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Abstract. In this paper new results are presented for tracking com-
plex multi-body objects. The theoretical framework is based on robotics
techniques and uses an a-priori model of the object including a gen-
eral mechanical link description. A new kinematic-set formulation takes
into account that articulated degrees of freedom are directly observable
from the camera and therefore their estimation does not need to pass via
a kinematic-chain back to the root. By doing this the tracking techniques
are efficient and precise leading to real-time performance and accurate
measurements. The system is locally based upon an accurate modeling
of a distance criteria. A general method is given for defining any type
of mechanical link and experimental results show prismatic, rotational
and helical type links. A statistical M-estimation technique is applied to
improve robustness. A monocular camera system was used as a real-time
sensor to verify the theory.

1 Introduction

Previously, non-rigid motion has been classed into three categories describing
different levels of constraints on the movement of a body: articulated, elastic
and fluid [1]. In this paper the first class of non-rigid motion is considered and
a link is made with the remaining classes. An ”articulated” object is defined as
a multi-body system composed of at least two rigid components and at most six
independent degrees of freedom between any two components. With articulated
motion, a non-rigid but constrained dependence exists between the components
of an object. Previous methods have attempted to describe articulated motion
either with or without an a-priori model of the object. In this study a 3D model
is used due to greater robustness and efficient computation. Knowing the object
in advance helps to predict hidden movement, which is particularly interesting
in the case of non-rigid motion because there is an increased amount of self-
occlusion. Knowing the model also allows an analytic relation for the system
dynamics to be more precisely derived.

State of the Art In general, the methods which have been proposed in the past
for articulated object tracking rely on a good rigid tracking method. In computer
vision the geometric primitives considered for tracking have been numerous,
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however, amongst them distance based features have shown to be efficient and
robust [2, 3, 4, 5]. Another important issue is the 2D-3D registration problem.
Purely geometric (eg, [6]), or numerical and iterative [7] approaches may be con-
sidered. Linear approaches use a least-squares method to estimate the pose and
are considered to be more suitable for initialization procedures. Full-scale non-
linear optimization techniques (e.g., [2, 8, 3, 5]) consists of minimizing the error
between the observation and the forward-projection of the model. In this case,
minimization is handled using numerical iterative algorithms such as Newton-
Raphson or Levenberg-Marquardt. The main advantage of these approaches are
their accuracy. The main drawback is that they may be subject to local minima
and, worse, divergence. This approach is better suited to maintaining an already
initialized estimation.

Within this context it is possible to envisage different ways to model the
pose of an articulated object. The first method for tracking articulated objects
using kinematic chains (see Figure 1) appears in well known work by Lowe [9].
He demonstrates a classical method using partial derivatives. In his paper the
kinematic chain of articulations is represented as tree structure of internal rota-
tion and translation parameters and the model points are stored in the leaves of
this tree.The position and partial derivatives of each point in camera-centered
coordinates is determined by the transformations along the path back to the
root.

Recently, more complex features have been used for non-rigid object track-
ing in [10]. They make use of deformable super-quadric models combined with
a kinematic chain approach. However, real-time performance is traded-off for
more complex models. Furthermore, this method requires multiple viewpoints
in order to minimize the system of equations. As Lowe points out, the tenden-
cies in computer graphics have been toward local approximations via polyhedral
models. Ruff and Horaud [11] give another kinematic-chain style method for
the estimation of articulated motion with an un-calibrated stereo rig. They in-
troduce the notion of projective kinematics which allows rigid and articulated
motions to be represented within the transformation group of projective space.
The authors link the inherent projective motions to the Lie-group structure of
the displacement group. The minimization is determined in projective space and
is therefore invariant to camera calibration parameters.

A second approach has been proposed by Drummond and Cippola [3] which
treats articulated objects as groups of rigid components with constraints between
them directly in camera coordinates (see Figure 2). It appears that the full
pose of each rigid component is initially computed independently requiring the
estimation of a redundant number of parameters. Lagrange multipliers are then
used to constrain these parameters according to simple link definitions. This
method uses Lie Algebra to project the measurement vector (distances) onto
the subspace defined by the Euclidean transformation group (kinematic screw).
They also implement M-estimation to improve robustness.
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Fig. 1. Kinematic chain method: The pose of an articulated object is determined via
a kinematic chain of rigid bodies extending to sub components
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Fig. 2. Lagrange Multiplier method: The pose between the camera and each part of
the object is calculated directly. Constraints between the components are enforced via
Lagrange multipliers

Contribution A new model is proposed in this paper which is based on the
observation that within a vision system one has direct access with a camera
to the parameters of an articulated object. Thus, unlike traditional techniques
using robotics based approaches, there is no need to sum partial derivatives along
a kinematic chain back to the root. As will be shown, the joint reference frame
plays an important role in modeling articulated objects. The method presented
in this paper also integrates a mechanical link formulation for simple definition
of articulations.

It is important to correctly model the behavior of the system to obtain max-
imum decoupling of joint parameters and therefore interesting minimization
properties. In this paper a kinematic set approach is proposed. With articu-
lated motion, unlike the case of rigid motion, the subsets of movement which
may be attributed to either the object or camera are not unique. A novel subset
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approach is used whereby the minimization is carried out on decoupled subsets
of parameters by defining subspace projectors from the joint definitions. This
allows the error seen in the image to be partially decoupled from the velocities
of the object by determining the independent sets of velocities present in object
space. The principal advantages of this approach are that it:

• is more efficient in terms of computation than previous methods.
• eliminates the propagation of errors between free parameters.
• models more closely the real behavior of the system than a camera frame

based approach.

In the remainder of this paper, Section 2 presents the principle of the ap-
proach. In Section 3 articulated object motion and velocity are defined. In Sec-
tion 4 a non-linear control law is derived for tracking articulated objects. In
Section 5, several experimental results are given for different virtual links.

2 Overview and Motivations

The objective of the proposed approach is to maintain an estimate of a set
of minimal parameters describing the configuration of an articulated object in
SE(n). This set of parameters are defined by a vector of n parameters q ∈ R

n.
This vector is composed of subsets which fully describe the velocity of each
component.

In order to maintain an estimate of q, the underlying idea is to minimize
a non-linear system of equations so that the projected contour of the object
model in the image is aligned with the actual position of the contours in the im-
age. This can be seen as the dual problem of visual servoing whereby minimizing
the parameters corresponds to moving an arm-to-eye robot so as to observe the
arm at a given position in the image (note that an object is not necessarily
fixed to the ground). This duality, known as Virtual Visual Servoing has been
explained in depth in previous papers [5, 12].

To perform the alignment, an error ∆ is defined in the image between the
projected features s

(
q
)

of the model and their corresponding features in the
image sd (desired features). The features of each component are projected using
their associated camera poses crF1(q) and crF2(q) where each component’s cam-
era pose is composed of a subset of object parameters q. In this paper distance
features are used. This error is therefore defined as:

∆ =
(
s
(
q
)
− sd

)
=

[
pr

(
q,o S

)
− sd

]
, (1)

where oS are the 3D coordinates of the sensor features in the object frame
of reference. pr

(
q,o S

)
is the camera projection model according to the object

parameters q.
The parameters of the object are initially needed and they are computed us-

ing the algorithm of Dementhon and Davis [7]. This algorithm is used to calculate
the component’s poses in the camera frame and they are calculated separately.



Complex Articulated Object Tracking 193

The parameters are projected into object space and variables in common between
the components are averaged so that initialization errors are minimal.

In order to render the minimization of these errors more robust they are
minimized using a robust approach based on M-estimation techniques.

∆R = ρ
(
s(q) − sd

)
, (2)

where ρ(u) is a robust function [13] that grows sub-quadratically and is mono-
tonically nondecreasing with increasing |u|. In this article Tukey’s function is
used because it allows complete rejection of outliers.

This is integrated into an iteratively re-weighted least squares(IRLS) mini-
mization procedure so as to render those errors at the extremities of the distri-
bution less likely.

3 Modeling

Articulated motion is defined as Euclidean transformations which preserve sub-
sets of distances and orientation of object features.

The modeling of object motion is based on rigid body differential geometry.
The set of rigid-body positions and orientations belongs to a Lie group, SE(3)
(Special Euclidean group). These vectors are known as screws. The tangent space
is the vector space of all velocities and belongs to the Lie algebra, se(3). This is
the algebra of twists which is also inherent in the study of non-rigid motion. An
articulated object, for example, must have a velocity contained in se(3), however,
joint movement can be considered by sub-algebras of se(3).

The basic relation can be written which relates the movement of a sensor
feature ṡ to the movement of the object parameters:

ṡ = LsAq̇ (3)

where

• Ls is called the feature Jacobian [14] or interaction matrix [15] between the
camera and the sensor features s.

• A is an Articulation matrix describing the differential relation between com-
ponents.

• LsA being the Jacobian between the sensor and the entire object.

The Articulation matrix is the central issue in this paper. It corresponds to
the mapping:

v = Aq̇ (4)
where v is a vector of ’stacked’ 6 dimensional twists each corresponding to the
full motion in se(3) of each component.

The subsets of parameters which make up the object parameters are illus-
trated by a Venn diagram in Figure 3. In order that these sets can be obtained
independently it is necessary to decouple their interaction. The only case where
this occurs is in the joint frame of reference. Thus the following section considers
the definition of a joint.
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Fig. 3. Kinematic set method: The joint parameters are minimized in object space and
kinematic set are used to decouple the system. Decoupling occurs at the intersection
of parameter sets

3.1 Mechanical Joint Concept

A mechanical joint is fully defined by a matrix, vector pair which links two
components. It is composed of a constraint matrix S⊥ which defines the type of
the link and a pose vector r defining the position of the articulation. Thus the
articulation matrix is:

Al(S⊥
l , rl), (5)

where S⊥
l corresponds to the configuration of joint l and r is a parameter vector

describing the location of joint l.
The following two subsections explain the definition of these parameters.

3.2 Joint Configuration – Sl

A joint configuration is fully defined by:

S⊥
l =

⎛⎜⎝s⊥1,1 . . . s⊥1,c
...

. . .
s⊥6,1 s⊥6,c

⎞⎟⎠ , (6)

The holonomic constraint matrix, S⊥, is defined such that each column vector
defines one free degree of freedom at the corresponding link. The number of
non-zero columns of S⊥ is referred to as the class c of the link. The rows of
a column define the type of the link by defining which combination of translations
and rotations are permitted as well as their proportions. In the experiments
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considered in Section 5 two different types of class 1 links are considered:
A rotational link around the x axis:

S⊥ = (0, 0, 0, 1, 0, 0), (7)

A helical link around and along the z axis:

S⊥ = (0, 0, a, 0, 0, 1), (8)

where the value of ’a’ relates the translation along the z axis to a one rotation
around the z axis.

The set of velocities that a first component can undertake which leaves a sec-
ond component invariant is defined by S⊥ ⊂ se(3). This is the orthogonal com-
pliment of the sub-space S ⊂ se(3) which constitutes the velocities which are in
common between two components. Since a component, that is linked to another,
is composed of these two subspaces it is possible to extract these subspaces by
defining standard bases for the kernel and the image. The kernel is chosen to be
S⊥ so that the image is given by (with abuse of notation):

Sl = Ker
(
(S⊥

l )T
)
, (9)

The matrix Sl and its orthogonal compliment S⊥
l can be used to project

the kinematic twist (velocities) onto two orthogonal subspaces (For more than
1 joint it is necessary to project onto a common vector basis).

Thus a subspace projection matrix is given as:

Pl = SlS+
l ,

P⊥
l = S⊥

l S⊥+
l = I6 − Pl,

(10)

where S+ = (ST S)−1ST is the pseudo-inverse of S.
This ensures that the resulting projected velocities are defined according to

a common basis defined by the parameters of the pose vector in equation (6).
This then allows the twist transformations, given in the following section, to be
applied to these quantities.

3.3 Joint Location – rl

A joint location is fully defined by a pose vector:

rl =Fcrl = (tx, ty, tz, θx, θy, θz), (11)

where Fc indicates the camera frame and l represents the joint frame.
A joint configuration is only valid in the joint reference frame. A kinematic

twist transformation matrix is used to obtain the velocity of the joint frame
w.r.t its previous position. The Lie algebra provides the transformation of vector
quantities as V(r). This is a kinematic twist transformation from frame a to
frame b given as:

aVb =
[

aRb [atb]a×Rb

03
aRb

]
, (12)
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where aRb is a rotation matrix between frames and atb a translation vector
between frames which are obtained from arb. [t]x is the skew symmetric matrix
related to t.

The projector defined in (10) is applied in the joint reference frame. It is
possible to choose the object frame as a common reference frame as in [16]. In
this paper the camera frame is chosen as the common reference frame so that
a generic subspace projection operators Jl and J⊥

l can be defined as:

Jl = Im(cVl Pl
lVc),

J⊥
l = Ker(J) = Im(cVl P⊥

l
lVc),

(13)

where Im represents the Image operator which reduces the column space to its
mutually independent basis form. The first transformation V maps the velocities
to the joint frame l and the second re-maps back to the camera reference frame.

3.4 Articulation Matrix

Using the previous joint definition is is possible to define the Articulation matrix
according to equation (4) and taking into account the joint subspaces given by
equation (13).

The derivation of the Articulation matrix corresponds to:

A =

⎛⎜⎝
∂r1
∂q
...

∂rm

∂q

⎞⎟⎠ , (14)

where m is the number of components.
For an object with two components and one jointand using the orthogonal

subspace projectors given in equation (13), A is given by:

A =

(
∂r1
∂q∩

∂r1
∂q1

0
∂r2
∂q∩

0 ∂r2
∂q2

)
=

(
J1 J⊥

1 0
J1 0 J⊥

1

)
, (15)

where q∩, q1, q2 are vectors representing the sets of intersecting velocities and
each components free parameters respectively. These sets are easily identified
when referring to Figure 3. Given dim(J1) = 6 − c and dim(J⊥

1 ) = c, the
mapping A is indeed dimension 12 × (6 + c), remembering that c is the class of
the link. The derivation of objects with more than one joint follows in a similar
manner and is left to the reader.

It is important to note that this method introduces decoupling of the min-
imization problem. This is apparent in equation (15) where extra zeros appear
in the Jacobian compared to the traditional case of a kinematic chain. Indeed,
in the particular case of two components and one articulation a kinematic chain
has only one zero.
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4 Registration

In this section a new tracking control law is derived. The aim of the control
scheme is to minimize the objective function given in equation (2). Thus, the
error function is given as:⎛⎜⎝ e1

...
em

⎞⎟⎠ = D

⎛⎜⎝ s1(q) − sd1
...

sm(q) − sdm

⎞⎟⎠ , (16)

where q is a vector composed of the minimal set of velocities corresponding to
the object’s motion and each ei corresponds to an error vector for component i.
D is a diagonal weighting matrix corresponding to the likelihood of a particular
error within the robust distribution:

D =

⎛⎜⎝D1 0
. . .

0 Dm

⎞⎟⎠ ,

where each matrix Di is a diagonal matrix corresponding to a component which
has weights wj along the diagonal. These weights correspond to the uncertainty
of the measured visual feature j. The computation of the weights are described
in [5].

If D were constant, the derivative of equation (16) would be given by:⎛⎜⎝ ė1

...
ėi

⎞⎟⎠ =

⎛⎜⎝
∂e1
∂s1

∂s1
∂r1

∂r1
∂q

...
∂em

∂sm

∂sm

∂rm

∂rm

∂q

⎞⎟⎠ q̇

= DLsAq̇

(17)

where q̇ is the minimal velocity vector, A is the articulation matrix describing
the mapping in equation (4) and Ls is the ’stacked’ interaction matrix as in
equation (3) given as:

Ls =

⎛⎜⎝
∂s1
∂r1
...

∂sm

∂rm

⎞⎟⎠ =

⎛⎜⎝Ls1 06

. . .
06 Lsm

⎞⎟⎠ , (18)

If an exponential decrease of the error e is specified:

ė = −λe, (19)

where λ is a positive scalar, the following control law is obtained by combining
equation (19) and equation (17):

q̇ = −λ(D̂L̂sÂ)+D̂
(
s(q) − sd

)
, (20)
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where L̂s is a model or an approximation of the real matrix Ls. D̂ a chosen
model for D and Â depends on the previous pose estimation.

For the example of one joint given in equation (15), the sets of velocities to
be estimated are:

q̇ =
(
q̇∩, q̇1, q̇2

)
, (21)

Once these velocities are obtained they can be related back to the camera
frame as in equation (4):

(
cv1
cv2

)
= A

⎛⎝ q̇∩
q̇1

q̇2

⎞⎠ (22)

5 Results

In this section three experiments are presented for tracking of articulated objects
in real sequences. Both camera and object motion as well as articulated motion
have been introduced into each experiment. The complex task of implementing
this algorithm was a major part of the work. Indeed this required correct mod-
eling of features of type distance to lines, correct modeling of feature sets and
correct implementation of the interaction between these feature sets represented
as a graph of feature sets.

The rigid tracking method used here is based on a monocular vision system.
Local tracking is performed via a 1D oriented gradient search to the normal of
parametric contours at a specified sampling distance. This 1D search provides
real-time performance. Local tracking provides a redundant group of distance
to contour based features which are used together in order to calculate the
global pose of the object. The use of redundant measures allows the elimina-
tion of noise and leads to high estimation precision. These local measures form
an objective function which is minimized via a non-linear minimization proce-
dure using virtual visual servoing(VVS) [5]. These previous results demonstrate
a general method for deriving interaction matrices for any type of distance to
contour and also show the robustness of this approach with respect to occlusion
and background clutter.

The basic implementation of the algorithm gives the following pseudo-code:

1. Obtain initial pose.
2. Acquire new image and project the model onto the image.
3. Search for corresponding points normal to the projected contours.
4. Determine the error e in the image.
5. Calculate (D̂ĤÂ).
6. Determine set velocities as in equation (20) and then component positions.
7. Repeat to 4 until the error converges.
8. Update the pose parameters and repeat to 3.



Complex Articulated Object Tracking 199

Fig. 4. Helical movement of a screw whilst the screw and the platform are simul-
taneously in movement.In this and all the following figures the reference frames for
each component are shown as well as a projection of the CAD model onto the image.
The axes of the frames are drawn in yellow, blue and red. The contour of the object is
shown in blue. The points found to the normal of the contour are in red and the points
rejected by the M-estimator are shown in green

5.1 Helical Link

This first experiment, reported in Figure 4 was carried out for class one link with
helical movement simultaneously along and around the z axis. The constraint
vector was defined as in equation (8) and the object frame was chosen to coincide
with the joint frame. Note that the constraint vector was defined by taking into
consideration that for 10 × 2π rotations of the screw it translated 4.5cm along
the z axis.

Tracking of this object displayed real time efficiency with the main loop com-
putation taking on average 25ms per image. It should be noted that tracking
of the screw alone as a rigid object fails completely due to the limited contour
information and difficult self occulsions. When tracked simultaneously with the
plate as an articulated object the tracking of the screw is also based on the mea-
surements of the plate making the tracking possible. M-estimation was carried
out separately for each component.

5.2 Robotic Arm

A recent experiment was carried out for two class one links on a robotic arm.
The articulations tracked were rotational links around the z and x axes. The
constraint vectors were each defined by a pose and a constraint matrix as given
in equation (7). Note that the constraints are no longer defined in the same
coordinate system as in the previous case. This sequence also displays real time
efficiency with the tracking computation taking on average 25ms per image. It
should be noted that the features used on the components of the arm are not full
rank and do not hold enough information to calculate their pose individually.
As in the previous experiment, the articulated tracker overcomes this situation.
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Fig. 5. Movement of a robotic arm with two degrees of freedom

6 Conclusion

The method presented here demonstrates an efficient approach to tracking com-
plex articulated objects. A framework is given for defining any type of mechanical
link between components of a object. A method for object-based tracking has
been derived and implemented. Furthermore, a kinematic set formulation for
tracking articulated objects has been described. It has been shown that it is
possible to decouple the interaction between articulated components using this
approach. Subsequent computational efficiency and visual precision have been
demonstrated.

In perspective, automatic initialization methods could be considered using
partially exhaustive RANSAC [17] based techniques. A better initial estimate
could also be obtained using a kinematic chain formulation.
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