-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Building DSLs with AMMA /ATL, a Case Study on SPL
and CPL Telephony Languages

Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, Fabien Latry

» To cite this version:

Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, Fabien Latry. Building DSLs with
AMMA /ATL, a Case Study on SPL and CPL Telephony Languages. ECOOP Workshop on Domain-
Specific Program Development, Jul 2006, Nantes, France. inria-00353580

HAL Id: inria-00353580
https://hal.inria.fr /inria-00353580
Submitted on 15 Jan 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50198516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00353580
https://hal.archives-ouvertes.fr

Building DSLs with AMMA/ATL
a Case Study on SPL and CPL Telephony Languages

Frédéric Jouault!
LATLAS team, INRIA and LINA

Abstract

Domain-Specific Languages (DSLs) enable more concise and read-
able specifications than General Purpose Languages (GPLs). They
are for this reason increasingly used. This DSL approach presents,
however, many challenges. One of them is the prototyping and im-
plementation of the numerous DSLs that are required to replace a
single GPL. This work presents a case study of implementing two
telephony languages: SPL and CPL. It shows how a DSL building
framework like AMMA can be used to this purpose.

1. Introduction

Domain-Specific Languages (DSLs) are increasingly used. They
directly represent domain concepts at the syntactical level. This en-
ables concise specifications that may even be understood or speci-
fied by non-programmer domain experts.

They are, however, many issues that DSL designers encounter.
For instance, deriving a DSL from domain knowledge requires
more than just placing a domain expert and a language engineer
in the same room. Methodologies need to be developed. Some
solutions to this first problem may be found in [1].

Another problem is the implementation of these DSLs. Firstly,
although a single General Purpose Language (GPL) is often enough
to build complex systems, many DSLs are often required for the
same task. Each DSL can indeed only capture a limited aspect of
a system. Consequently, the development of a DSL cannot be as
expensive as for a GPL. Secondly, it may help the DSL designers
in their work to implement proof-of-concept prototypes at different
stages. We therefore consider that inexpensive development and
rapid prototyping are essential for the success of the DSL approach.
We tackle here this problem of implementing DSLs.

Our proposal is to use DSL building frameworks [2]]. Exam-
ples of such frameworks are GME [3| 4] (Generic Modeling En-
vironment), Microsoft DSL Tools [3], and the one we developed:
AMMA [2, 6] (ATLAS Model Management Architecture). In this
work, we report on an experiment consisting of the implementation
of two languages specific to the domain of internet telephony. The
first one is SPL [[7] (Session Processing Language), and the second
one is CPL [8]] (Call Processing Language).

The outcome of this experiment provides an interesting exam-
ple of DSL building. Three aspects of each DSL are taken into
account: abstract syntax, concrete syntax, and dynamic semantics.
Moreover, our case study allows for different approaches to be il-
lustrated. SPL has a textual concrete syntax whereas CPL is XML-
based. Additionally, both languages being in the same domain, one
can be defined using the other.

The paper is organized as follows. Section 2] presents AMMA.
Sections [3]and [respectively describe how SPL and CPL are built.
Section 5] concludes.

Jean Bézivin® Charles Consel?

Ivan Kurtev! Fabien Latry?

2Department of Telecommunications, INRIA / LaBRI
{frederic.jouault,jean.bezivin,ivan.kurtev}@univ-nantes.fr

{charles.consel fabien.latry} @labri.fr

2. ATLAS Model Management Architecture

This section briefly presents AMMA and three of its core DSLs:
KM3 (Kernel MetaMetaModel), ATL (ATLAS Transformation
Language), and TCS (Textual Concrete Syntax). A more complete
description can be found in [2].

2.1 Overview

AMMA is built on a model-based vision of DSLs, which is pre-
sented in [2]. A DSL is considered as a set of coordinated models.
Each of these models represents one facet of the language. For in-
stance:

e Abstract Syntax. Domain concepts and their relations are cap-
tured in a metamodel called a Domain Definition MetaModel
(DDMM).

Concrete Syntax. Concrete syntaxes of DSLs can be repre-
sented as models. One possibility is to specify a transformation
from concrete to abstract syntax. Section [£.3] gives an exam-
ple of this applied to CPL. Another possibility is to represent a
concrete syntax as a model conforming to an EBNF metamodel
(i.e. a grammar) or to the TCS metamodel (see below).

Semantics. DSLs have several kinds of semantics that may be
captured by models. For instance, dynamic semantics can be
captured as an Abstract State Machine [9] model. Alternatively,
the semantics of DSL 4 may be implemented in terms of the
semantics of DS Lp by writing a transformation from DSL 4
to DSLp.

AMMA provides a set of core DSLs that are used to specify
each model of a DSL. Figure |1| shows four of these core DSLs:
KM3, ATL, TCS, and ASM (Abstract State Machines). Three other
DSLs: DSLx, CPL, and SPL are also shown. Each of these DSLs
is represented by a set of models defined using AMMA core DSLs.
The first three core DSLs are described in the next section. As for
the last one (i.e. ASM), please refer to [10], which describes how
we extended AMMA with it.

2.2 KM3

The KM3 language is intended to be a lightweight textual meta-
model definition language. It enables easy creation and modifica-
tion of metamodels. The metamodels expressed in KM3 have good
readability properties. These metamodels may be easily converted
to/from other notations like Emfactic or XMI. KM3 has a clear se-
mantics, partially presented in [11].

Figure [T] shows that the DDMM of KM3 is expressed in KM3
(box DDMM : KM3). Its concrete syntax is defined in TCS (box CS
: TCS). Its semantics is implemented by a transformation to Ecore
[12] written in ATL (box KM32Ecore : ATL). Other models are not
shown here. For instance, a mapping to MOF 1.4 also exists, and
formal semantics of KM3 is also expressed in Prolog. A library

DSLx SPL CPL

DDMM : KM3 ‘ DDMM : KM3 ‘ ‘ DDMM : KM3 ‘

CS:TCs

‘ cs:T0s ‘ ‘ XML2CPL ‘

ATL

HIEIBTHE

Mapping : CPL2SPL:
ATL DS:ASM ATL
DS : ASM
KM3 ATL
Legend ‘ DDMM : KM3 ‘ ‘ DDMM : KM3 ‘
— Model
“Nome>? | definedin
W DSLx cs:TCS cs:Tcs
Model <Name>-
- DDMM: Domain - -
Definition MetaModel ‘Kwiﬁ"’e' ‘ ATZ?XM’ ‘
- CS: Concrete Syntax
- DS: Dynamic
- <A2B>: transformation from A
b oS ‘ DS : ASM ‘
DDMM : KM3 S
| 1
1 1
! | AMMA ‘ cs:Tcs ‘ ‘DDMM KMS‘
| PR 1
TCS2EBNF :
‘ e ‘ ‘ cs:TCs ‘

Figure 1. AMMA core DSLs

of KM3 metamodels and their translations to various formats like
Ecore, MOF 1.4, and pictures is available on [13]].

2.3 ATL

ATL is a hybrid model transformation DSL. Its declarative part en-
ables simple specification of many problems, while its imperative
part helps in coping with problems with higher complexity. Infor-
mal semantics of ATL is presented in [[14] along with a non-trivial
case study. More than forty different scenarios accounting for more
than a hundred individual transformations are available on [13].

Figure [T] shows that the DDMM of ATL is expressed in KM3
(box DDMM : KM3). Its concrete syntax is defined in TCS (box
CS : TCS). Its semantics is implemented by a transformation to
ATL Virtual Machine (see [15]) written in ATL (box ATL2VM :
ATL). Partial formal semantics of ATL is also expressed in ASM
[L10] (box DS : ASM).

24 TCS

TCS is a DSL aimed at specifying context-free textual concrete
syntaxes of DSLs. From such specifications, models can be serial-
ized into their textual equivalent and text can be parsed into models.
In other words, a TCS specification defines a bidirectional transla-
tion between a textual representation of a model and its internal rep-
resentation. The choice of context-free languages was mainly moti-
vated by the observation that programming languages use them ex-
tensively. TCS models provide a way to attach syntactic elements,
such as keywords and symbols, to elements of the DDMM of a
DSL. A detailed description of TCS is out of the scope of this pa-
per.

Figure [T] shows that the DDMM of TCS is expressed in KM3
(box DDMM : KM3). Its concrete syntax is defined in TCS (box
CS : TCS). Its semantics is implemented by a transformation to
EBNF written in ATL (box TCS2EBNF : ATL).

3. Session Processing Language
3.1 Overview

SPL programs are used to control telephony agents (e.g. clients,
proxies) implementing the SIP (Session Initiation Protocol) [16]
protocol. SIP concepts are directly available in the language. Con-
sequently, SPL programs are able to concisely and simply express

w N e

22

29

33

any telephony service. Additionally, SPL is capable of guarantee-
ing critical properties that could not be verified with a GPL. SPL
programs run on a Service Logic Execution Environment for SIP.

Listing [I] gives a simple example of an SPL service. Every in-
coming call is redirected to SIP address sip:phoenix@barbade.
enseirb.fr| The target address is declared on line 3. Lines 6-8
correspond to the definition of the action to perform on incoming
calls. The return statement at line 7 forwards the call.

Listing 1. Simple SPL program: forwarding a call
service SimpleForward {
processing {
uri us = ’sip:phoenix@barbade.enseirb.fr’;

registration {
response incoming INVITE() {
return forward us;

3.2 Abstract and Concrete Syntaxes

Abstract syntax of SPL is specified in KM3. This corresponds to the
box DDMM : KM3 of the SPL DSL in Figure[T] Listing[2] gives an
excerpt of the SPL metamodel. Lines 1-5 define Service, which has
a name, and can contain declarations and sessions. A Declaration
(lines 7-9) has a name and may be a VariableDeclaration (lines
11-14), which has a type and an optional initialization expression
(initExp, line 13). A Session (line 16) may be a Registration
(lines 18-20) containing other sessions or a Method (lines 22-
27). A Method has a return type, a direction (see the Direction
enumeration at lines 35-39), a name, and statements. Expression,
TypeExpression, and Statement (lines 29-33) are abstract classes,
which are extended to specify the full SPL language (not given
here). The full version of this metamodel can be found in AM3
[[13] metamodel library.

Listing 2. SPL metamodel excerpt
class Service {
attribute name : String;
reference declarations[*] ordered container
—Declaration;
reference sessions[x] ordered container

}

abstract class Declaration {
attribute name : String;

}

class VariableDeclaration extends Declaration {
reference type container : TypeExpression;
reference initExp[0—1] container : Expression;

}

abstract class Session {}

: Session;

class Registration extends Session {

reference sessions[x] ordered container : Session;

class Method extends Session {
reference type container : TypeExpression;
attribute direction : Direction;
attribute name : String;
reference statements[l—x] ordered container

}

abstract class Expression {}

: Statement

s

abstract class TypeExpression {}

abstract class Statement {}

sip:phoenix@barbade.enseirb.fr
sip:phoenix@barbade.enseirb.fr

NI

© o N o o

enumeration Direction {
literal inout;
literal in;
literal out;

}

Concrete syntax of SPL has been implemented in TCS accord-
ing to the syntax specified in [17]. This corresponds to the box CS
: TCS of the SPL DSL in Figurem A grammar is automatically de-
rived from both the KM3 metamodel and the TCS model to parse
SPL programs into SPL models. SPL models can also be serialized
to programs using a TCS interpreter written in Java. We only de-
scribe SPL syntax informally here by referring to Listing [T} The
Service SimpleForward spans over lines 1-11. Line 3 contains a
VariableDeclaration of type uri initialized with the address to for-
ward to. Lines 5-10 correspond to a Registration, which contains a
single Method (lines 6-8). This Method returns a response and is
called on incoming (i.e. Direction: : in) invites.

3.3 Dynamic Semantics

Several definitions of SPL semantics can be given. For instance,
static and dynamic (by means of transition rule) semantics for SPL
is specified in [L7]. We have also developed an executable specifi-
cation of SPL dynamic semantics using (ASM). This corresponds
to the box DS : ASM of the SPL DSL in Figurem Part of this ASM
model has been automatically derived from the SPL KM3 meta-
model. This corresponds to the definition of SPL data model. Other
parts like environments and state machines are not present in the
metamodel. They had to be manually translated from the specifica-
tion.

4. Call Processing Language
4.1 Overview

CPL is a standard [§]] scripting language for the SIP protocol. It
offers a limited set of language constructs. CPL is supposed to
be simple enough so that it is safe to execute untrusted scripts on
public servers. Listing[3] gives a CPL example, which is equivalent
to the SPL example given in Listing[T]

Listing 3. Simple CPL script: forwarding a call

<?xml version="1.0" encoding="UTF-8"7>
<cpl xmlns="urn:ietf:params:xml:ns:cpl"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ietf:params:xml:ns:cplycpl.xsdy
s
<incoming>
<location url="sip:phoenix@barbade.enseirb.fr">
<proxy />
</location>
</incoming>
</cpl>

Lines 2-4 declare the default XML namespace and its location.
The incoming element at lines 5-9 declares the actions that have
to be performed on incoming calls. The location element adds
the target address to the current environment. The proxy element
forwards the call to the adress found in the current environment.

4.2 Abstract Syntax

Abstract syntax of CPL is specified in KM3. This corresponds
to the box DDMM : KM3 of the CPL DSL in Figure [[] Listing
[gives an excerpt of this metamodel. The complete version is
available in the AM3 [13] library. A CPL script is rooted by a CPL
element (lines 1-3), which contains an Incoming (line 9) element.
NodeContainers (lines 5-7) like Incoming and Location (lines 13-
15) may contain a Node (line 11) like Action (line 17). Proxy (line

© 0 N s W N e

11
12
13
14
15
16
17
18
19
20
21

© 0 N ® s W N e

11
12
13
14
15
16
17

21) is a special kind of SignallingAction (line 19) itself a special
kind of Action.

Listing 4. CPL metamodel excerpt
class CPL {

reference incoming[0—1] container : Incoming;
}
abstract class NodeContainer {

reference contents[0—1] container : Node;

}

class Incoming extends NodeContainer {}
abstract class Node {}

class Location extends Node, NodeContainer {
attribute url : String;

}

abstract class Action extends Node {}
abstract class SignallingAction extends Action {}

class Proxy extends SignallingAction {}

4.3 Concrete Syntax and Dynamic Semantics

Both CPL concrete syntax and semantics are handled by model
transformations in ATL.

CPL concrete syntax is XML-based. TCS is therefore not re-
ally useful here. The solution we implemented is the following.
We use a generic XML parser to go from the XML document to
an XML model conforming to an XML metamodel. This has an
extremely low cost since these XML parser and metamodel are
provided as part of AMMA. In a second step, we transform our
XML model into a CPL model using ATL. This corresponds to the
box XML2CPL : ATL of the CPL DSL in Figure [} Listing 3] gives
an excerpt of this XML2CPL transformation (line 1). It transforms
an XML model into a CPL model (line 2) by using a library of
XML helpers (line 4) providing the getElemsByNames operation
on XML elements. A single rule is shown: rule CPL (lines 6-17),
which transforms the root of the XML document into a CPL ele-
ment. Nested incoming element is attached to this root (lines 13-
15).

Listing 5. XML to CPL transformation excerpt, written in ATL
module XML2CPL;

create OUT : CPL from IN : XML;

uses XMLHelpers;

rule CPL {
from
s : XML!Root (
s.name = ’cpl’
)
to
t : CPL!CPL (
incoming <— s.getElemsByNames (
Sequence {’incoming’}
)—>first ()

A second transformation (CPL2SPL) provides an implementa-
tion of CPL semantics by translating CPL concepts into their SPL
equivalent concepts. This corresponds to the box CPL2SPL : ATL
of the CPL DSL in Figure [T} Listing [6] provides an excerpt of this
transformation. Line 2 declares source and target models respec-
tively conforming to CPL and SPL. Rule CPL2Program (lines 4-
19) transforms the root CPL element (lines 5-6) into an SPL pro-
gram (lines 8-10), an unnamed service (lines 11-15) and a dialog
(lines 16-18).

1
2
3

4
5
6
7
8
9

XML TS : Model Engineering TS : EBNF TS
M3 | MOF | EBNF.g
I I
M2 CPL.xsd I XML crL SPL I IEL -9
I I

XMLfinjection EBNF [extraction
M1 | Sample.cpl F"T"’{ Sample)—b{ Sample)—P{ Sample P.T“""‘ Sample..spl

I XML2CPL.atl CPL2SPL.atl I

! the core fransformation ! I conformsTo

=sufp projection

— transformation

Figure 2. Full CPL to SPL transformation scenario

Listing 6. CPL to SPL transformation excerpt, written in ATL
module CPL2SPL;

create OUT : SPL from IN : CPL;

rule CPL2Program {
from
s : CPL!CPL
to
t : SPL!Program (
service <— service
)
service : SPL!Service (
name <— ’unnamed’,
declarations <— s.subActions,
sessions <— dialog

)
dialog : SPL!Dialog (
methods <— Sequence {s.incoming, s.outgoing}

)

Figure 2] shows the full transformation scenario. The CPL script
Sample.cpl conforming to the CPL schema is first translated
into an XML model conforming to an XML metamodel. Then
it is transformed into a CPL model by XML2CPL.atl. The core
transformation CPL2SPL.atl is then applied to generate an SPL
model. The latter is then serialized into an SPL program using
the TCS interpreter on the TCS syntax definition of SPL. This full
transformation scenario (called CPL2SPL) is available in the AM3
[[13] transformation library.

5. Conclusion

This paper has briefly presented our vision of DSLs as sets of mod-
els and its concretization: the AMMA DSL building framework.
Details on the implementation with AMMA of two languages (SPL
and CPL) specific to the domain of internet telephony have been
given. This case study illustrates how AMMA core DSLs can be
used to capture different facets of a DSL. KM3 is used to express
Domain Definition MetaModels (e.g. of KM3, ATL, TCS, ASM,
CPL, and SPL). Concrete syntaxes are defined in TCS, for instance
for: KM3, ATL, TCS, ASM, and SPL. Dynamic semantics can be
formally defined in ASM, which we have done for ATL and SPL.
Moreover, transformations from any DSL 4 to any DSLp can
be implemented in ATL. This can, for instance, be used to imple-
ment the semantics of DSL 4 in terms of the semantics of DSLpg
(e.g. from CPL to SPL, see section[4.3). Such a transformation may
then be used to translate programs expressed in DSL 4 into pro-
grams expressed in DSLp. Another use of ATL is to implement
concrete syntaxes of DSLs (e.g. CPL using XML2CPL, see section

E3).

Acknowledgments

This work has been partially supported by ModelWare, IST Euro-
pean project 511731.

References

[1] Thibault, S., Marlet, R., Consel, C.: Domain-Specific Languages:
From Design to Implementation Application to Video Device Drivers
Generation. Software Engineering 25(3) (1999) 363-377

[2] Bézivin, J., Jouault, F., Kurtev, 1., Valduriez, P.. Model-based DSL
Frameworks. (2006) submitted for publication.

[3] GME: The Generic Modeling Environment, Reference site,
http://www.isis.vanderbilt.edu/Projects/gme. (2006)

[4] Karsai, G., Gray, J.: Component Generation Technology for
Semantic Tool Integration. In: Proceedings of IEEE Aerospace
2000 Conference, Big Sky, MT, March. (2000)

Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley (2004)

Bézivin, J., Jouault, F.,, Rosenthal, P., Valduriez, P.: Modeling in the
Large and Modeling in the Small. In Uwe Amann, Mehmet Aksit,
AR, ed.: Proceedings of the European MDA Workshops: Founda-
tions and Applications, MDAFA 2003 and MDAFA 2004, LNCS
3599, Springer-Verlag GmbH (2005) 33—46

Burgy, L., Consel, C., Latry, F.,, Lawall, J., Réveillere, L., Palix, N.:
Language Technology for Internet-Telephony Service Creation. In:
IEEE International Conference on Communications. (2006) to appear.

[5

—_

[6

—

[7

—

[8] Lennox, J., Wu, X., Schulzrinne, H.: Call Processing Language
(CPL): A Language for User Control of Internet Telephony Services,
RFC 3880, http://www.ietf.org/rfc/rfc3880.txtl (2004)

[9

—

Borger, E.: High Level System Design and Analysis using Abstract
State Machines. In: FM-Trends 98, Current Trends in Applied Formal
Methods. Volume 1641. (1999) 1-43

[10] Di Ruscio, D., Jouault, F., Kurtev, 1., Bézivin, J., Pierantonio, A.:
Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs. (2006) submitted for publication.

[11] Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In:
Proceedings of 8th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems, Bologna, Italy. (2006)
to appear.

[12] Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A.,
Grose, T.J.: Eclipse Modeling Framework. Addison Wesley (2003)

[13] ATLAS team: ATLAS MegaModel Management (AM3) Home page,
http://www.eclipse.org/gmt/am3/. (2006)

[14] Jouault, F.,, Kurtev, I.: Transforming Models with ATL. In: Satellite
Events at the MoDELS 2005 Conference. Volume 3844 of Lecture
Notes in Computer Science., Springer-Verlag (2006) 128-138

[15] Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and
QVT. In: Proceedings of ACM Symposium on Applied Computing
(SAC 06), model transformation track, Dijon, Bourgogne, France
(2006)

[16] Rosenberg, J., et al.: SIP: Session Initiation Protocol, RFC 3261,
http://www.ietf.org/rfc/rfc3261.txt, (2002)

[17] SPL: The Session Processing Language, Reference site, http:
//phoenix.labri.fr/software/spl/. (2006)

http://www.isis.vanderbilt.edu/Projects/gme
http://www.ietf.org/rfc/rfc3880.txt
http://www.eclipse.org/gmt/am3/
http://www.ietf.org/rfc/rfc3261.txt
http://phoenix.labri.fr/software/spl/
http://phoenix.labri.fr/software/spl/

	1 Introduction
	2 Atlas Model Management Architecture
	2.1 Overview
	2.2 KM3
	2.3 ATL
	2.4 TCS

	3 Session Processing Language
	3.1 Overview
	3.2 Abstract and Concrete Syntaxes
	3.3 Dynamic Semantics

	4 Call Processing Language
	4.1 Overview
	4.2 Abstract Syntax
	4.3 Concrete Syntax and Dynamic Semantics

	5 Conclusion

