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Résumé : Un réseau complexe peut être modélisé sous la forme d’un graphe
représentant la relation “qui connait qui”. Dans le contexte de la théorie des
graphes pour les réseaux sociaux, la notion de centralité a été introduite pour
mesurer l’importance relative de noeuds par rapport à une topologie donnée.

Prenons par exemple un réseau composé de grands clusters denses qui ne sont
reliés que par quelques liens. Les noeuds impliqués dans ces liens sont vitaux
pour conserver la connexité du graphe. Un tel phénomène peut aussi avoir des
impacts sur les applications exploitant ce graphe. Connatre l’importance de tels
noeuds peut s’avérer utile pour la maintenance de la topologie d’un graphe, ou
pour anticiper les congestions et les déconnexions.

Beaucoup de formes de centralités ont déjà été définies. Malheureusement
elles sont destinées aux graphes abstraits. Par conséquent elles sont, dans le
contexte d’un système distribué, soit d’un intérêt limité (centralité des degrés)
soit incalculables de façon distribuée (centralité d’intermédiarité).

Dans ce rapport, nous introduisons une nouvelle forme de centralité : la cen-
tralité du second ordre. Celle-ci peut être calculée de manière totalement dis-
tribuée et utilise une marche aléatoire parcourant le réseau de manière débiaisée.
Elle procure à chaque noeud un indicateur de son importance dans le réseau.

Pour cela, chaque noeud conserve les temps écoulés entre deux visites de
la marche (temps de retour) et calcule l’écart type de ces temps. À l’aide de
simulations et d’une analyse théorique, nous montrons que cet écart type peut
être utilisé pour identifier précisément les noeuds critiques. Il permet en outre de
caractériser globalement la topologie d’un graphe donné, de manière totalement
distribuée.

Mots-clés : Centralité, Marches aléatoires, Centralité d’intermédiarité, Marches
aléatoires débiaisées discrètes, Temps de retours.



Second order centrality :

distributed assessment of nodes criticity

in complex networks

Abstract:

A complex network can be modeled as a graph representing the ”who knows
who” relationship. In the context of graph theory for social networks, the notion
of centrality is used to assess the relative importance of nodes in a given network
topology. For example, in a network composed of large dense clusters connected
through only a few links, the nodes involved in those links are particularly
critical as far as the network survivability is concerned. This may also impact
any application running on top of it. Such information can be exploited for
various topological maintenance issues to prevent congestion and disruptance.
This can also be used offline to identify the most important nodes in large social
interaction graphs. Several forms of centrality have been proposed so far. Yet,
they suffer from imperfections : designed for abstract graphs, they are either
of limited use (degree centrality), either uncomputable in a distributed setting
(random walk betweenness centrality). In this paper we introduce a novel form
of centrality : the second order centrality which can be computed in a fully
decentralized manner. This provides locally each node with its relative criticity
and relies on a random walk visiting the network in an unbiased fashion.

To this end, each node records the time elapsed between visits of that random
walk (called return time in the sequel) and computes the standard deviation (or
second order moment) of such return times. Both through theoretical analysis
and simulation, we show that the standard deviation can be used to accurately
identify critical nodes as well as to globally characterize graphs topology in a
fully decentralized way.

Key-words: Centrality, Random Walk Betweenness, Unbiased Discrete Time
Random Walks, Return times.
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1 Introduction

Large scale networks, as organizational/social contacts, peer-to-peer, grids
or wireless sensors networks often exhibit complex and huge interaction graph
structure. The scale of these graph is such that it usually prevents to compute
any global characteristic aggregated from individual nodes [3, 20]. Consequently,
designing fully distributed solutions (in which network components participate
only based on local or close neighborhood information) is of the utmost impor-
tance.

The offline analysis of complex social networks has been addressed by physi-
cians and sociologists for many years. These works provide algorithms and me-
trics to extract characteristics on the interactions captured and the importance
of individuals in these graphs. The notion of centrality [6, 7, 8, 14, 16, 25] typi-
cally provide such infomations. Existing algorithms computing node centrality
often exhibit a high complexity, and can hardly be decentralized at a reasonable
cost. This is a major issue as distributed systems can precisely greatly be empo-
wered with such interaction analysis. In addition, it is becoming more and more
difficult for single computers to accommodate the growing size of distributed
systems. Also, new forms of decentralized systems, such as Dark Nets or cryp-
ted peer-to-peer networks simply forbid the access to the full graph topology.
Finally, the trend in industry is to exploit at best the free computing power of
clients instead of investing into expensive server farms. There is a stringent need
to come up with fully decentralized approach adapted to such scales.

To overcome these issues, we introduce a novel notion of centrality, called
second order centrality. The second order centrality captures the importance of
individual nodes in a given topology and it allows global characterisation of a
complex network. In addition this algorithm can be easily implemented in a fully
decentralized way, thus accommodating the growing scale of complex networks.
In this paper we make the following contributions ; (i) we define a novel notion
of centrality, called the second moment centrality and show that this represent
a meaningful metric to characterize both the criticity of individual nodes in a
given topology as well as the global health of a complex network with respect
to connections. Typically the second order centrality enables to capture the
importance of nodes in a graph topology and can be used to identify critical
nodes and clusters. We show this both analytically and through simulations. (ii)
We provide a lightweight algorithm to compute in a fully decentralized way the
second order centrality of each node. The strength of this algorithm lies in its
simplicity. It relies on a random walk visiting the network. Nodes compute their
second order centrality by simply recording the return times of that walk. The
standard deviation of those return times is at the core of our approach. (iii) We
show that this algorithm can be used to provide graph signatures and therefore
information about the global characteristics of a graph. (iv) We provide some
simulation results that not only accurately match the analysis but also provides
some evidence of the relevance of that metric in a practical setting.

The rest of this paper is organized as follow. Section 2 provides the design
rationale of the second order centrality. Section 3 review former forms of cen-
trality and emphasizes their characteristics and limitations. Section 4 describes
the second order centrality algorithm. The analysis is provided in Section 5.
Simulation results are provided in Section 6. Finally, in Section 7, we discuss
the convergence time of our approach before concluding.
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4 Anne-Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, Gilles Trédan

2 Design rationale

We consider an arbitrary network, represented as an undirected graph G =
(V,E), with n vertices and m edges. For a node i ∈ V , Γi denotes its set of
neighbors in G (vertices with an adjacent edge to i), and di its degree, namely
the size of Γi. Note that the resulting graph may represent any peer-to-peer,
grid, social, or physical network. We assume a connected graph ; this is crucial
to avoid a result on the connected component where the algorithm is started.

We use a random walk on the graph G, i.e. a process progressing in the
network from a node i to another node chosen uniformly in i’s neighborhood
Γi. We consider this walk to be permanent for it has no stop condition ; this is
one of the main differences with most of random walk based algorithms (e.g.
sampling [15] or search [22]). We assume that the random walk is initiated by an
arbitrary node of the network. We also assume, for the sake of comprehension,
that the network is static i.e. the topology does not change during the process
execution. Finally, the random walk is assumed to be never lost.

Our approach relies on the fact that the relative importance of a given node
can be inferred from the regularity at which the random walk visits the node.
Typically, the algorithm exploits the time elapsed between two consecutive visits
of such random walk on a given node (called return time hereafter). These return
times can be either absolute time, thus implying a clock on every system node,
or simply the number of steps proceeded by the random walk (which thus carries
that information). Note that in the first case, nodes’ clocks do not need to be
synchronized, as we are only interested in local standard deviation of the return
times.

Let us notice that our model only requires one random walk for the whole
system to provide the algorithm result, as opposed e.g. to one random walk laun-
ched by each node for its own purposes.

3 Related work

In this section, we first review some notions providing global graph charac-
teristics. Second, we consider various notions of centrality, used to assess the
relative importance/criticity of nodes in a given graph. Finally, we detail the
random based betweenness centrality for it is the closest approach to the second
order centrality defined in this paper.

3.1 Macro level : Graph connectivity characteristics

The global connectivity characteristics of a graph can be expressed by the
notions of spectral gap (noted λ2), and conductance (noted Φ). The value λ2 is
the smallest positive eigenvalue of the Laplacian matrix of G, L (L = D − A,
with D and A respectively the diagonal matrix of degrees and the adjacency
matrix of G, with the sort 0 < λ2 ≤ ... ≤ λn). The conductance Φ is defined as
follow :

Φ := inf
C:|C|≤N/2

E(C,C)

|C|
,

where E(C,C) denotes the number of edges in the graph G between the set
of nodes C, and the complementary set C (see e.g.[23]). Finally, λ2 and Φ are

INRIA
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linked by the Cheeger inequality [23] that states that λ2 ≥ Φ2

2∆(G) , where ∆(G)

is the maximal degree of nodes in the graph. Therefore the lowest the values
λ2 and Φ, the higher the probability that algorithms that are run on top of
the network behaves poorly, and/or slowly. An example of particular interest is
the mixing time of random walks, namely the number of steps that requires a
random walk so that it has a uniform probability to be on any node of the given
graph ; the mixing time is typically controlled by the graph conductance (see
e.g. [21]). In short, the values of spectral gap and conductance simply express
connectivity issues or bottlenecks at the granularity of the whole graph without
identifying specifically involved nodes.

3.2 Micro level : individuals in the graph

Beyond global characteristics, we are interested in the properties of indi-
vidual nodes and their impact on overall graph connectivity. This impact is
reflected by centrality indices.

The betweenness centrality [14, 6, 7, 16] is considered the most relevant in
that context. It consists in computing on each node the fraction of shortest
paths that passes through it. Formally, the betweenness centrality for a node v

is bC(v) = Σs,t∈V
σs,t(v)

σs,t
, where σs,t(v) is the number of shortest paths from node

s to node t passing through v, and σs,t, the total number of shortest paths from
s to t. The original algorithm requires Ω(n3) time steps to complete ; another
approach completes in O(nm) steps [7]. Finally, recent experimental studies
[8, 16] propose some approximations for practical use in large networks.

3.3 Random walk based betweenness centrality

Despite a great interest towards the previous metric, Newman showed [25]
that the notion of betweenness centrality suffers from some imperfections as it
considers only nodes involved in shortest paths. A typical example is presented
on Figure 1, where two clusters are linked by a few nodes only. Here, node c,
which is outside the shortest paths linking left and right clusters is given a very
low score of betweenness centrality despite its clear importance for alternative
paths.

a b

c

Fig. 1 – An example where betweenness centrality give node c a low score despite its
importance

Such left out nodes can also be of a vital importance for the network re-
silience, for load balancing or facing failures of shortest path nodes. Another
metric, known as flow betweenness, also suffers from a similar drawback [25].
Random walk betweenness has been introduced to fix this issue : the idea is

RR n° 6809



6 Anne-Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, Gilles Trédan

that a random process also takes into account non-optimal paths. Assuming the
knowledge of the whole graph, the proposed method uses its adjacency matrix
and completes in O((m + n)n2) steps. It consists in launching a random walk
from each node s to every other node t. The random walk betweenness of a node
i is equal to the number of times that a random walk starting at s and ending at
t passes through i along the way, averaged by all possible (s, t) pairs. A heuristic
is also added to avoid counting back and forth random walk passages on nodes.

Despite a proper definition of the random walk based centrality, the New-
man’s approach requires a global knowledge of the graph and this prevents its
application in a fully decentralized setting.

Instead, we define a new form of centrality, called the second order, as op-
posed to Newman’s approach interested in the first order (expected number of
visits to a given node for all source-target pairs [25]). This centrality is compu-
ted through the use of a single random walk, in a fully decentralized manner.
Each node is required to be aware of its direct neighborhood Γ only. There is
no need for any global information. Instead, each node only records the random
walk return times and computes the standard deviation of the stored values.

4 Second order centrality

In this section, we first describe the intuition behind our approach. We then
present the distributed algorithm which outputs on each node its centrality, the
value of which reflects the relative importance of that node in the network.

4.1 The high clustering intuition

To illustrate our purpose, we voluntary consider an extreme setting, known as
the barbell graph. The following barbell graph is composed of two fully connected
components (called bells) of m1 nodes each, connected by a path of m2 nodes.
Figure 2 depicts such a graph with m1 = 5 and m2 = 2.

vL vR

vr

vl

Fig. 2 – Example of a Barbell graph

Consider a random walk visiting the network from node to node. First, let
us consider node vL on Figure 2 : if a random walk is running in the left bell,
vL has the same probability 1/m1, than any other node in this bell to be visited
by the random walk at each step. Yet, once the random walk has passed to the
right bell, vL is the mandatory passage point for the walk to get back to the
left bell. Therefore, such bridge nodes, vL and vR, are visited more regularly
than other nodes by a random walk continuously running. This is turned into a
reduced standard deviation of the number of steps needed for a random walk to

INRIA
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return to them, after an initial passage (called return time). Our claim is then
that different roles of nodes in the topology can be inferred from the return
times.

Secondly, return times can also be used to discover topology issues. It can
easily be shown (see e.g. [4]) that a random walk starting at any node in the
left bell, say vl, takes as mean time m2

1m2 steps to reach another node, vr, in
the right bell (and conversely). On the other hand, nodes from a given bell are
visited by the random walk often as long as the random walk remains in the
same bell. Once it has crossed the path to the other bell, the trends reverses. By
simply comparing the standard deviation of return times of the random walk,
every graph node can then locally detect the presence of critical paths, or traps,
in the topology.

4.2 Distributed second order algorithm

Based on those observations, we propose a new centrality, the second order
centrality, along with a lightweight distributed algorithm to compute it, in which
each node simply computes the standard deviation of the return times of a
permanent unbiased random walk running on the topology.

4.2.1 Unbiased random walk

The paper by Newman considered simple random walks over the graph’s
transition probability matrix. This represents the classic process where at each
node, a random walk is directed to a neighbor of the node, picked uniformly at
random. Such a simple forwarding process obviously favors high degree nodes,
as its stationary distribution πi = di/2m (see e.g. [24]). The more a node is
connected the more often it is visited. Newman points out this issue and shows
experimentally that it results in a correlation between a node’s degree and its
random walk based betweenness centrality, even for nodes that are not central
in the topology.

To overcome this issue and cope with heterogeneous distribution of degree,
the proposed distributed second order algorithm, relies on an unbiased random
walk, where πi is 1/n for all i ∈ V . Informally, this means that after a sufficient
number of steps (called mixing time in literature), the random walk has an equal
probability to be on any graph node.

Unbiasing the random walk ensures that the only cause of the variations of
return times on nodes is due to their relative importance in the topology, and
does not depend on local factors such as node degrees. In addition, the fact that
the random walk eventually visits all nodes an equal number of times, speeds up
the algorithm’s convergence by evenly providing return times to all nodes. We
used the Metropolis-Hastings technique ([17, 26]) to unbias the random walk.
The node hosting the random walk selects a neighbor uniformly at random : the
random walk is forwarded to the chosen neighbor with a probability depending
on the degree of both nodes. This process is described from line 1 to line 9 in
the algorithm description (Algorithm 1).

RR n° 6809
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Algorithm 1 Second order centrality algorithm

1: Upon reception of the random walk on node i:
2: /* Metropolis-Hastings random walk */
3: Choose a neighbor j from Γi uniformly at random
4: Query j for dj

5: Generate a random number p ∈ [0, 1] uniformly
6: if p ≤ di/dj then

7: forward the random walk to j
8: else

9: random walk remains at i
10: /* Standard deviation */
11: if first visit of the random walk on i then

12: Create array Ξi

13: else

14: Compute return time r since last visit
15: Add r to Ξi

16: if |Ξi| ≥ 3 then

17: Compute standard deviation :

18: σi(N) =
q

1
N

ΣN
k=1Ξi(k)2 − [ 1

N
ΣN

k=1Ξi(k)]2

4.2.2 Standard deviation of return times

The key point of the algorithm is the variation of the frequency at which a
random walk visits nodes. Every node i in G joins the process on the first visit
of the random walk, by creating an array Ξi that logs every return time. Recall
that the return time to node i is defined by the time, for the walk starting at
i, to return to i. We denote by Ξi(k) the k-th return time of the random walk
to node i. A simple solution to capture an irregularity of visits on nodes is to
proceed as follows : after the third recorded return time, a node i computes the
standard deviation

σi(N) =

√

1

N
ΣN

k=1Ξi(k)2 − [
1

N
ΣN

k=1Ξi(k)]2

of the N values in Ξi. These return times being independent, we have from the
strong law of large numbers :

lim
N−→∞

σi(N) = σi

Once the random walk has run for a sufficiently long time, σ values represent
the relative importance of nodes in the graph : the lower the value, the higher
the impact of a node. The description of the algorithm is provided in Algorithm
1.

4.2.3 Algorithm convergence time

Each node needs to be visited a few times by the random walk to compute
meaningful deviation results. Therefore the algorithm convergence time is rela-
ted to the cover time of graph G. Cover time is defined as the number of steps
needed by a random walk to visit each vertex of G. Feige [11] showed that cover
time, for a simple random walk, ranges from (1 + o(1))n ln n steps for a com-
plete undirected graph to at most at 4

27n3 + o(n3) [12] for the lollipop graph

INRIA
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(a fully connected graph of n
2 nodes, linked to a line of the remaining nodes).

This lower bound result holds for an unbiased random walk as all nodes in a
complete graph have the same degree. We are not aware of an upper bound
for an unbiased random walk. Therefore, our algorithm requires the number of
steps to cover the graph, times a constant, so that each node is visited several
times.

Other random walk based algorithms (e.g. for graph connectivity assessment
[13]) exhibit running time of O(n3) in worst case of input graph irregularity ;
we expect far more reduced running times for realistic networks.

5 Return times in Markov chains

This section provides some theoretical analysis of the distributed second
order algorithm. More specifically we provide a formula to compute the theore-
tical standard deviation of return times for any node, given an input graph as a
transition probability matrix. In addition, it is used as the baseline centralized
theoretical prediction against which the simulation results of the distributed
algorithm are compared.

This formula is also useful for (i) a system administrator who wants to
predict the behavior of random walks over a particular graph structure before
deploying it, or for (ii) graph nodes to derive an expected algorithm completion
time when basic properties of the graph are known.

5.1 Standard deviation of return times

We look for a formula that provides standard deviation of return times on
a particular node, given by the graph transition probability matrix. This re-
turn time is function of the position of this node in the graph. This idea is at
the core of our approach, and is generally forgotten due to the fact that litera-
ture often provides bounds to return times that hide the local variations nodes
may experience (big O notation). Those potentially small variations suffice to
differentiate nodes with respect to their position in the graph.

We use a classical discrete time Markov chain model to represent the random
walk running on the input graph. States of the Markov chain are nodes, or ver-
tices V of G. The general case of a biased walk is presented first, as an unbiased
walk is simply a subcase of it. Finally, for the purpose of the demonstration and
to give theoretical results on return times, we consider the transition probability
matrix of the considered graph ; as precised in Section 2. This global knowledge
of the graph is obviously not assumed in our distributed algorithm proposal.
Proofs are deferred in the appendix.

Let X = {Xn, n ∈ N} be a homogeneous and irreducible discrete time
Markov chain on the finite state space S. We denote by P = (P (i, j))i,j∈S its
transition probability matrix and we are interested in the computation of the
return times for every state of S. For every state j ∈ S, we denote by τ(j) the
number of transitions (random walk steps) needed to reach state j, i.e.

τ(j) = inf{n ≥ 1 | Xn = j}.

The state space S being finite and X being irreducible, X is recurrent which

means that τ(j) is finite a.s. We denote by f
(n)
j (i) the distribution of τ(j) when

RR n° 6809
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the initial state of X is i, that is, for every n ≥ 1,

f
(n)
j (i) = P{τ(j) = n | X0 = i}.

f
(n)
i (i) represents the probability, starting from state i, that the first return to

state i occurs at instant n and, for i 6= j, f
(n)
j (i) represents the probability,

starting from state i, that the first visit to state j occurs at instant n. These
probabilities are given by the following theorem [9]. For the sake of completeness,
the proof of this theorem is also provided in the appendix.

Theorem 1 For every i, j ∈ S and n ≥ 1, we have

f
(n)
j (i) =















P (i, j) if n = 1

∑

ℓ∈S−{j}

P (i, ℓ)f
(n−1)
j (ℓ) if n ≥ 2.

(1)

For every j ∈ S and n ≥ 1, we denote by f
(n)
j the column vector containing

the values f
(n)
j (i) for every i ∈ S. For every j ∈ S, we introduce the matrix Qj

obtained from matrix P by replacing the jth column by zeros, that is

Qj(i, ℓ) =

{

P (i, ℓ) if ℓ 6= j
0 if ℓ = j.

We also introduce the column vector Pj containing the jth column of matrix P ,
i.e. Pj(i) = P (i, j). Equation (1) can then be written in matrix notation as

f
(n)
j =







Pj if n = 1

Qjf
(n−1)
j if n ≥ 2,

(2)

which leads to an easy computation of the vectors f
(n)
j . We now define the

matrix M = (M(i, j))i,j∈S by M(i, j) = E{τ(j) | X0 = i}. M(i, i) represents
the expected time between two successive visits of X to state i, and, for i 6= j,
M(i, j) represents the expected time, starting from state i, to reach state j for
the first time. The Markov chain X being irreducible, we have M(i, j) < ∞ for
every i, j ∈ S and

M(i, i) =
1

πi
,

where πi is the ith entry of the probability distribution π, which is the unique
solution to the system π = πP .

To compute all the entries of matrix M , we introduce the column vector Mj

containing the jth column of matrix M , i.e. Mj(i) = M(i, j) and the column
vector of ones denoted by 1. These expected values are given by the following
result.

Corollary 2 For every j ∈ S, we have

Mj = (I − Qj)
−11. (3)

INRIA
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In practice, the column vector Mj is obtained for every j ∈ S by solving the
linear system (I − Qj)Mj = 1.

Let us consider now the second moment of τ(j). We define the matrix H =
(H(i, j))i,j∈S by H(i, j) = E{τ(j)2 | X0 = i}. H(i, i) represents the second
moment of the time between two successive visits of X to state i, and, for i 6= j,
H(i, j) represents the second moment of the time, starting from state i, to reach
state j for the first time. We introduce the column vector Hj containing the jth
column of matrix H, i.e. Hj(i) = H(i, j). These values are given by the following
result.

Corollary 3 For every j ∈ S, we have

Hj = (I − Qj)
−1(I + Qj)Mj .

In practice, the column vector Hj is obtained for every j ∈ S by solving the
linear system (I − Qj)Hj = (I + Qj)Mj .

The standard deviation σ(i) of the return time to state i on a target graph
is thus given by

σ(i) =
√

H(i, i) − [M(i, i)]2. (4)

5.1.1 Unbiaised random walks

When the random walk is unbiased, all the nodes in the graph have the
same degree d (Metropolis-Hastings method virtually adds self-loops to poorly
connected nodes to adjust their degree) and P (i, j) = 1/d if nodes i and j are
connected in the graph and 0 otherwise. This means in particular that matrix P
is symmetric and thus bistochastic, i.e. 1tP = 1t, where t denotes the transpose
operator. We then have πi = 1/|S| and M(i, i) = |S|. For what concerns the
second order moments H(i, i) of return times to state i, we have from Corollary
3,

(I − Qj)Hj = (I + Qj)Mj .

Premultiplying by 1t, we get

1tHj − 1
tQjHj = 1tMj + 1tQjMj . (5)

By definition of Qj , we have 1tQj = 1t−ej , where ej is the jth unit row vector,
i.e. ej(i) = 1 if i = j and 0 otherwise. So equation (5) simplifies as

1tHj − (1t − ej)Hj = 1tMj + (1t − ej)Mj

and thus

H(j, j) = 2
∑

i∈S

M(i, j) − M(j, j) = 2
∑

i∈S

M(i, j) − |S|.

The standard deviation σ(j) then writes, from relation (4), as

σ(j) =

√

2
∑

i∈S

M(i, j) − |S|(|S| + 1). (6)
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5.2 Results for 3 classes of regular graphs

We instantiate this formula for three extreme graph diameter settings : a
complete graph (diameter 1), a ring (diameter ⌊n

2 ⌋) and a line (diameter n). On
all graphs, we consider an unbiaised random walk.

On the ring we have d = 2 and the non zero transition probabilities are
given, f or every i ∈ S = {0, . . . , n − 1}, by

P (i, i + 1 (mod n)) = P (i, i − 1 (mod n)) = 1/2.

The standard deviations of the return times are given by the following theorem.

Theorem 4 For the unbiased random walk on a n nodes ring, we have σ(j) = σ
for every j where

σ =

√

n(n − 1)(n − 2)

3
.

Proof. It is easily checked that the solution to equation (3) is given, for i 6= j,
by

M(i, j) = (n − |i − j|)(|i − j|)

and as mentioned above, we have M(i, i) = n. We then have

n−1
∑

i=0

M(i, j) = n +
(n − 1)n(n + 1)

6

Using equation (6), we obtain the desired result.

Note that the fact all the σ(j)’s are equal is due to the regularity of the
structure.

On the complete graph, we have d = n− 1 and thus, the transition probabi-
lities are given, for every i, j ∈ S, by P (i, j) = 1/(n− 1) if i 6= j and P (i, i) = 0.
The standard deviations of the return times are given by the following theorem.

Theorem 5 For an unbiased random walk on a n nodes complete graph, we
have σ(j) = σ for every j where

σ =
√

(n − 1)(n − 2).

Proof. It is easily checked that the solution to equation (3) is given, for i 6= j,
by

M(i, j) = n − 1

and as mentioned above, we have M(i, i) = n. We then have

n−1
∑

i=0

M(i, j) = n + (n − 1)2

Using equation (6), we obtain the desired result.

INRIA



Centralité du second ordre : Calcul distribué de l’importance de noeuds dans un réseau complexe13

Again the fact all the σ(j)’s are equal is due to the regularity of the structure.
On a line we have d = 2 and the non zero transition probabilities are given,

for every i ∈ {1, . . . , n − 2}, by

P (i, i + 1) = P (i, i − 1) = 1/2

and P (0, 0) = P (0, 1) = P (n − 1, n − 2) = P (n − 1, n − 1) = 1/2. The standard
deviations of the return times are given by the following theorem.

Theorem 6 For the unbiased random walk on a n nodes line, we have for every
j ∈ {0, 1, . . . , n − 1},

σ(j) =

√

n(n − 1)(4n − 5)

3
− 4nj(n − j − 1).

Proof. It is easily checked that the solution to equation (3) is given, for i 6= j,
by

M(i, j) = (j − i)(i + j + 1) for i < j
M(i, j) = (i − j)(2n − (i + j + 1)) for i > j

and as mentioned above, we have M(i, i) = n. We then have

n−1
∑

i=0

M(i, j) =
n(2n2 − 3n + 4)

3
− 2nj(n − j − 1).

Using equation (6), we obtain the desired result.

Note that the fact that σ(j) = σ(n − j − 1) is due to the symmetry of the
structure, and that σ(j) is minimal for nodes ⌊n−1

2 ⌋ and ⌈n−1
2 ⌉. This last remark

highlights the fact that our algorithm produces a centrality result, as on a line,
critical nodes (wrt centrality) are in the middle of it.

Moreover, in the context of symmetric graphs, the ring and the complete
graph are extreme cases of resiliency : the ring is the weakest (it is only 2-
connected), whereas the complete graph is the most robust structure (it is (n−
1)-connected). We believe it is reasonable to expect the standard deviation of
symmetric graphs to evolve between the corresponding values (i.e. between o(n)
for the complete graph, and o(n3/2) for the ring).

5.3 Application to specific graphs

Another contribution of this paper is, through the previous formula (4), to be
able to provide signatures1 of graphs. We now expose different signatures, that
can help to sort graphs according to their health : a good health is characterized
by good navigability properties. In this section, we illustrate this by computing
this result for several well known graph topologies.

The σ value is computed for each node, based on the transition probability
matrix (using a random walk unbiased with the Metropolis-Hastings method).

We considered the following graphs for theoretical computation : (i) a ran-
dom graph, constructed on the Erdös-Rényi model [10]. The probability that two

1a graph signature could be seen as a footprint constituted by the distribution of standard
deviation values of its nodes
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edges are connected is given by p = θ ln n
n . Probability p > ln n

n insures connecti-
vity of G, i.e. that no vertex is isolated. (ii) a clusterized graph composed of two
equal size random graphs linked by a single edge. The resulting graph is close
to a Barbell graph presented earlier in the paper, with the difference that left
and right bells are not fully connected (i.e. not complete graphs). (iii) a ring
lattice, where a node i is connected to nodes i − k/2, i − k/2 + 1, . . . , i + k/2
(values mod n, and k being an input parameter), excluding itself. Finally (iv)
a scale-free graph, based on the Barabási/Albert model [3]. We believe that
those graphs are representative of classical graph families, i.e. graphs that are
both widely studied and often targeted in today network designs, or parts of
actual social graphs [28]. All four graphs have a size of 103 nodes, and all in-
put parameters have been set so that their average degree is 20, insuring a fair
comparison.
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Fig. 3 – Histogram of theoretical standard deviation of return times, for 4 particular
graphs

Results are presented as histograms on Figure 3. A particular point, say (x =
2500, y = 3), expresses that three network nodes have a resulting σ of 2500. We
first observe a clear difference in the distribution of results for the tested graphs.
A thin distribution of values for a particular graph basically means that all
nodes have a similar role or importance in the structure. Contrarily, a significant
scattering in the values is to be interpreted as an important irregularity of
roles. Furthermore, in graphs of equal sizes and degree average, differences in
tendencies of mean σ value, reflect discrepancies in the navigation properties of
those graphs (related to diameter or presence of bottlenecks).

The graph exhibiting the lowest σ values is the random graph (marked a), as
the gathered values on nodes lie approximately in a [1000 : 1500] step interval.
This matches the consensus about the attractive properties (low diameter and
low clustering coefficient) of such graphs. It is followed by the Barabási/Albert
graph (b), which has a larger repartition of values (1000− 2500). This is due to
the fact that hubs (highest degree nodes) are part of a lot of shortest paths, and
that most of other nodes have a far inferior global importance. In the ring lattice
(c), a line-shaped distribution (note the logscale on the y-axis) is observed, due
to the perfect regularity of the lattice structure. Finally, the clusterized graph
(d) exhibits an interesting distribution for two reasons. First, this structure,
composed of two random graphs linked by an edge, produces a σ value, three

INRIA
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time the one of a (single) random graph. This is obviously due to the difficulty
of the random walk progression in the structure, as exposed in Section 4.1.
The second observation concerns the detached line around 3250 : the two nodes
responsible of this line are the bridge nodes of the structure (as nodes vL and vR

on Figure 2). This confirms the intuition given in 4.1 stating that those bridges
play an important role in the topology and thus see the random walk more
regularly than other nodes.

To summarize, this formal method can also be leveraged to assign particular
signatures to class of graphs, allowing to sort them by order of healthiness or
usability in practice.

6 Evaluation

We now evaluate our distributed algorithm through extensive simulations on
various graph topologies, including the previously introduced ones.

In this section, we report the experimental results. We evaluate the distri-
buted second order centrality algorithm along the following metrics : (i) the
ability to produce unbiased results in the presence of heterogeneous degree dis-
tributions ; (ii) the matching between the theoretical expectations and the ex-
perimental results with respect to convergence time and the ability to detect
topology critical nodes, and finally (iii) the practicality of the approach : typi-
cally we show that for graphs used in practice, convergence time is, as expected,
far less than the upper bounds given by theory.

We use the theoretical values computed and reported previous section, as
baseline for comparison. We experimentally show that our algorithm results on
nodes converge within a small accuracy window, thus validating our proposal.
We then give some intuitions to show that the computed values can be used
to trigger some distributed repair mechanisms, or to identify the existence of
clusterized parts in the graph.

Experiments have been obtained using the PeerSim discrete event simulator
[1].

6.1 Conductance and centrality : micro example

As we mentioned earlier, the conductance of a graph could be related to
some critical bottleneck nodes, due to poorly connected parts. Here, we illustrate
our algorithm on a micro graph to compute the conductance ; we also provide
theoretical and simulated results of our algorithm, to compare both notions.

Figure 4 plots a typical run of the algorithm, with the standard deviation of
random walk’s visits on every node (italic values). The bold values are the theo-
retical values of standard deviation provided by formula (4). The conductance Φ
has been computed for every adjacent vertices of this small example (Φ = 0.2) ;
we also present the 2 other smallest values and the cut implied (dashed lines).
Note that the conductance of the graph is the minimum of the values of the
cuts.

Nodes at the edges of the graph have a relatively high σ, and nodes in the
middle of the graph the lowest value, following the intuition that the random
walk’s visits are less irregular for centered nodes compared to visits on edge
nodes, on that example close to a line or path graph (thus matching Theorem 6).
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Fig. 4 – Conductance and standard deviation of return times on a micro network
with n=10 nodes

We observe that the importance of nodes in the topology is effectively correlated
to the inverse of their value order : nodes with the smallest σ values are attached
to the conductance cut with the smallest value.

6.2 Degree bias removal

We now provide a simple algorithm run example, aiming to assess the effecti-
veness of the Metropolis-Hastings method used jointly to our algorithm, on our
typical clusterized graph. Figure 5 depicts simulation results of the proposed al-
gorithm, over the previously introduced clusterized graph (n = 103, p = 1.5 ln n

n ).
We run a simple random walk instance, and the unbiased version ; results are
plotted after 2.106 random walk steps.
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Fig. 5 – Simple VS unbiased random walk centrality estimation

We observe that for the simple random walk case, there is a clear correlation
between resulting standard deviations and nodes’ degree. Recall that low σ
significates a high importance in the topology ; high degree nodes then all gets
a high value, despite a non necessarily real importance. Contrariwise, no effect
is measured on the unbiased case, as the σ are concentrated in a tighter range,
that does not decrease when nodes’ degree is increasing. This example confirms
that our algorithm removes the fact of considering a node with a high degree as
more important than it really is.
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Note that using an unbiased random walk preserves the importance of high
degree nodes, if this high degree is correlated to its importance (for example a
node may be some kind of hub and is therefore lying on many shortest paths
[25]).

6.3 Speed of convergence

This section studies how fast simulations match the theoretical expectations
provided using formula (4).
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Fig. 6 – Convergence of algorithm runs towards theoretical prediction, for 4 particular
graphs

Figure 6 plots, for the four previously introduced graphs, the error ratio
of algorithm results as the random walk proceeds. The y-axis represents the
computation error, that is the algorithm result value minus the theoretical one,
normalized by the theoretical value (y = 0 then exhibit a perfect result). Pre-
sented curves are the average result of all graph nodes’ value.

As the random walk progresses in the graph, the number of visits on nodes
strictly increases, and thus give a larger set of return time values in their Ξ array.
The computation of standard deviations then provides continuously improved
estimations of importance2. We note the algorithm quickly converges to a small
error window, validating its behavior against theory prediction and showing a
relatively fast behavior (compared to the worst case O(n3) theoretical predic-
tion). This reflects the theoretical analysis provided in Section 5.3 : the largest
the diameter and the more cluserized the graphs, the longer the convergence of
our algorithm toward an acceptable value. In high diameter/clusterized settings,
the random walk process may get “trapped” in specific zones. Escaping from
such zones may take time, thus slowing down the computation of an acceptable
standard deviation.

6.4 Bottleneck nodes

We now focus on a specific goal of the proposed algorithm, namely detecting
bottleneck. To this end, we consider the most critical nodes of the cluserized

2Note that we assume here unlimited memory as we believe this is not an issue in practice
for the storage of simple integers
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topology : the bridges. Those nodes are likely to receive a high pressure from
applications that are run on top of the topology, due to their critical positions.
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Fig. 7 – Evolution of the position of bridges among the lowest standard deviations
of all network nodes

Settings of the experiment being n = 2 × 500 random graphs linked by an
edge, we focus on the σ values of the two nodes sharing the edge that gathers
the two graphs (nodes vL and vR of Figure 2). We study the σ of those nodes,
compared to those of all network nodes. In other words, we check out if their
values are effectively among the smallest values given by our algorithm, thus
assessing their effective criticity.

Figure 7 depicts the effective position of those bridges in either 1 or 5% of
the smallest σ values of all nodes in G as a function of the number of random
walk steps. The results shown are averaged over 20 experiments. We observe
a convergence of the algorithm toward an accurate ordering, after an initial
bootstrap phase of the algorithm.

Figure 8(b) provides a visual example of the distribution of those values on
all system nodes. The considered network, Figure 8(a), is a 2-Dimensional net-
work, on the model of a wireless sensor network for example, where nodes are
connected to their close geographic neighbors. Results of our algorithm are plot-
ted on Figure 8(b), where darker zones correspond to low standard deviations
while clearer zones corresponds to higher values of σ. It is clear from this figure
that nodes at the edges of the topology are visited irregularly, and nodes on the
bridges have low values, as they are critical passage points. An animation of the
evolution of the σ values on nodes is available at [2] ; snapshots of the network
are taken every 25.103 steps.

Those obvious differences in the ranking of nodes with respect to their σ,
may be used to detect, in a distributed fashion, those central and potentially
critical nodes by comparing such values.

6.5 Towards distributed detection

In online applications of this algorithm (as opposed to offline graph analysis),
a target standard deviation σideal may be provided to each node so that it
is able to estimate its position compared to the ideal situation captured by
σideal. Computing its own standard deviation σ, a node can compute the ratio

σ
σideal

, triggering repair if this ratio deviates from a predefined threshold, in
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Fig. 8 – (a) Repartition of 103 nodes on a bottlenecked 2-D topology, (b) Resulting
distribution of standard deviations on nodes, after 1 × 106 steps

a totally distributed fashion. Repair includes rewiring, that is neighborhood
re-arrangement by creating new edges or dropping some others, depending on
node’s criticity. σideal can be computed using tools provided in Section 5, or
through simulations on graph models.

Nodes might also leverage each other information to improve their perception
of the graph characteristics. Nodes can detect the presence of clusters simply by
exchanging their return time array. Suppose that nodes a and b exchange their

sets of return times Ξa and Ξb. The ratio ra→b = σ(Ξa∪Ξb)
σ(Ξa) can be exploited

to achieve distributed cluster detection : if a and b are located in two different
clusters, then the standard deviation of the union of passage times is small, so
that ra→b is low. Conversely, if nodes a and b are in the same cluster, the random
walk is likely to hit both at very close periods, so that ra→b converges to 1. As
an illustration, consider a graph made of 2 clusters A and B. A random walk
that starts in cluster A, remains in that cluster for 2000 hops, then gets trapped
in cluster B for another 2000 hops, then returns to A for 2000 hops, and so on.
A node a belonging to cluster A sees the random walk regularly in the intervals
[0 : 2000] and [4000 : 6000]. Thus, the major contribution to σ(Ξa) comes from
the large delay between the last visit in the first interval and the first visit in
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the last interval. When a merges it’s view with the view of a node b in cluster
B, which sees the random walk regularly in [2000 : 4000], this delay disappears,
reducing significantly σ(Ξa ∪ Ξb) w.r.t. σ(Ξa) : the perceived difference is high.
Contrarily, if b is in cluster A too, the huge [2000 : 4000] delay is left intact :
the difference tends to be low.
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Fig. 9 – Node to node comparison of passage times, for distributed cluster detection

This is illustrated on Figure 9. In a n = 2 × 500 clusterized graph, where
the 500 first nodes are in a cluster and the remaining ones in the other, ra→b

ratio is computed with any two nodes (obviously ra→b ≡ rb→a, thus graphic is
symmetrical). Two main colors appear (high and low difference due to merging),
corresponding to the two clusters of the topology. Nodes with IDs 499 and 500
are bridges and thus have an intermediary ratio.

This illustrates that though a sampling mechanism provided by the appli-
cation (e.g. [27, 19]), nodes would be able to detect graph degeneration into
different clusters. Moreover, this allows any pair of nodes to guess whether they
belong the same cluster or not. This may constitute a useful indicator to empo-
wer graph reparation algorithms.

7 The termination question

We finally discuss here a limitation of our approach as well as some other
random walk based protocols. The fully distributed nature of our model implies
that we do not make assumptions on the knowledge of global parameters such
n, the size of the graph, or Φ, its conductance (related to random walk mixing
time). As a consequence, a single node cannot decide on its own when the al-
gorithm has converged, which means that it does not know when the random
walk has run a long enough period of time to have visited few times the whole
graph. Such a problem is related to the general problem of distributed termi-
nation detection. An extreme case is the Barbell graph considered on Figure 2.
Assume the random walk starts in the left bell ; then node vl has a high proba-
bility to be visited several times before the random walk passes in the right bell.
If the graph was less severely degenerated, the few return times computed by
vl would have been sufficient to get a representative σ value ; in this particular
case, we would like the node to take a value as a result of the algorithm when the
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random walk has went several times back and forth in both bells. Convergence
thus depends on network size and conductance. This problem is actually related
to the mixing time of the random walk process, introduced in the related work
Section. Many random walk based algorithms also suffer from this factor [15],
[26].

In this light, our approach eventually converges to a satisfying standard
deviation value, meaning a convergence after a constant factor (number of visits
needed on each node) times the upper bound on cover time, that handle worst
cases of topology wiring. A practical approach to this decision problem on each
node is to use periodic comparison of values between nodes, as highlighted in
Section 6.5.

If we relax the assumption on the non-knowledge of n, by having a rough
estimation of its order of magnitude (e.g. for offline social graph analysis, re-
searchers have an idea of the dataset size, or in peer-to-peer systems, designers
have an idea of the popularity of their application), then worst case time to wait
is directly derivable from cover time bounds.

8 Conclusion

While evaluating the global characteristic of complex network with respect
to connectivity, it is also of the utmost importance to clearly identify the criticity
of individual nodes. Such nodes may be at the origin of bottlenecks for example
that can significantly hamper the performance of any application running on
the network. In an attempt to overcome the drawback of current approaches,
which are either not addressing all individual nodes or cannot scale to contem-
porary network sizes, we introduce a novel centrality, called the second order.
Its preserves the advantages highlighted by Newman over previously introduced
centralities, while being both simple, lightweight and able to be computed in a
fully decentralized way. Based on our claim that regularity of visits on nodes
reflects their relative importance, we showed that a single random walk, run-
ning permanently in the system, can distributedly provides values that allow a
ranking in the topology. We provide theoretical analysis of the second order cen-
trality. Simulation results match the analysis and highlights the fact that such
an algorithm can be considered in practice to assess the relative importance of
nodes in large scale networks.

In the light of recent work [5] on the use of multiple parallel random walks to
lower cover time (k times linear speed up for large classes of graphs, for k ≤ log n
walks), or on the fact [18] that a small extra neighborhood knowledge can suffice
to bias a random walk in order to speed up cover time (O(n2 log n) instead of
O(n3)), it would be interesting as future work to study if those applications
can lower convergence time of our approach, without producing significant side
effects.

9 Proofs

9.1 Proof of Theorem 1

By definition of f
(n)
j (i) we have, for n = 1, f

(1)
j (i) = P (i, j). For n ≥ 2, we have

RR n° 6809



22 Anne-Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, Gilles Trédan

f
(n)
j (i) = P{τ(j) = n | X0 = i}

= P{Xn = j, Xk 6= j, 1 ≤ k ≤ n − 1 | X0 = i}

=
X

ℓ∈S−{j}

P{Xn = j, Xk 6= j, 2 ≤ k ≤ n − 1, X1 = ℓ | X0 = i}

=
X

ℓ∈S−{j}

P (i, ℓ)P{Xn = j, Xk 6= j, 2 ≤ k ≤ n − 1 | X1 = ℓ}

=
X

ℓ∈S−{j}

P (i, ℓ)P{Xn−1 = j, Xk 6= j, 1 ≤ k ≤ n − 2 | X0 = ℓ}

=
X

ℓ∈S−{j}

P (i, ℓ)f
(n−1)
j (ℓ),

where the last but one and the antepenultimate equalities come respectively from the
Markov property and the homogeneity of the Markov chain X.

9.2 Proof of Corollary 2

Using Relation (2), we obtain

Mj =
∞
X

n=1

nf
(n)
j

= Pj + Qj

∞
X

n=2

nf
(n−1)
j

= Pj + Qj

 

∞
X

n=1

nf
(n)
j +

∞
X

n=1

f
(n)
j

!

= Pj + Qj (Mj + 1) ,

and, since Pj + Qj1 = 1, we get

Mj = QjMj + 1.

Matrix Qj is the submatrix of the transition probability matrix of an absorbing Markov
chain with |S| transient states and one absorbing state, thus the matrix I − Qj is
invertible. This leads to

Mj = (I − Qj)
−11.
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9.3 Proof of Corollary 3

Using again Relation (2), we obtain

Hj =

∞
X

n=1

n2f
(n)
j

= Pj + Qj

∞
X

n=2

n2f
(n−1)
j

= Pj + Qj

 

∞
X

n=1

n2f
(n)
j + 2

∞
X

n=1

nf
(n)
j +

∞
X

n=1

nf
(n)
j

!

= Pj + Qj (Hj + 2Mj + 1)

= QjHj + 2QjMj + 1

= QjHj + QjMj + Mj ,

since, from Corollary 2, we have QjMj + 1 = Mj . This leads to

Hj = (I − Qj)
−1(I + Qj)Mj .
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