
HAL Id: inria-00353576
https://hal.inria.fr/inria-00353576

Submitted on 15 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing Domain-Specific Modeling Languages: A
Case Study in Telephony Services
Fabien Latry, Julien Mercadal, Charles Consel

To cite this version:
Fabien Latry, Julien Mercadal, Charles Consel. Processing Domain-Specific Modeling Languages: A
Case Study in Telephony Services. Generative Programming and Component Engineering for QoS
Provisioning in Distributed Systems, Oct 2006, Portland, United States. �inria-00353576�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50198519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00353576
https://hal.archives-ouvertes.fr


Processing Domain-Specific Modeling Languages:
A Case Study in Telephony Services

Fabien Latry, Julien Mercadal, and Charles Consel
INRIA / LaBRI / ENSEIRB

Department of Telecommunications
351, cours de la Libération
F-33405 Talence, France

{latry,mercadal, consel}@labri.fr

ABSTRACT
The Domain-Specific Language (DSL) approach is being ac-
tively studied from both a software engineering viewpoint
and a programming language viewpoint. It is being success-
fully applied to a variety of areas such as banking, graph-
ics and networking. Yet, the concept of a DSL is still very
vague, making both its applicability and implementation dif-
ficult.

This paper introduces a layered approach to DSLs where (1)
domain experts are provided with Domain-Specific Modeling
Languages (DSMLs), requiring no programming skills and
(2) implementation experts deal with Domain-Specific Pro-
gramming Languages (DSPLs) that require a programming
background but abstracts over the intricacies of underlying
technologies.

By separating domain and implementation concerns, we show
that our layered DSL approach enables high-level tools to
be used to both compile and reason about DSML programs.
Compilation and program verification amount to defining
high-level generative processes.

We illustrate our approach with the domain of telephony
service creation. We introduce a DSML for service creation
and demonstrate the ease of compiling DSML programs us-
ing the Stratego/XT program transformation environment.
Two compilation processes are defined for DSML programs
targeting (1) a DSPL, illustrating a high-level compilation
process and (2) the TLA+ specification language, exempli-
fying the verification of domain-specific properties.

1. INTRODUCTION
The Domain-Specific Language (DSL) approach is attract-
ing a lot of attention in software engineering as well as in
programming languages. The approach has been success-
fully applied in a number of areas including banking [1, 11],
graphics [13, 15], and networking [20, 25]. Yet, a DSL does
not have the same meaning and objectives depending on the
community considered. Not surprisingly, these two research
communities have been studied the DSL approach mostly
independently of each other.

From a software engineering viewpoint, a DSL refers to a
modeling language that offers notations and concepts that
can be directly manipulated by a domain expert to express
a solution as a model [11, 21]. A key purpose of a modeling

language is to enable to communicate and share solutions
among domain experts. Models can also be used to generate
implementations, whether manually or automatically [2, 8,
26].

From a programming language viewpoint, a DSL offers syn-
tactic constructs and semantics that are dedicated to a do-
main [7, 12]. DSLs developed in the programming language
community typically require programming skills, making them
less accessible to domain experts. Still, compared to a GPL,
a DSL enables programs to be concise and high level. Also,
it introduces syntactic and semantics restrictions and ex-
tensions that allow critical domain-specific properties to be
verified [7].

To reconcile these views, we introduce a layered DSL ap-
proach, separating domain and programming concerns. This
layered approach consists of Domain-Specific Modeling Lan-
guages (DSMLs) and Domain-Specific Programming Lan-
guages (DSPLs). A DSML allows solutions to be easily
and concisely expressed in domain terms, enabling domain-
specific properties to be checked. For a given domain, many
DSMLs can be defined, providing domain experts with var-
ious visual or textual representations, and various degrees
of language expressivity, as depicted in Figure 1. In our
approach, DSMLs are implemented in terms of a DSPL. A
DSPL is a programming language that serves as an interface
between the domain expert and the implementation expert
(see Figure 1). That is, a DSPL compiler captures the im-
plementation expertise of a given domain in that it factor-
izes the know-how to implement a DSPL program in terms
of a General-Purpose Languages (GPLs), design patterns,
frameworks, software architectures, and such.

By separating domain and programming concerns, our DSL
approach stages language processings, enabling specific treat-
ments to be introduced at each layer. In a previous work, La-
try et al. presented an approach to developing compilers for
DSLs, centered around the use of generative programming
tools [6]. This work specifically targeted DSPLs and used
aspects, annotations, and program specialization to compile
the various dimensions of a DSPL. In this approach, com-
pilation and verification of a DSL program were achieved
by embedding domain-specific information into a program
compiled into a GPL. In doing so, they showed that the
compiled program was amenable to a variety of generative
programming tools.



By introducing DSMLs, the abstraction level is further raised,
bringing up issues and opportunities regarding the compila-
tion of models and the verifications of domain-specific prop-
erties.

Domain

Implementation

DSML 1 DSML 2 DSML 3 DSML 4

Implementation 1 Implementation 2 Implementation 3

Domain Specific Programming LanguageDomain Specific Programming Language

Figure 1: A layered DSL approach

This Paper
This paper presents an approach to compiling and verify-
ing DSMLs. We show that the high-level nature of DSMLs
make them amenable to high-level tools that can be used
to compile and verify models. In our approach, compila-
tion of DSML models has two main targets: a DSPL and
the specification language of a verification tool. In differ-
ent ways, each of these targets is domain specific: a DSPL
offers domain-specific constructs that drastically facilitates
the compilation of models, hiding the underlying technolo-
gies; a specification language is a dedicated language that
consists of specific notations to concisely and formally spec-
ify the semantics of a model.

We illustrate our approach with the domain of telephony ser-
vice creation. We consider a DSML, named Call Processing
Language (CPL), that allows non-programmers to visually
create telephony services [18, 19]. Furthermore, we focus our
compilation process on a DSPL, named Session Processing
Language (SPL), which is a programming language dedi-
cated to developing telephony services [4]. Figure 2 displays
both the compilation and verification processes that are per-
formed on DSML models. Three transformation passes are
performed via XSLT and Stratego/XT: first, an intermedi-
ate representation is generated by XSLT from a CPL service,
to facilitate further transformations. Then, XT-generated
compilers are used to generate SPL programs and TLA+
specifications. An SPL program can be run by the SPL exe-
cution environment. While, the TLA+ specification can be
verified by the TLC model checker [29].

This variety of processings illustrates the class of new ap-
plications of existing tools that is enabled by both the ab-
straction level of DSMLs and our layered approach.

Outline
This paper is structured as follows. Section 2 introduces our
DSL layered approach, based on a DSML layer exemplified
by CPL, and a DSPL layer exemplified by SPL. Section 3
presents the compilation of the DSML into two different
target languages (SPL and TLA+), and discusses the use
of high-level tools such as Stratego/XT to concisely define

compilation processes. Section 4 illustrates the ability to
use tools to check domain-specific properties. Both sections
are illustrated with the domain of the telephony service cre-
ation. Section 5 describes some related works and Section 6
concludes.

CPL
Program

XSLT

Stratego/XT –
Generated Compiler

TLC

Intern
Representation

SPL
Program

TLA+
Specification

Error
Report

Stratego/XT –
Generated Compiler

Figure 2: Processing CPL services with high-level
existing tools

2. A LAYERED DSL APPROACH
Our layered DSL approach, depicted in Figure 1, consists of
introducing two levels in domain-specific languages: DSMLs
and DSPLs. A DSML is a modeling language, abstracting
over programming concerns. Its mapping to code is facili-
tated by the domain-specific nature of the target language,
namely a DSPL. Because there is a variety of preferences and
constraints that can be expressed by domain experts, a vari-
ety of DSMLs can be envisioned, offering different visual or
textual paradigms, and various degrees of expressivity. The
development of these DSMLs is greatly simplified because
they can be implemented in terms of a DSPL, making their
compilation high level.

Although a DSPL is a programming language, it still ab-
stracts over the underlying technologies of potential target
platforms. In this regard, it can be viewed as an inter-
face to the implementation concerns because it exposes the
fundamental operations and constructs that need to be im-
plemented when targeting a given platform. This layer im-
proves the ability to re-target a DSPL compiler because a
DSPL program can easily be mapped into a target platform;
this constrasts with a DSML model whose mapping to code
may be arbitrarily difficult. Furthermore, in our approach,
targeting a new platform has no impact on the DSMLs.

In the remainder of this section, we examine in detail a



DSML and a DSPL.

2.1 A Domain-Specific Modeling Language –

CPL
CPL [18, 19] is an XML-based scripting language for de-
scribing and controlling call services. It allows a domain
expert to write a telephony service, hiding all the imple-
mentation concerns such as distributed system mechanisms
and network protocols. A CPL service simply represents a
decision tree whose nodes specify predicates and routing de-
cisions to take for processing a call. CPL is designed to be
easily parsed and edited by graphical tools. Figure 3 dis-
plays a CPL service. In this example, the service handles
incoming calls for a user named Bob. When a call occurs,
it is forwarded to his current phone. If Bob is busy, then
the call is redirected to his voice mail. Otherwise, if he can-
not answer (e.g., because he is absent) and the call comes
from his boss, then the call is forwarded to his cell phone.
The right-hand side of the figure shows the CPL service as
a tree-like representation. Because the XML representation
of CPL is verbose, and to simplify our presentation, CPL
services are considered in their tree-like form hereafter.

As can be noticed in Figure 3, CPL enables a service to
be expressed in domain terms; it directly represents the in-
tended decision tree, routing a call. Moreover, its XML cod-
ing allows to verify that it conforms with the CPL schema.

2.2 A Domain-Specific Programming Language

– SPL
SPL [4] is a programming language dedicated to developing
telephony services. It is high level and concise in that it
abstracts over a number of underlying technologies like the
telephony signaling protocol, the media protocols, and the
telephony platform API. Figure 4 presents the SPL version
of the CPL service presented in Figure 3. SPL is an event-
driven programming language. A program defines handlers
for events that cover the complete life-cycle of a telephony
session: creation, confirmation, modification, termination.
The service logic of our example is only concerned with the
creation of a telephony session. As a result, it defines a
unique handler for the INVITE event (line 6). SPL offers
the domain-specific type response (line 7) to manipulate
call responses. A variable with such type is declared in the
INVITE handler to store the response of a call forwarding
to Bob’s phone, when he gets a phone call. Another fea-
ture to notice is the SPL syntax corresponding to the pro-
tocol response codes (e.g., /ERROR/CLIENT/BUSY_HERE), ab-
stracting over raw numbers (lines 8,10). Furthermore, note
that a handler can manipulate predefined variables; they
are bound to key headers of a call message. SPL offers a lot
more domain-specific syntatic and semantic facilities that
ease the programming of telephony services1. In doing so,
SPL bridges the gap between a DSML, like CPL, and its
implementation.

3. COMPILING A DOMAIN-SPECIFIC MOD-

ELING LANGUAGE
One key benefit of our layered DSL approach is to reduce
the gap between a DSML and its implementation, raising

1An extented presentation of SPL is available elsewhere [4].

1. service example {

2. processing {

3.

4. dialog {

5.

6. response incoming INVITE()INVITE() { 

7. response r = forward 'sip:bob@phone.example.com';

8. if (r == /ERROR/CLIENT/BUSY_HERE) {

9. return forward 'sip:bob@voicemail.example.com';

10. } else if (r == /ERROR) {

11. if (FROM == 'sip:boss@example.com') {

12. return forward 'tel:+19175554242';

13. } else {

14. return r;

15. } 

16. }

17. return r;

18. }

19. }

20. } 

21. }

Figure 4: Bob’s telephony service in SPL

the level of the compilation process and enabling the use
of high-level tools. We briefly present a program transfor-
mation environment, named Stratego/XT, used to rapidly
develop compilation processes. Then, we investigate DSML
compilation, using of Stratego/XT and studying two differ-
ent compilation processes.

3.1 A Program Transformation Tool – Strat-

ego/XT
Stratego/XT is a framework for creating standalone trans-
formation systems [3, 28]. It consists of Stratego, a language
for implementing transformations based on the paradigm of
programmable rewriting strategies, and XT, a toolbox for
the development of transformation systems. Stratego/XT is
used to analyze, manipulate and generate programs. It has
been utilized to build a variety of transformation systems
including compilers, static analyzers, domain specific opti-
mizers, code generators, etc. In our context, Stratego/XT
is used to compile CPL services into both SPL programs
and TLA+ specifications (see Figure 2). To do so, the input
and output syntax definitions, written in SDF, are used to
generate an intermediate component, which is then passed
a set of transformation rules in Stratego to produce a stan-
dalone compiler. Following this process, we generated two
compilers for CPL services targeting SPL and TLA+ [17].
Let us examine these two cases.

3.2 Compiling into a DSPL – SPL
An excerpt of our CPL compiler generating SPL code is
displayed in Figure 52. It represents two Stratego trans-
formation rules whose left-hand side corresponds to a CPL
construct and right-hand side defines its SPL counterpart.
The Stratego rules of our compiler essentially consists of ex-
pliciting the decision tree formed by a CPL service. Because
the gap between CPL and SPL is reduced, a CPL construct
does not require a complicated generation process. Consid-
ering our example in Figure 5, the busy test of CPL is simply
expanded into a statement forwarding the call, followed by
a conditional statement with a test on the response value.

2For the sake of readability, Figure 5 shows Stratego rules
using the concrete syntax of SPL. However, the actual im-
plementation manipulates the abstract syntax.



<?xml version="1.0" encoding="UTF-8"?>

<cpl>

<incoming>

<location url="sip:bob@phone.example.com">

<proxy>

<busy>

<location url="sip:bob@voicemail.example.com">

<proxy />

</busy>

<otherwise>

<address-switch field="origin">

<address is="sip:boss@example.com">

<location url="tel:+19175554242">

<proxy />

</location>

</address>

</address-switch>

</otherwise>

</proxy>

</location>

</incoming>

</cpl>

Incoming call

Forward call to

Bob’s phone

Is Bob busy ? 

Is the caller 

Bob’s boss ?

Redirect call to

Bob’s voice mail

Redirect call to

Bob’s cell phone

yes no

Figure 3: Bob’s telephony service in CPL

Another example is the caller test (FROM) that is straightfor-
wardly translated into a conditional statement, testing the
FROM pre-defined variable.

RuleRedirectNonTerminal :

RedirectNonTerminal(callee, BusyTest(stat1*, stat2*)) -> 

|[ response r = forward callee ;

if ( r == /ERROR/CLIENT/BUSY_HERE ) {

stat1*

} else {

stat2*

} ]|

where new => r

RuleFROMTest :

IfElse(FROMTest(caller), stat1*, stat2*) -> 

|[ if (FROM == caller) {

stat1*

} else {

stat2*

} ]|

Figure 5: Stratego rules to generate SPL program

Importantly, by targeting SPL a lot of implementation intri-
cacies are hidden, simplifying the compilation process con-
siderably. For example, SPL abstracts over the client-server
model used for signaling operations. Specifically, most IP
telephony platforms require services to be split into two
parts: one to process requests (e.g., forward) and one for
responses (i.e., the rest of the service). Furthermore, when-
ever a service requires some state, it needs to be saved prior
to invoking the signaling platform and restored for the part
of the service processing the response. By targeting SPL,
the compiler focuses on the domain aspects of CPL; the im-
plementation concerns are addressed by the SPL compiler.

3.3 Compiling into a Specification Language

– TLA+
Compiling CPL services into a TLA+ specification amounts
to defining an abstraction that models aspects of CPL for
which verification is needed. Specifically, our abstraction

consists of modeling the predicates used to determine rout-
ing decisions included in a service. For example, a CPL ser-
vice typically tests calendar events. A cascade of such tests
may end up being infeasible. Figure 6 displays an example
of a Stratego rule, RuleTimeDay, that defines an abstraction
of calendar tests. For convenience, this abstraction assumes
that a day is represented as a three-element record, consist-
ing of its name, its number in the year, and the name of
its month. The abstract version of a service computes a set
of such records. A predicate on days leads to computing
two new sets: one for the truth branch, including the days
verifying the predicate, and one for the false branch, with a
complementary set. More specifically, the fragment in Fig-
ure 6 defines the Stratego rules enabling to generate TLA+
formulas for a predicate that tests the day of a call. Let
us further examine the verification opportunities offered by
DSMLs.

4. VERIFYING A DSML – CPL
Checking domain-specific properties is greatly facilitated by
both the domain-specific and high-level nature of a DSML.
As such an abstract version of a model can be derived more
directly. We first briefly present the tool chosen to ver-
ify CPL models, considering the kind of computations in-
volved in a telephony service logic. Then, we discuss the
domain-specific properties considered for CPL, illustrating
them with two erroneous services and an error report from
the verification tool.

4.1 A Verification Tool
TLA+ [17] is a high-level specification language used to
specify and check the correctness of systems. It is a formal
specification language based on Temporal Logic of Actions
(TLA) [16], and TLC [29], a model checker for TLA+ speci-
fications. TLA is a simple logic for describing and reasoning
about systems. It provides a uniform way of specifying algo-
rithms and their correctness properties. TLC is an on-the-fly
model checker for debugging TLA+ specifications.

4.2 Domain-Specific Properties



RuleTimeDay :

IfElse(DayTest(String(day)), 

[Action(Id(thenNext), 

Conjunction([Eq(Id(id3), String(str1)), rest1*])), action1*], 

[Action(Id(elseNext), 

Conjunction([Eq(Id(id4), String(str2)), rest2*])), action2*]) ->

|[ ifThen ≜∧ currentNode = <double-quote> str∧ currentNode’ = str1∧ date’ = {t ∈ date : t.day = day}∧ UNCHANGED 
悟

sigActions,addrTest
梧

ifElse ≜∧ currentNode = <double-quote> str∧ currentNode’ = str2∧ date’ = {t ∈ date : t.day ≠ day}∧ UNCHANGED 
悟

sigActions,addrTest
梧

thenNext ≜∧ id3 = str1∧ rest1*

action1*

elseNext ≜∧ id4 = str2∧ rest2*

action2* ]|

where new => ifThen ; new => ifElse ; new => str

; rules ( Next :+ Action(Id("Next"), Disjunction(exp*)) ->

|[ Next ≜∨ exp*∨ Id(ifThen)∨ Id(ifElse) ]| )

Figure 6: Stratego rules to generate TLA+ specifi-
cation

Because the semantics of a DSML solely involves domain-
specific aspects, reasoning about a model is only concerned
with domain-specific properties. In the case of CPL, exam-
ples of properties include: no call loss, no duplicate redirect,
and no infeasible path. These properties are expressed as
formulas in Figure 7. They must be verified by the model
checker for every telephony service. Let us now examine
these formulas in detail.

AtLeastOneSigAction
∆

= currentNode = “End” ⇒ Len(sigActions) 6= 0

NoTwiceRedirectToTheSameURI
∆

=
✷(∀n ∈ 1 . . Len(sigActions) : ∀m ∈ n + 1 . . Len(sigActions) :

sigActions[n] 6= “Continuation” ⇒ sigActions[n] 6= sigActions[m])

Consistency
∆

=
∧ ✷(∃ x ∈ Addresses : ∀n ∈ 1 . . Len(addrTest) : x ∈ addrTest [n])
∧ ✷(date 6= {})

Figure 7: Properties to verify in telephony services

4.2.1 No call loss.
AtLeastOneSigAction is a key property, well-identified by
telephony experts [19]. Its goal is to prevent having ser-
vices that lose calls because not every execution path con-
tain at least one signaling action (e.g., forward and redirect).
Specifically, the formula specifies that at an end node, a sig-
naling action must have occurred.

4.2.2 No duplicate redirect.
NoTwiceRedirectToTheSameURI ensures that an execution
path does not contain more than one redirection to the same
address. In doing so, not only are unnecessary operations

detected, but the service execution time is kept to a mini-
mum. This property requires the introduction of a signaling
trace to formulate that no two signaling actions should be
equal. This formula should always be true, as noted by ’�’.

4.2.3 No infeasible path.
Consistency ensures that a cascade of tests is correct in that
it is feasible. Two kinds of tests are considered: (1) ad-
dresses, that is, caller identifiers and (2) dates. Consider an
example of the former kind, displayed in Figure 8. This ser-
vice is erroneous in that, when a call occurs, if the sender’s
address contains Bob (node 2), then the call is forwarded
to Bob’s cell phone (node 3). Otherwise, if the sender’s
address is sip:boss@example.com (node 5), then the call
is redirected to his voice mail (node 6). Nevertheless, this
case can never happen because it is subsumed by the first
test (node 2). Such a cascade of address tests is common in
realistic services, creating a need to verify its feasibility.

Incoming call

...

yes no

Does the sender’s address

contain "boss" ?

Redirect call to

Bob’s voice mail

Redirect call to

Bob’s cell phone

Is the sender’s address

"sip:boss@example.com" ?

Reject call

yes no

1

2

3

5

6 7

4

Figure 8: Erroneous CPL service (sender’s address)

The second part of the Consistency property guarantees that
a cascade of tests on calendar events are feasible. An exam-
ple of an unfeasible execution path is displayed in Figure 9.
This service treats calls differently depending on the day of
the week, that is, whether a call occurs on Tuesday. If so,
it tests whether the call occurs between 07/12 and 07/17.
However, there is no Tuesday within that period of time,
therefore this last execution path is not feasible.

Because of their decision-tree nature, telephony services in-
clude cascades of tests that involve predicates on a variety
of aspects. The above examples demonstrate the interest of
verifying that a service does not include infeasible paths.

To complete our presentation, we show in Figure 10 an er-
ror report produced by TLC, when given to verify the CPL
service displayed in Figure 9 that contains an infeasible cas-
cade of tests on dates. In this situation, TLC specifies
which property cannot be verified by displaying the ser-
vice line number where the invariant is violated, namely
(date 6= {}). Then, it generates a counterexample, display-
ing the sequence of states that leads to the one where the
invariant is violated (State 4, with (date = {})).

5. RELATED WORK



Incoming call

no

Is the day of the call 

Tuesday ?

Forward call to

Bob’s phone

...

yes

Redirect call to

Bob’s voice mail

Is the date of the call 

between 07/12

and 07/17 ?

no

Redirect call to

Bob’s cell phone

yes

Weekly meeting

Annual holidays

Figure 9: Erroneous CPL service (date of the call)

TLC Version 2.0 of January 16, 2006

Model-checking

...

Finished computing initial states: 1 distinct state generated.

Error: Invariant line 143, col 23 to line 143, col 35 of module CPL is violated.

The behavior up to this point is:

STATE 1: <Initial predicate>∧ addrTest = 悟 梧∧ currentNode = "Incoming"∧ sigActions = 悟 梧∧ date = {[day ↦ "sun", dayNum ↦ 1, month ↦ "January"],
...

[day ↦ "sun", dayNum ↦ 365, month ↦ “December"] }

STATE 2: <Action line 51, col 9 to line 53, col 60 of module CPL>∧ addrTest = 悟 梧∧ currentNode = "WeeklyMeeting"∧ sigActions = 悟 梧∧ date = {[day ↦ "sun", dayNum ↦ 1, month ↦ "January"],
...

[day ↦ "sun", dayNum ↦ 365, month ↦ “December"] }

STATE 3: <Action line 98, col 9 to line 101, col 54 of module CPL>∧ addrTest = 悟 梧∧ currentNode = "AnnualHolidays"∧ sigActions = 悟 梧∧ date = {[day ↦ "tue", dayNum ↦ 3, month ↦ "January"],
...

[day ↦ "tue", dayNum ↦ 192, month ↦ "July"],

[day ↦ "tue", dayNum ↦ 199, month ↦ "July"],
...

[day ↦ "tue", dayNum ↦ 360, month ↦ "December"] }

STATE 4: <Action line 110, col 9 to line 113, col 55 of module CPL>∧ addrTest = 悟 梧∧ currentNode = "RedirectToBobVoiceMail"∧ sigActions = 悟 梧∧ date = {}

5 states generated, 5 distinct states found, 2 states left on queue.

The depth of the complete state graph search is 4. 

Figure 10: Error report from TLC

The DSL approach is being actively studied because of its
potential to greatly improve software development. As a re-
sult, a lot of approaches and tools have been proposed to
develop DSLs, addressing both their design and implemen-
tation.

Concerning the design, a number of frameworks and devel-
opment environments are available such as Metacase [27],
AMMA (Atlas Model Management Architecture) [5], and
Microsoft’s initiative on Software Factories [14]. These ap-
proaches consist of a high-level and rich toolkit for creating
DSLs. It offers powerful graphical environments, to design
visual languages, high-level mechanisms, to constrain the
composition of language constructs, and a high level of au-
tomation, to generate tools required by a new DSL.

Nevertheless, these tools offer limited support for code gen-
eration. More specifically, DSLs often introduce a large gap
between models and implementations, requiring the inter-
vention of implementation experts to cover all aspects of
code generation. The layered solution, presented in this pa-
per, is complementary to DSL development environments:
it provides a staged approach that makes the code genera-
tion process amenable to program generation and verifica-
tion tools.

Concerning the implementation of DSLs and their process-
ing, numerous approaches have emerged. Following the clas-
sification of model transformation approaches introduced by
Czarnecki [10], we identify four main strategies to implement
DSLs: code generation, semantic-based compiler generation,
model-based transformation, and XML-based transforma-
tion.

5.1 Code generation.
Developing a DSL-specific code generator is the main al-
ternative to our approach. It consists of a direct compila-
tion from a DSL to some code. This solution, promoted by
the model-driven development approach, presents a number
of disadvantages. Firstly, the DSL compiler is often devel-
oped as a monolithic program, interweaving implementation
and domain concerns. This results in a costly and compli-
cated software development that exposes few opportunities
for reuse. Because of the entanglement of domain and im-
plementation aspects, domain experts cannot introduce new
verifications without an extended knowledge of the code gen-
erator. This situation makes it difficult for a DSL to evolve
with the requirements of the domain expert.

In our approach, the code generation process is split into
two phases: compiling a DSML and compiling a DSPL. The
DSML compiler solely concentrates on high-level domain-
specific computations. Verifications can be introduced at
this stage without being concerned with implementation is-
sues. The DSPL compiler focuses on implementation con-
cerns, handling low-level details (e.g., platforms, framworks
and protocols).

5.2 Semantic-based compiler generation.
The goal of this approach is to generate a compiler from
a high-level and formal specification of a language. De-
notational semantics is a prime example of this approach;
it has been used in a number of compiler generators [24].



Semantic-based compiler generation has mainly been used
to generate compilers for general-purpose languages. In
this context, this approach has had to compete with hand-
crafted compilers, without much success. As a result, little
research is still done on this topic nowadays.

5.3 Model-based transformation.
This approach assumes that a DSL is a high-level language
and thus is well-suited for model transformation tools like
KM3 and ATL [5]. The idea is to define a metamodel for
such a DSL and to apply transformations to translate it into
another form. In this regard, model-based transformation is
complementary to our approach in that it offers additional
tools to manipulate DSML models and to map them to ver-
ification tools.

5.4 XML-based transformation.
The goal of this approach is to use XML transformers to
compile a DSML model into a DSPL program. To do so,
the source program is assumed to be represented in XML.
Tools like XPath [22] and XLST [23] can be used for this
purpose. Nevertheless, some languages may not fit well with
XML and lead to the development of cumbersome transfor-
mation processes. This is due to the fact that XML tools
are ultimately dedicated to data conversion, not program
transformation.

As can be noticed, our DSL layered approach is complemen-
tary to existing approaches. By introducing both DSMLs
and DSLs, it allows language processing to be staged, mak-
ing a number of tools usable. It is also complementary to
rich graphical environment that deals with the design of vi-
sual languages.

In our case study, Stratego is used to compile a CPL service
into a SPL program and a TLA+ specification; the latter
is then processed by the TLC model checker. Noteworthy,
TXL (Tree Transformation Language [9]) could have been
used instead of Stratego for compilation purposes. Further-
more, other formal tools based on set theory could have
achieved our verifications.

6. CONCLUSIONS
This paper presents an approach to compiling and verify-
ing DSMLs. This approach is supported by a layered view
of DSLs where DSMLs are concerned with domain aspects
and DSPLs are an interface between domain experts and
implementation experts. This layering enables DSML com-
pilation to focus on domain aspects, deferring the intricacies
of target platforms to the DSPL compiler. In doing so, the
development of DSMLs is facilitated by making their compi-
lation more amenable to high-level program transformation
tools. Furthermore, DSML compilers become independant
of a given platform.

Because the semantics of a DSML only involves domain-
specific computations, such language can be reasoned about
in a more direct way. As a result, aspects relevant to ver-
ifications can be easily extracted from models written in a
DSML. Translating such models into the specification lan-
guage of a verification tools becomes accessible to high-level
program transformation tools. The domain-specific nature

of DSMLs make properties to be checked more attainable
by existing verification tools.

We have validated our approach in the domain of telephony
services. To do so, we considered a DSML called CPL,
that offers high-level notations to create telephony services.
We also used a DSPL named SPL to interface between the
domain and the implementation concerns. SPL is a DSL
that abstracts over underlying telecommunication technolo-
gies but requires programming expertise. These two lan-
guages have allowed us to define a CPL compiler target-
ing SPL. This compiler has been developed using Strat-
ego/XT, illustrating the high-level nature of the transfor-
mation process. We also used this tool to compile CPL into
the TLA+ specification language. By doing so, we were able
to check domain-specific properties using the TLC model
checker. This is another example that demonstrates how
much DSMLs can leverage on existing tools for compilation
and verification.

7. REFERENCES
[1] B. Arnold, A. van Deursen, and M. Res. An algebraic

specification of a language for describing financial
products. In Proceedings of the ICSE-17 Workshop on
Formal Methods Application in Software Engineering
Practice, pages 6–13, April 1995.

[2] S. Beydeda and V. Gruhn. Model-Driven Software
Development. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.16: components for
transformation systems. In Proceedings of the 2006
ACM SIGPLAN symposium on Partial Evaluation and
semantics-based Program Manipulation (PEPM’06),
pages 95–99, New York, NY, USA, 2006. ACM Press.

[4] L. Burgy, C. Consel, F. Latry, J. Lawall, L. Réveillère,
and N. Palix. Language Technology for
Internet-Telephony Service Creation. In Proceedings of
the IEEE International Conference on
Communications (ICC’06), Istanbul, Turkey, 2006.

[5] J. Bzivin, G. Hillairet, F. Jouault, I. Kurtev, and
W. Piers. Bridging the ms/dsl tools and the eclipse
modeling framework. In Proceedings of the
International Workshop on Software Factories at
OOPSLA 2005, San Diego, California, USA, 2005.

[6] C. Consel, F. Latry, L. Réveillère, and P. Cointe. A
Generative Programming Approach to Developing
DSL Compilers . In R. Gluck and M. Lowry, editors,
Proceedings of the Fourth International Conference on
Generative Programming and Component Engineering
(GPCE’05), volume 3676 of Lecture Notes in
Computer Science, pages 29–46, Tallinn, Estonia,
September 2005. Springer-Verlag.

[7] C. Consel and R. Marlet. Architecturing software
using a methodology for language development. In
Proceedings of the 10th International Symposium on
Programming Language Implementation and Logic
Programming (PLILP’98), volume 1490 of Lecture
Notes in Computer Science, pages 170–194, Pisa,
Italy, September 1998.



[8] S. Cook. Domain-Specific Modeling and Model Driven
Architecture. In The MDA Journal: Model Driven
Architecture Straight from the Masters, chapter 3. D.
Frankel and J. Parodi edition, December 2004.

[9] J.R. Cordy, T. R. Dean, A. J. Malton, and K. A.
Schneider. Source transformation in software
engineering using the txl transformation system.
Information & Software Technology, Special Issue on
Source Code Analysis and Manipulation,
44(13):827–837, 2002.

[10] K. Czarnecki and S. Helsen. Classification of Model
Transformation Approaches. In Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, USA, 2003.

[11] A. van Deursen. Domain-Specific Languages versus
Object-Oriented Frameworks: A Financial
Engineering Case Study. In Proceedings of Smalltalk
and Java in Industry and Academia (STJA’97), pages
35–39. Ilmenau Technical University, 1997.

[12] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[13] Conal E. An Embedded Modeling Language Approach
to Interactive 3D and Multimedia Animation.
Software Engineering, 25(3):291–308, 1999.

[14] J. Greenfield, K. Short, S. Cook, and S. Kent.
Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. John Wiley
& Sons, 2004.

[15] S.N. Kamin and D. Hyatt. A Special-Purpose
Language for Picture-Drawing. In Proceedings of the
Conference on Domain-Specific Languages, pages
297–310, Berkeley, CA, USA, 1997. USENIX.

[16] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and
Systems, 16(3):872–923, May 1994.

[17] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[18] J. Lennox. Services for Internet Telephony. PhD
thesis, Columbia University, January 2004.

[19] J. Lennox and H. Schulzrinne. Call Processing
Language Framework and Requirements. Request For
Comments (RFC) 2824, The Internet Engineering
Task Force (IETF), May 2000.

[20] P.J McCann and S. Chandra. Packet types: abstract
specification of network protocol messages. In
Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’00), pages
321–333, New York, NY, USA, 2000. ACM Press.

[21] P. Murray-Rust. Chemical Markup Language (CML).
World Wide Web Journal, 2(4):135–147, 1997.

[22] W3C Recommendation. XML Path Language Version
1.0. http://www.w3.org/TR/xpath, November 1999.

[23] W3C Recommendation. XSL Transformations (XSLT)
Version 1.0. http://www.w3.org/TR/xslt, November
1999.

[24] D. A. Schmidt. Denotational semantics: a
methodology for language development. William C.
Brown Publishers, Dubuque, IA, USA, 1986.

[25] S. Thibault, C. Consel, and G. Muller. Safe and
efficient active network programming. In Proceedings
of the 17th IEEE Symposium on Reliable Distributed
Systems, West Lafayette, Indiana, 1998.

[26] J. P. Tolvanen. Domain-specific modeling for full code
generation.
http://www.methodsandtools.com/archive/archive.php?id=26,
2004.

[27] J. P. Tolvanen. Metaedit+: domain-specific modeling
for full code generation demonstrated [gpce]. In
Proceedings of the 19th annual ACM SIGPLAN
conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’04), pages
39–40, New York, NY, USA, 2004. ACM Press.

[28] E. Visser. Meta-Programming with Concrete Object
Syntax. In D. Batory, C. Consel, and W. Taha,
editors, Proceedings of the Generative Programming
and Component Engineering (GPCE’02), volume 2487
of Lecture Notes in Computer Science, pages 299–315,
Pittsburgh, PA, USA, October 2002. Springer-Verlag.

[29] Y. Yu, P. Manolios, and L. Lamport. Model Checking
TLA+ Specifications. In Proceedings of the 10th IFIP
WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods
(CHARME’99), pages 54–66, London, UK, 1999.
Springer-Verlag.


