

with c = (θ1, . . . , θP )T

and Σ =









. . . 0

θP+1

0
. . .









or







θP+1 0

. . .
0 θP+P







or







θP+1 . . . θP+P

...
. . .

...
θP+P . . . θP+P (P+1)/2







Once again, setting distinct penalization coefficients on the features can be benefi-
cial. The straight, unweighted, penalization of ‖w‖1, regularizes the model by limiting
the number of active features. When using radial features, another interesting way of
regularization is to favor large bandwidths or, at least, penalize or avoid small band-
widths that could fit the noise. If features are normalized, all of them are treated equally,
and such overfitting features can be selected sooner than desired in the regularization
path. By specifying a penalization factor related to the width of a feature, both regular-
ization schemes operate, and the successive models include more features, which tend
to have a smaller support.

A nice setting for the penalization is the inverse of the standard deviation of the
feature’s outputs. It is strongly related to the feature’s width, and its implementation
simply consists in not normalizing the features’ standard deviations.

INRIA
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4.4 Stopping criterion

The algorithm constructs a sequence of models that goes from an infinitely-regularized
one (w = 0) to a non-regularized one (the least squares solution when it exists, or a
solution with residual 0). Good models naturally lie in between, at some points that
remain to be determined. Identifying these points is an open issue, and no general and
automated criterion has made a consensus yet. We are currently working on possibly
interesting ways of identifying a transition between fitting and overfitting, but mean-
while, in the experiments exposed below, we used a simple yet satisfying procedure:
we split the sample set into a training set and a validation set, compute a sequence of
models until the number of selected features is larger than one can expect to be needed,
and select the one on which the residual over the validation set is the smallest.

4.5 Incremental regression

One last remark about the fact that ECON, likewise the original LARS, may very eas-
ily be turned into an incremental algorithm. Indeed, new examples may be added after
an estimator has been computed. This estimator is then updated with the newly avail-
able examples. Even though we have not experienced this possibility yet, it should be
possible to deal with non stationary y.

5 Experiments

In this section, we provide some experimental results to discuss ECON. For Gaussian
kernels, we have investigated three variants: fixed bandwidth for all kernels (no tun-
ing); individually tuned bandwidth for each kernel, keeping the kernel symetric (same
variance in each direction, diagonal covariance matrix); individually tuned bandwidth
for each kernel, the kernel being no longer symetric (covariance matrix is still diagonal
though). The latter version provides the best results, for a computational costs that is
not much significantly higher than the other two variants, so we only report the results
obtained with this variant.

5.1 The noisy sinc function

The Equi-Correlation Network algorithm was run with Gaussian RBFs on noisy sam-
ples of the sinc function, in order to visualize the functions that it minimizes, and il-
lustrate the benefit of letting bandwidths of each Gaussian be automatically tuned. Fig.
1 represents the approximation obtained when the number of features in ŷ has reached
9, as well as each of these 9 features. First, one can notice that the approximation ŷ is
very close to the function to approximate; second, we also notice that ECON actually
uses kernels with different hyper-parameters. To exemplify the optimization of ξ, Fig.
2 shows the function that the algorithm has to minimize at the third iterations.

5.2 Friedman’s functions

Friedman’s benchmark function were introduced in [2] and used quite widely. There
are 3 such functions: F1 has P = 10 attributes, the domain being D = [0, 1]10. The
function is noisy, and 5 of the attributes are actually useless. F2 and F3 are defined on
some subset of R

4 and are also noisy. For each of these problems, we generate training

RR n° 6794



12 Loth Manuel and Preux Philippe

samples
sinc

approximation
features

Figure 1: Approximation of noisy sinc after 12 steps, with 9 features. The dashed lines
show these features, scaled by their weight in the network (ŷ is represented by the bold
line). Notice how the negative parts are approximated by means of a substraction of a
large feature to a medium one.
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Figure 2: Plot of the function to minimize at third step of sinc approximation: the z-axis
represents the amount λ should decrease for the Gaussian with center x and bandwidth
σ to appear in the LASSO solution. The peaks correspond to the active features in the
current ŷ, for which this function is unfeasible (0/0).

Friedman’s F1 Friedman’s F2 Friedman’s F3
SVM 2.92/116.2 4140/110.3 0.0202/106.5
RVM 2.80/59.4 3505/6.9 0.0164/11.5
[10] 2.84/73.5 3808/14.2 0.0192/16.4

ECON 1.93/59, 1.81/74 6810/15, 5166/39 0.0206/17, 0.0182/20, 0.0158/30, 0.0105/65

Table 1: We compare the performance of ECON with those published in [10], concern-
ing the Support Vector Machine, the Relevance Vector Machine, and a LASSO-based
algorithm proposed in this paper. For each algorithm, we provide the accuracy mea-
sured on a test set of 1000 data / K (aka, the number of support vectors) in ŷ, averaged
over 100 runs for ECON. See the text for more discussion.

sets made of 240 examples, and the same test set made of 1000 data2. We measure the
normalized mean-squared error on the data-set:

2To generate the data, we use the implementation available in R, in the mlbench package, with the
standard setting for noise.
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NMSE =

∑n
i=1

(

yi − ŷ(xi)
)2

∑n
i=1

(

yi − ȳ)2

where ȳ =
∑n

i=1 yi/n.
For these problems, we compare our results with those obtained by [10], on a

LASSO algorithm. The latter compares his own results with Support Vector Machine
and Relevance Vector Machines. The comparison is instructive (see table 1).

As ECON computes the whole regularization path, we compare the results ob-
tained, in the same experimental settings, by ECON and the one proposed by [10] who
obtains a solution with a certain number of terms in ŷ (K). In general this solution is
the most accurate, and uses fewer kernels.

We note that on F1, ECON obtains the best results among the 4 algorithms. Only
15 terms provide an accuracy better than 2.8, the best accuracy mentioned for the other
3 algorithms. On F2, the results are less good, but are still rather good. To stick
to the results published in [10], the figures in table 1 are averages; however, if we
consider the best accuracy, or better, the histogram of accuracies, it is skewed towards
better accuracies (the median, which is more informative, is 6453, for K = 15), the
minimum being 3288 with 15 kernels. On F3, we obtain a good accuracy using more
terms; however, the order of magnitude of the accuracy is quite good. As for F2, the
best accuracy obtained with 17 kernels is 0.012, and, again, the histogram is skewed
(the median is 0.020). It is also very significant to note that the number of kernels
saturates at some point: on F2 and F3, the maximal number of kernels involved in ŷ is
always below 140, with a median around 120 for F2, and 100 for F3.

5.3 Real-world regression problems

Finally, we also use two larger, real-world problems, namely abalone, and Boston hous-
ing datasets3.

5.3.1 Boston housing

In the Boston housing dataset, the task consists in predicting the median sell value of
a house as a function of thirteen other continuous, integer, or Boolean attributes. The
only boolean one, CHAS, was not taken into account. 50 experiments were run. For
each of them, the 506 cases were randomly split into about 95% for the training set
and 5% for the test set. The algorithm was run until 100 features had been selected.
The NMSE was computed at each step on both training set, and test set. The number of
evaluations of the function to minimize at each step (i.e., the search depth of the DiRect
algorithm) was set to 24 times the square of number of hyper-parameters: 24× 242 for
Gaussians. In order to limit the effects of outliers, a quick first pass of the algorithm
was first processed (selection of 20 or 30 features with a low search depth), after which
the two elements having the highest residual were removed from the training set. Fig.
3 shows the average evolution of NMSE on training and test sets as the network selects
more features.

3We use the datasets available at http://www.cs.toronto.edu/˜delve/delve.html for
abalone, and at the UCI repository for Boston housing.
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Figure 3: Normalized mean squared errors, averaged over 50 experiments on the
’Boston housing’ dataset using Gaussian features, as a function of the number of se-
lected features. The free parameters of the features were their center and a diagonal
correlation matrix.

SVM RVM [10] ECON
4.37/972 4.35/12 4.35/19 4.31/71, 4.30/100

Table 2: We compare the performance of ECON with those published in [10], concern-
ing the Support Vector Machine, the Relevance Vector Machine, and a LASSO-based
algorithm proposed in this paper. For each algorithm, we provide the accuracy mea-
sured on a test set of 1000 data / the number of terms (aka, the number of support
vectors) in ŷ, averaged on 100 runs for ECON. See the text for more discussion.

5.3.2 Abalone

Being also provided in [10], we run ECON on the Abalone dataset. The results are
provided in table 2. We see that ECON performs comparably to other methods. The
same remarks as for Friedman’s functions, regarding the distribution of accuracies, are
true here again: for instance, the best accuracy with 71 kernels is 4.

6 Conclusion and perspectives

In this paper, we considered the regression problem, for which we have proposed an
algorithm, the Equi-Correlated Network, inspired by the (kernelized-)LARS. ECON
automatically tunes the hyper-parameters of the kernel functions. The resulting algo-
rithm can be seen as a non parametric one-hidden layer perceptron, that is, a perceptron
in which the hidden layer does not contain a fixed amount of units, but grows according
to the complexity of the problem to solve. Furthermore, building on the ability of the
LARS to compute efficiently the whole l1 regularization path of the LASSO, ECON
does not provide one solution, but the whole family of possible solution, according to
the regularization parameter. This is a very interesting ability for practical purpose, and
the fact that the algorithm is very efficient provides even more interest to ECON. Fur-
thermore, sticking to this idea of closeness to MLPs, using a non parametric approach
in which the hidden layer is not fixed, this let the estimator adapts to the complexity of
the problem, to get the best compromise between under- and over-fitting, something an
MLP with a fixed architecture can not achieve.
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There remains some work to do to fine tune ECON itself. The impact of the qual-
ity of the minimizations still has to be studied, both theoreticaly and experimentaly;
some conditionning issues need to be clearly identified and solved; a good stopping
criterion remains to be defined. It will also be important to investigate how this algo-
rithm can be extended to more general loss and regularization functions, following the
work of [9]. Finally, as pointed out in the introduction, ECON may be directly applied
to classification problem, and this should be investigated, at least for an experimental
assessment.

Nevertheless, first experiments exhibits state-of-the-art performances on two real-
world regression problems. These results were obtained without the need to set hy-
perparameters from domain knowledge, cross-validations, or high expertise in the al-
gorithm. The key reason lies in the fact that although the class of models has a high
expressivity, the optimization task in the space of all parameters is performed by a
sequence of optimization in one feature’s parameters.

As we are mostly interested in control optimization and sequential learning prob-
lems, further researches will focus on how this algorithm can be extended to online
learning, moving targets, and specific ways to embed it in reinforcement learning algo-
rithms.
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