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ASYMPTOTIC ANALYSIS AND POLARIZATION MATRICES

S.A. NAZAROV, J. SOKOLOWSKI, AND M. SPECOVIUS-NEUGEBAUER

Abstract. Polarization matrices are considered for the elasticity boundary
value problems in two and three spatial dimensions. The matrices are intro-
duced in the framework of asymptotic analysis for boundary value problems
depending on small geometrical parameter, it is the size of an elastic inclusion
or a defect (cavity, crack) in an elastic body. Our analysis is performed for
some representative classes of boundary value problems, however the method
is general and can be applied to the modelling and optimization in structural
mechanics or for coupled models like piezoelectricity. The explicit properties
obtained for polarization matrices are useful for mathematical analysis and
for numerical solution of control, inverse and shape optimization problems
with mathematical models derived by the asymptotic analysis in singularly
perturbed geometrical domains. The analysis is performed by some different
techniques including asymptotics in unbounded domains, singular perturba-
tions and shape sensitivity. In particular, since the polarization matrices can
be identified for some classes of shapes, we provide the formulae for numerical
evaluation of such matrices for nearby shapes by means of the shape sensitivity

analysis.

1. Introduction

The asymptotic analysis in singularly perturbed geometrical domains is a tool
of mathematical modeling in elasticity or for coupled models e.g., in the piezo-
electricity and in the fluid-structure interaction. One of the results of such an
analysis is the derivation of an approximation of solutions to the complex (compli-
cated) PDE’s models by means of solutions to simpler PDE’s models in geometrical
domains which are more attractive e.g., from numerical point of view. For mathe-
matical and numerical analysis of optimization and inverse problems the asymptotic
analysis furnishes the possibility to include some singular variations of shapes with
the real simplification of numerical procedures which is now documented e.g., in
the optimal design of structural mechanics by wide application of the so-called
topological derivatives of shape functionals. Therefore, it seems to be important
for the applications in real world problems and numerical solution of optimization
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problems to have in hand the applied asymptotic analysis of mathematical models
including the formulae which can be really used in modeling and computations. We
restrict ourselves to the elastic bodies and we assemble the results for the so-called
polarization matrices in elasticity, it is the first paper on the subject in this setting.

1.1. Motivation. Any asymptotic (approximative) formula for the stress-strain
state of an elastic body with small, sparsely placed defects includes the so-called
defect polarization matrices. Such matrices are generalizations of classical objects
in harmonic analysis, namely quadratic forms associated to polarization tensors
and virtual masses (see [53]). Apparently these integral attributes were introduced
and analyzed in the context of three and two dimensional isotropic elasticity theory
in [34, 35], where polarization matrices were used in the asymptotic analysis of the
stress-strain state of a defected solid. Polarization matrices are employed to describe
asymptotic properties of elastic bodies with small inclusions, holes or cavities, voids
and cracks, also in anisotropic elastic materials [44]. There are generalizations of
this concept, see e.g. [42, 51] and also [[49]; Chapter 5] where analogous matrices
are defined for more general elliptic systems. We also refer to the books [13, 4, 3]
where the polarization matrices and tensors are analyzed and applied from physical
and numerical points of view. In the present papers, the authors present a rigorous
introduction to the field of polarization objects in elasticity in two and three spatial
dimensions, the generic properties of such objects are investigated and the shape
sensitivity analysis is performed.

We start with the simplest examples.

1.2. Simple formulae in the two-dimensional case. Let ω be a domain in
the plane R2 with compact closure ω = ∂ω ∪ ω. We assume the boundary ∂ω
as piecewise smooth with a finite collection Q = {O1, . . . ,ON} of angular points
Oj with opening angles αq ∈ (0, 2π]. The origin O := {x = 0} of the Cartesian
coordinate system is situated in the interior of ω. We consider the solutions zj of
the exterior Neumann problem for the Laplace equation

(1.1) −∆zj(x) = 0 , x ∈ Ω := R2�ω , ∂nzj(x) = −nj(x) , x ∈ ∂ω�Q ,

where n = (n1, n2) is the unit outward normal to the boundary ∂Ω of Ω, determined
everywhere on ∂ω except at the angular points Oj , and ∂n stands for the normal
derivative. If we require in addition that zj decays at infinity the evident identities

(1.2)

∫

∂ω

nj(x)dsx = 0 , j = 1, 2,

ensure the existence of the unique solutions zj to problem (1.1). Moreover, the
solutions admit the asymptotic representation
(1.3)

zj(x) =
2∑

k=1

mjk
∂f

∂xk
(x) + O(|x|−2) = − 1

2π

2∑

k=1

mjk
xj

|x|2 + O(|x|−2) , |x| > R,

where f(x) = −(2π)−1 ln |x| is the fundamental solution of the Laplacian in R2,
f j(x) = −(2π|x|2)−1xj are its derivatives and the radius R is chosen such that ω
belongs to the circle {x : |x| < R}. Formula (1.3) can be differentiated with the
convention

(1.4) ∇O(|x|−τ ) = O(|x|−τ−1) .
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The coefficients mjk in (1.3) give rise to a 2×2 matrix m = m(ω) which defines one
of the classical integral characteristics of the domain ω in the harmonic analysis,
namely, the matrix associated with the virtual mass tensor of the set ω (see [[53];
Appendix G]). It is symmetric and negative definite in the case mes2(ω) > 0).

For a circle ω = {x : |x| < R} of radius R > 0, we have n(x) = −R−1x,
∂n = −∂/∂|x|, zj(x) = R2|x|−2xj and, thus

(1.5) m = −2πR2I2 ,

where for N ∈ N, IN is the unit matrix of size N × N .
Now let us consider the analogous boundary value problem for the homogeneous

isotropic elastic plane with the hole ω. The system of equilibrium equations

(1.6) −µ∆zk − (λ + µ)
∂

∂xk

(
∂z1

∂x1
+

∂z2

∂x2

)
= 0 in Ω , k = 1, 2 ,

together with the boundary conditions

(1.7) σ
(n)
k (z) = gk on ∂ω , k = 1, 2 ,

contain the Lamé constants λ > 0 and µ > 0 of the elastic material, the displace-
ment vector z with the projections zk on the xk-axes and the traction components

(1.8) σ
(n)
k (z) = n1σ1k(z) + n2σ2k(z) , k = 1, 2 .

The Cartesian components σjk(z) of the stress tensor σ(z) of rank 2 are given by
the Hooke’s law

(1.9) σjk(z) = 2µεjk(z) + λδj,k(ε11(z) + ε22(z)) ,

where δj,k stands for Kronecker’s symbol and

(1.10) εjk(z) =
1

2

(
∂zj

∂xk
+

∂zk

∂xj

)
, j = 1, 2,

are Cartesian components of the strain tensor ε(z).
The special displacement vectors

(1.11) D11(x) = (x1, 0) , D22(x) = (0, x2) , D12(x) = D21(x) = (x2, x1) ,

enjoy the property

(1.12) εjk(Dpq;x) = δj,pδq,k , j, k, p, q = 1, 2.

Let Zpq denote solutions of the exterior elasticity problem (1.6), (1.7) with the
right-hand sides

(1.13) gk := −σ
(n)
k (Dpq) = −2µδk,qnp − λδp,qnk , k = 1, 2,

calculated according to formulae (1.9)-(1.12). In view of (1.2), functions (1.13)
have zero mean value over ∂ω. Hence, problem (1.6), (1.7), (1.13) admits a unique
solution decaying at infinity.

We recall the fundamental solution matrix for the elliptic (2 × 2)-matrix L(∇x)
of differential operators in the left-side of (1.6), the so-called Somigliana tensor

F (x) = (F 1(x), F 2(x))(1.14)

=
1

8πµ(λ + 2µ)

[
−2(λ + 3µ) ln |x| + 2(λ + µ)x2

1|x|−2 2(λ + µ)x1x2|x|−2

2(λ + µ)x1x2|x|−2 −2(λ + 3µ) ln |x| + 2(λ + µ)x2
2|x|−2

]
.
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Near infinity, the solutions Zpq can be decomposed into linear combinations of
derivatives of the columns F 1 and F 2 in (1.14). Recalling convention (1.4), we
introduce the first order decomposition

(1.15) Zpq(x) =

2∑

j,k=1

Ppq
jkF jk(x) + O(|x|−2),

where

F jk(x) = Djk
1 (∇)F 1(x) + Djk

2 (∇)F 2(x), i.e.

F 11 =
∂

∂x1
F 1, F 22 =

∂

∂x2
F 2, F 12 = F 21 =

∂

∂x2
F 1 +

∂

∂x1
F 2.

(1.16)

We emphasize that the right-hand side of (1.15) contains all first order derivatives
of F 1 and F 2 with exception of ∂

∂x2
F 1 − ∂

∂x1
. As it can be seen by the same

arguments as in Lemma 2.5 below, this term is absent in (1.15) due to the identity
∫

∂ω

(n1(x)x2 − n2(x)x1)dsx = 0.

The coefficients Ppq
jk in (1.15) give rise to a symmetric, negative definite tensor P of

rank 4 which is called the polarization tensor of the cavity ω in the isotropic plane
(see [35])

Remark 1.1. The polarization matrices for the circle can be calculated explicitly,
see [11], e.g. In crack theory this integral characteristic is related to the Neumann
problem in R2 \ (Λ∪Υ), where Λ is the semiinfinite crack {(x1, 0) : x1 < 0} and Υ
is a crack shoot Υ = {(x1, f(x1)) : x1 ∈ [0, h)} with a fixed h > 0, and a smooth
function f . It is well known that there exist two linear independent solutions to the
homogeneous elasticity problem with homogenous Neumann boundary conditions
in the domain R2 \ Λ which grow like |x|1/2 as |x| → ∞, they play the role of
the coordinate-functions xj in (1.1). Correspondingly there appear two solutions

∼ |x|−1/2 in the asymptotics of solutions with finite elastic energy on the domain
R2 \ (Λ ∪ Υ), their coefficients give rise to the Polarization matrix in this case.

1.3. State of art and preliminaries. The main applications for polarization
matrices (tensors) can be listed as follows

• problems of damage and fracture;
• mechanics of composites, especially dilute composites, i.e., with sparsely

distributed defects and inclusions;
• vibration of inhomogeneous bodies;
• shape optimization

For the first topic we refer to the classical paper of Griffith [12] which is in
fact devoted to the evaluation of the polarization matrix for a crack located in the
isotropic plane. Actually the matrix enters asymptotic formulae for the variation of
energy of deformation which govern the nucleation or the growth for a straight crack
(cf. [24]). There are many papers on similar problems in three spatial dimensions,
and also on a description of interactions between a main crack with some defects of
different nature (see e.g., the papers [34, 31, 32, 33, 45] and the books [19, 23, 28]).
We point out, that curving and kinking of cracks is described by matrices which
are fully analogous to the polarization matrices (cf. [50, 6, 40]).
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For the second topic, polarization tensors are also useful tools in analysis and
description of effective properties of dilute composites, which leads to approximate
but explicit formulae (see books [13, 2, 28, 30], and papers [41, 6, 8]). This is also
the way to obtain the mathematical definitions of damage tensors and measures
(cf. [44, 46, 47]).

Concerning the third topic, we mention that in spectral problems with small
singular perturbations of the boundary the leading term in the asymptotics of the
eigenvalues can be calculated as a function of the polarization matrix or similar
objects (see the papers [25, 9, 10, 52] and the books [23], [28]1)

In shape optimization the polarization matrices are one of the main ingredients
of the topological derivatives of shape functionals [51], even if it is not explicitly
acknowledged. The integral attributes of inclusions can be identified also in terms
of the polarization matrices [4, 3]. In particular, in shape optimization and iden-
tification problems for eigenvalues, the role of polarization matrices seems to be
premondial [52, 39].

Evidently, the polarization matrices (tensors) are quite important for modeling
in solid mechanics. Unfortunately, the matrices are known explicitly only for some
specific canonical shapes, e.g. among others for a ball and an ellipse, for an elliptic
plane crack in three spatial dimensions and a straight crack in two spatial dimen-
sions. The famous theorem of Eshelby on elliptic inclusions ([11, 13] and others)
provides simple but implicit algebraic formulae, with broad applications in the lit-
erature in mechanics. We indicate the close connection of the polarization matrices
to the Eshelby theorem in Section 2.6

Let us point out that the results presented in [26, 27] and reproduced in [28] on
the explicit representations of polarization matrices for arbitrary shaped cavities
in the isotropic plane, are wrong. A mistake is found and is discussed in [5], how-
ever, after correction the problem reduces to solving an infinite system of algebraic
equations and then, sadly enough, makes the correct formulae completely implicit.

In three dimensional elasticity, there are no general constructive results on the
evaluation of polarization matrices. The difficulty arises since it is necessary to
solve a transmission problem in unbounded domains which makes it impossible to
apply the standard numerical schemes usually designed for bounded domains.

The plan of this paper is as follows: In section 1.4 we give a short recapitulation
of the results for the two dimensional exterior Neumann problem in isotropic elas-
ticity. In Section 2 of the present paper we investigate the polarization matrices
in elasticity in three spatial dimensions, most of the attention is paid to describe
the matrices in the form of intrinsic integral and energy attributes of cavities and
elastic or rigid inclusions. Such representations provide a description of general
properties, e.g., positiveness/negativeness (see Theorems 2.7 and 2.8) and are very
useful in the shape sensitivity analysis of Section 3.

We use the matrix/column notation for constitutive laws in elasticity (see [20,
49]) which is described in Section 1.4. Note that the concept of algebraically equiv-
alent media (cf. [7, 14] for two dimensional case and [17, 18] for three dimensions)
allows for simple formulae of the entries of polarization matrices, but only in the
case of very specific shapes and stiffness tensors (see Section 2.5).

In section 3 we perform the shape sensitivity analysis of polarization matrices.
The benefits of these results are twofold. First, if the polarization matrix is known

1In paper [27] there is an error which is repeated in [28] and it is corrected in [10].
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for a specific shape, we can use the shape derivatives in order to evaluate the ma-
trix for a regular perturbation of the shape. The second application concerns the
shape optimization, identification and design in structural mechanics. We can mini-
mize/maximize a specific functional with respect to the polarization matrices, some
applications in inverse problems can be found e.g. in [3], but it is still the field of
current research. There are at least two possible approaches to the shape sensitivity
analysis. One is based on the asymptotic analysis in singularly perturbed domains,
the method is explained in details for the elasticity in two dimensions. The second
method uses the boundary variation technique [55] for the shape functionals which
resemble the energy functionals. In this way we derive directly the shape deriva-
tives of the polarization matrices written in the form of a minimizer of the given
functional, or, equivalently, evaluate the material derivatives of the minimizers and
obtain the same expression for the shape derivatives of the polarization matrices.
In any case our analysis deals with elliptic boundary value problems in unbounded
domains and requires the appropriate technique of Kondratiev spaces.

1.4. The matrix/column notation and the polarization matrix for two
dimensional elasticity problems. Let us fix the Cartesian coordinate system
x = (x1, x2)

⊤ and consider the displacement vector z as a column z = (z1, z2)
⊤ ∈

R2, here ⊤ denotes transposition. We arrange strains and stresses in columns are
of height 3 :

ε(u) = (ε11(u), ε22(u),
√

2ε12(u))⊤

σ(u) = (σ11(u), σ22(u),
√

2σ12(u))⊤ .
(1.17)

The factor
√

2 is used in the last components of the columns in order to keep the
same euklidian norms for the tensor and its representation in the form (1.17). In
particular, in thereby ensure, (see [43] and e.g., [49]) that the orthogonal transfor-
mations x 7→ θx and z 7→ θz induce the orthogonal transformations ε 7→ Θε and
σ 7→ Θσ of the corresponding columns given in (1.17). Here, by θ and Θ we denote
orthogonal matrices of size (2 × 2) and (3 × 3), respectively,

θ =

[
cos ϑ sin ϑ
− sinϑ cos ϑ

]
, Θ =




cos2 ϑ sin2 ϑ −2−1/2 sin 2ϑ
sin2 ϑ cos2 ϑ 2−1/2 sin 2ϑ

2−1/2 sin 2ϑ −2−1/2 sin 2ϑ cos 2ϑ


 .

(1.18)

Hooke’s law (1.9) reduces to the form

σ(u) = Aε(u) , where A =




λ + 2µ λ 0
λ λ + 2µ 0
0 0 2µ


 .(1.19)

This matrix serves for the homogeneous and isotropic material with Lamé constants
λ and µ, while for an inhomogeneous and anisotropic body the matrix A in relation
(1.19) can be an arbitrarily symmetric and positive definite (3×3)-matrix function.
Clearly, in the isotropic homogeneous case, the matrix A satisfies the identity A =
Θ⊤AΘ for any ϑ ∈ [0, 2π), however, this transformation changes an anisotropic
stiffness matrix although preserving its general properties.
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Owing to (1.10) and (1.17), the strain column takes the form

ε(z;x) = D(∇)z(x) ,(1.20)

D(ξ) =




ξ1 0
0 ξ2

2−1/2ξ2 2−1/2ξ1


 , ξ =

[
ξ1

ξ2

]
.(1.21)

Finally, problem (1.6), (1.7) in the matrix notation reads

D(−∇)⊤AD(∇)z(x) = 0 , x ∈ Ω ,

D(n(x))⊤AD(∇)z(x) = g(x) , x ∈ ∂Ω .
(1.22)

The elasticity problem in the divergence form (1.22) mimics the Neumann problem
for a formally self-adjoint second-order elliptic operator and it is very convenient
for standard manupulations. Bulking (see formula (1.24) below) occurs only in
rewriting expansion (1.15) with the polarization matrix of the size (3 × 3).

The polarization matrix P = (Ppq)
3
p,q=1 can be reconstructed from the polariza-

tion tensor P as follows

P11 = P11
11 , P22 = P22

22 , P33 = P12
12 ,

P13 =
√

2P11
12 , P23 =

√
2P22

12 .
(1.23)

Recall that the symmetry of the rank 4 tensor P means that Ppq
jk = Pqp

jk = Pjk
pq for

any j, k, p, q = 1, 2 while for the symmetric matrix P we have Pjk = Pkj .
Note that the vectors (1.11) are of similar type as the rows D1(x), D2(x), D3(x)

of the matrix D(x), while relations (1.12) turn into D(∇)D(x)⊤ = I3×3. By Zp

we denote solutions of the exterior elasticity problem (1.22) with g = −D(n)⊤Aep

where p = 1, 2, 3 and ep = (δ1,p, δ2,p, δ3,p) ∈ R3.
It is useful to introduce the (2 × 3)-matrix Z = (Z1, Z2, Z3) which satisfies the

matrix variant of problem (1.22) where now the right-hand side g = −D(n)⊤A is a
matrix of size 2 × 3. In view of (1.23), expansions (1.15) convert into the relations

Zp(x) =
3∑

q=1

PpqD
q(∇)⊤F (x) + O(|x|−2) , p = 1, 2, 3,

which results in the formula

Z(x) = (D(∇)F (x)⊤)⊤P + O(|x|−2) .(1.24)

This funny way of writing (cf. (2.40) below) occurs because it is necessary to
put differentiation and multiplication in a correct order.

Remark 1.2. The tensor nature of the object of the object P = P(ω) can be
seen by the following observation. If Ξ ⊂ R2 is a smoothly surrounded domain and
ωh = {x : h−1x ∈ ω} a small hole of diameter h ≪ 1, then the corresponding
potential energy Uh of the body Ξ�ωh can be calculated asymptotically to

Uh = U0 − 1

2
h2

2∑

j,k=1

2∑

p,q=1

εjk(u; 0)Pjk
pqεpq(u; 0) + O(h3)

= U0 − 1

2
h2ε(u; 0)⊤P (ω)ε(u; 0) + O(h3)

(1.25)
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(cf. [24, 34, 51]), where u and U0 denote the displacement field and potential energy
in the entire elastic body Ξ. Since Uh is a scalar and ε(u) is a tensor of rank 2,
necessarily P(ω) is a tensor of rank 4.

Remark 1.3. Formulae (1.5) together with (1.23) show that the polarization ten-
sors (matrices) depend quadratically on the diameter of the hole ω ⊂ R2. This is
a common property of the two-dimensional case namely that P(ωh) = h2P(ω) and
the energy increment can be evaluated as follows

Uh − U0 ≈ −1

2
ε(u; 0)P (ωh)ε(u; 0) .

For the three-dimensional case the analogous formula P (ωh) = h3P (ω) is verified
in (2.51).

2. The polarization matrices for three-dimensional anisotropic

elasticity problems

2.1. The mathematical setting as an exterior boundary value problem. As
already mentioned, we need solutions of various exterior boundary value problems.
We start with introducing some geometrical notations. The ball and the sphere of
radius R > 0 are denoted by BR and SR, respectively. Let Ω ⊂ R3 be a Lipschitz
domain with a compact connected complement Ω• and boundary Γ. For x ∈ Γ, we
denote by n(x) the outward (with respect to Ω) unit normal vector. For integer l,
H l(Ω), H l(Ω•) and – in case of smooth Γ – the spaces Hs(Γ) for s ∈ R are the
usual Sobolev-Slobodetskii spaces (see [21], e.g.) If Γ is only Lipschitz, then at least
the trace space H1/2(Γ) is well defined together with a continuous trace operator
γ : H1(Ω•) → H1/2(Γ), such that γφ = φ|Γ for smooth functions. We keep the
notation φ|Γ also for H1-functions. The trace operator possesses a continuous right
inverse: For φ ∈ H1/2(Γ) there exists Φ• ∈ H1(Ω•) such that Φ•|γ = φ and

(2.1) ‖Φ•;H1(Ω•)‖ 6 C(Γ)‖φ;H1/2(Γ)‖.
Similar as in section 1.4, we think of the displacement vector u = (u1, u2, u3)

⊤ as
a column in R3 and introduce the strain column of height 6

(2.2) ε(u) = (ε11(u), ε22(u), ε33(u), α−1ε23(u), α−1ε31(u), α−1ε12(u))⊤

where α = 2−1/2 and again, εjk(u) are Cartesian components of the strain tensor
given by (1.10) with j, k = 1, 2, 3. Like in (1.20), (1.21), we have

(2.3)

ε(u) = D(∇)u,

D(ξ)⊤ =




ξ1 0 0 0 αξ3 αξ2

0 ξ2 0 αξ3 0 αξ1

0 0 ξ3 αξ2 αξ1 0


 , ξ ∈ R3 .

Analogously to (2.2), we define the stress columns σ(u) and σ•(u) in Ω and Ω•,
respectively,

(2.4) σ(u) = Aε(u), σ•(u) = A•ε(u).

Here A and A• are symmetric and positive definite 6 × 6 matrices containing the
elastic moduli of the material. We assume that the matrix A has the form A(x) =
A0 + Ae(x), where entries of Ae are C1-functions on Ω with Ae(x) = 0 for r = |x|
large, say r ≥ R0. We also assume that R0 large enough such that Ω• is contained
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in the open ball BR0
. The matrix A0 is constant and positive definite, i.e. the

elastic space is homogeneous far away from the inclusion. However, the inclusion
again can be heterogeneous, we suppose that the entries of A• are C1- functions in
Ω•, e.g.. Both the matrices A(x) and A•(x) must be uniformly positive definite,
i.e.

(2.5) ξ⊤A(x)ξ ≥ a|ξ|2 , ξ⊤A•(x)ξ ≥ a•|ξ|2

holds for any vector ξ ∈ R6 and all x ∈ Ω and x ∈ Ω• with positive constants a, a•.
The elasticity problem in Ω ∪ Ω• reads as follows:

D(−∇)⊤A(x)D(∇)u(x) = f(x), x ∈ Ω = R3 \ Ω•;

D(−∇)⊤A•(x)D(∇)u•(x) = f•(x), x ∈ Ω•;
(2.6)

u(x) − u•(x) = g0(x),
D(n(x))⊤A(x)D(∇)u(x) − D(n(x))⊤A•(x)D(∇)u•(x) = g1(x),

}
x ∈ Γ.(2.7)

|u(x)| = O(|x|−1), as |x| → ∞.(2.8)

Here f , f• are volume forces while g0 and g1 stand for jumps of displacements and
tractions on the interface Γ. To shorten the notations, we denote the differential
operators (2.6) by L and L• respectively; similarly, we express the left-hand side of
(2.7)1 as: Nu −N •u•.

We look for a variational formulation of this problem. By H, we denote the
completion of C∞

0 (R3)3 with respect to the “energy” norm

(2.9) ‖D(∇)u;L2(R3)‖.

Using the Fourier transform and Hardy’s inequality, we obtain the Korn’s in-
equality

(2.10) ‖(1 + r)−1u;L2(R3)‖ + ‖∇u;L2(R3)‖ 6
1√
10

‖D(∇)u;L2(R3)‖ u ∈ H.

In this context we recall the definition of Kondratiev norms, adapted to the special
cases we need here: Let G ⊆ R3 an (unbounded) domain, β ∈ R and l ∈ N0 =
{0, 1, . . . } be fixed. Then the Kondratiev space V l

β(G) consists of all u ∈ H l
loc(G)

such that the norm

‖u;V l
β(G)‖ =

( l∑

k=0

‖(1 + |x|)β−l+k ∇k
x u;L2(G)‖2

)1/2

< ∞.

Note that the weight control the behavior at infinity of the functions under consid-
eration. Estimate (2.10) implies that H = V 1

0 (R3) and the norms are equivalent.
In the sequel we use the notation ( , )Ξ for the scalar product in L2(Ξ) for

various suitable sets Ξ ⊂ R3. For sufficiently smooth vector fields u and v we have
Green’s formulae on Ω and Ω•:

(Lu, v)Ω + (Nu, v)Γ = (AD(∇)u, D(∇)v)Ω,(2.11)

(L•u, v)Ω − (N •u, v)Γ = (A•D(∇)u, D(∇)v)Ω• .(2.12)

Note that n is the internal normal vector on Γ with respect to Ω•. That is why there
appears the sign minus in (2.12). In particular, for any vector function u ∈ H2

loc(Ω̄),



10 S.A. NAZAROV, J. SOKOLOWSKI AND M. SPECOVIUS-NEUGEBAUER

u• ∈ H2(Ω•), satisfying (2.6) and (2.7), and v ∈ C∞
0 (R3), the addition of the two

formulae leads to
(2.13)
(AD(∇)u, D(∇)v)Ω + (A•D(∇)u•, D(∇)v)Ω• = (f•, v)Ω• + (f, v)Ω + (g1, v)Γ

If g0 = 0 and u ∈ V 2
1 (Ω) in the situation above, then we can glue u, u• together and

obtain a vector field w ∈ V 1
0 (R3) = H. Furthermore, due to our assumptions on

the matrices A, A• and Korn’s inequality (2.10), the left hand side of this equality
defines a scalar-product b( , ) on H which induces a norm equivalent to the energy
norm defined by (2.9). If f and f• are restrictions of F ∈ V 0

1 (Ω) the right hand side
of (2.13) defines a continuous linear functional on H, even in case (g1, v)Γ being
replaced by 〈g1, v〉 with g1 ∈ H−1/2(Γ). Thus, for g0 = 0, equation (2.13) takes the
form

(2.14) b(u, v) = F (v) with F ∈ H′.

Clearly, Neumann boundary values in general do not exist for u ∈ H. Since L,L•

are differential operators in divergence form, we may use a well known weak trace
theorem to overcome this difficulty (see [56, Lemma ?]).

Proposition 2.1. For u ∈ H1(Ω•)3 with L•u ∈ L2(Ω)3, there exists a trace N •u ∈
H−1/2(Γ), such the Green’s formula (2.12) is valid and the following estimate holds
independent of u:

(2.15) ‖N •u;H−1/2(Γ)‖ 6 C
(
‖D(∇)u;L2(Ω)‖ + ‖L•u;L2(Ω)‖

)
.

An analogous result is true for u ∈ V 1
0 (Ω) with Lu ∈ V 0

1 (Ω).

To rewrite the general problem (2.6) – (2.8) in the form (2.14), it is necessary to
reduce it to the case g0 = 0. The obvious way is here to search for u• = U• − G,
where G is a suitable extension of g0 onto Ω•. If g0 ∈ H3/2(Γ), this works with any
extension G ∈ H2(Ω•). For g0 ∈ H1/2 we take the unique weak solution G ∈ H1(Ω)
to the problem

(2.16) L•G = 0 in Ω•, G = g0 on Γ.

Here we have the estimate

(2.17) ‖G;H1(Ω•)‖ 6 C‖g0;H1/2(Γ)‖
with a constant independent of u0, and by regularity results for elliptic problems
[57] this extends to

(2.18) ‖G;H l+2(Ω•)‖ 6 C‖g0;H l+3/2(Γ)‖, l ∈ N0,

provided the surface Γ as well as the coefficient functions in A• are sufficiently
smooth and g0 ∈ H l+3/2(Γ).

Definition 2.2. Let f• ∈ L2(Ω•)3, f ∈ V 0
1 (Ω)3, g0 ∈ H1/2(Γ) and g1 ∈ H−1/2(Γ)3

be given, and let G ∈ H1(Ω•)3 be the extension of g0 into Ω• defined by (2.16). We
call a pair {u, u•} of vector fields defined on Ω and Ω•, respectively, a weak solution
of the boundary value problem (2.6) – (2.8), if {u, u• +G} ∈ H and following identity
is fulfilled:

(2.19) (AD(∇)u, D(∇)v)Ω+(A•D(∇)u•, D(∇)v)Ω• = (f•, v)Ω•+(f, v)Ω+〈g1, v〉Γ
Standard Hilbert space arguments (the Riesz representation theorem) lead to

the following result.
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Proposition 2.3. Problem (2.13) has a unique weak solution, and the following
estimate holds:

‖u;V 1
0 (Ω)‖ + ‖u•;H1(Ω•)‖

6 c
(
‖f•;L2(Ω•)‖ + ‖f ;V 0

1 (Ω)‖ + ‖g0;H1/2(Γ)‖ + ‖g1;H−1/2(Γ)‖
)

.(2.20)

If the surface Γ and the matrix functions A, A• are smooth and for some l ∈ N =
{1, 2, . . . } we have

(2.21)
f ∈ V l−1

l (Ω)3, f• ∈ H l−1(Ω•)3,
g0 ∈ H l+1/2(Γ)3, g1 ∈ H l−1/2(Γ)3,

then u ∈ V l+1
l (Ω)3, u• ∈ H l+1(Ω•)3 and the pair {u, u•} is a strong solution to the

elliptic transmission problem (2.6), (2.7). Moreover, the estimate

(2.22) ‖u;V l+1
l (Ω)‖ + ‖u•;H l+1(Ω•)‖ 6 cFl

holds true where Fl denotes the sum of the norms of the data (2.21) in the spaces
indicated.

Proof. Due to Proposition 2.15 the trace N •G ∈ H−1/2(Γ), and

(A•D(∇)G, D(∇)v)Ω• + 〈N •G, v〉Γ = 0.

Thus (2.19) is fulfilled if U = {u, u• + G} solves

(2.23) b(U, v) = (f•, v)Ω• + (f, v)Ω + 〈g1 −N •G, v〉Γ
for all v ∈ H. Clearly, (2.23) is again of the form (2.14), thus application of the
Riesz representation theorem for a linear functional in a Hilbert space ensures the
existence of a unique solution while estimates (2.10) and (2.17) lead to estimate
(2.20). The estimate (2.22) follows then from (2.18) and regularity results for elliptic
problems (see, e.g., [54]). �

Remark 2.4. Of course, equation (2.14) is uniquely solvable for any F ∈ H′, and
we obtain

(2.24) ‖u;H‖ 6 ‖F ;H′‖.
However, for general u ∈ H, the second transmission condition is senseless, and
it is obvious that there exist functionals F ∈ H which are not of the form (2.23)
with f•, f and g0, g1 as in Definition 2.2. At the same time is known that any
continuous linear functional on V 1

0 (R3) has a (non unique) representation as

(2.25) F (v) = (f, v)R3 +
3∑

i=1

(Fi, ∂iv)R3 ,

with f ∈ V 0
1 (R3), Fi ∈ L2(R3), and

(2.26) ‖F ;V 1
0 (R3)′‖2 = inf

{
‖f ;V 0

1 (R3)‖2 + ‖Fi;L
2(R3)‖2

}
,

where the infimum is taken over all representations. The solution u to (2.14) is
independent of f and Fi appearing in (2.25), of course, as long as they lead to the
same functional.

We can introduce a weak transmission problem: For given F ∈ H′, g0 ∈ H1/2(Γ)
let G be the solution to (2.16). We call {u, u•} a solution to the weak transmission
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problem (2.6) and (2.7)2, if U = {u, u• + G} ∈ H and U solves (2.14). Such a
solution always exists and from (2.17), (2.24) and (2.26) we obtain

(2.27)

‖u;V 1
0 (Ω)‖ + ‖u•;H1(Ω•)‖
6 c

(
‖f ;V 0

1 (R3)‖ +
∑

i

‖Fi;L
2(R3)‖ + ‖g0;H1/2(Γ)‖

)
.

Again it is not possible to subtract an arbitrary prolongation G ∈ H1(Ω•) from
u•, since then Green’s formula (2.12) leads to a boundary distribution which is
contained in H−3/2(Γ) only. Insofar the weak transmission problem is equivalent
to find in parallel weak solutions to the problems (2.16) and L u = F in R3, where
L is the differential operator ”glued” together from L• and L. �

2.2. Asymptotic behavior of the solutions. For given f ∈ V l−1
γ (Ω) with γ ∈

(l+3/2, l+5/2), let {u, u•} be a weak solution according to Proposition 2.3. Clearly

V l−1
γ (Ω) ⊂ V l−1

l (Ω) and u ∈ V l+1
l (Ω) then. Since A is constant for |x| > R0 for a

suitable constant R0 > 0, we can apply a general result for elliptic boundary values
in domains with conical boundary points (see [36, Ch. 6.4], e.g.) to characterize
the asymptotic behavior of u at infinity. Thereby, let F denote the fundamental
matrix of the differential operator L(∇) in R3, i.e.,

(2.28) L(∇)F (x) = δ(x)I3, x ∈ R3, where L(∇) = D(−∇)⊤A0D(∇)

where δ is the Dirac measure. Since u can be regarded as a V l+1
l -solution of

an exterior Dirichlet problem in Ξ = {x : |x| > R0}, we obtain the asymptotic
representation for |x| > R0

(2.29) u(x) = (d(−∇)F (x)⊤)⊤ a + (D(−∇)F (x)⊤)⊤ b + ũ(x) =: U(x) + ũ(x)

with ũ ∈ V l+1
γ (Ξ)3. The vectors a, b ∈ R6 are coefficient columns, D(ξ) is matrix

(2.3)2 and d(ξ) is a similar matrix (generating the space of rigid motions), defined
by

(2.30) d(ξ)⊤ =




1 0 0 0 αξ3 −αξ2

0 1 0 −αξ3 0 αξ1

0 0 1 αξ2 −αξ1 0


 , α =

1√
2
.

If the right hand side f vanishes on Ξ, then u solves the homogeneous system (2.6)1
in Ξ, and due to general results in [22] (see also [36, Ch. 3.6]), the remainder in
(2.29) fulfils

(2.31) |∇k
xũ(x)| 6 ck (1 + |x|)−3−k , x ∈ Ξ, k ∈ N0.

We emphasize that the matrices (2.3)2 and (2.30) satisfy the relations

(2.32)
d(∇)d(x)⊤

∣∣∣
x=0

= I6 , d(∇)D(x)⊤
∣∣∣
x=0

= O6 ,

D(∇)d(x)⊤ = O6 , D(∇)D(x)⊤ = I6 ,

where ON is the null matrix of size N × N .

Lemma 2.5. The coefficient column a ∈ R6 in the representation (2.29) is given
by the integral formula

(2.33) a =

∫

Ω•

d(x)f•(x) dx +

∫

Ω

d(x)f(x) dx +

∫

Γ

d(x)g1(x) dsx .
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Proof. Let X ∈ C∞
0 [0,∞) be a cut-off function with X (r) = 1 for r 6 1, and

X (r) = 0 for r ≥ 2. For R > 2, put XR(x) = X (|x| − R), then suppXR ⊂ BR+2.
Let {u, u•} be a weak solution according to Definition 2.2. We use (2.13) with
v = XRdj , where dj is the j-th row of the matrix d, and R ≥ R0 + 2, so that
Ω• ⊂ BR−2. With (2.32)3, we obtain

(2.34) (AD(∇)u, D(∇)(XRdj))Ω = (f•, dj)Ω• + (f,XRdj)Ω + (g1, dj)Γ.

Again due to (2.32)3, we have D(∇)(XRdj) = −[D(∇),XR]dj , thus the integrand
on the left hand side of (2.34) vanishes outside the annulus {x : R < |x| < R+2}.
Moreover we have XRdj = dj on the sphere SR, while this expression vanishes on
SR+2. Thus, integration by parts leads to

(AD(∇)u, D(∇)(XRdj))Ω = (AD(∇)u, D(∇)XRdj)BR+2\BR

= (Nu,XRdj)∂(BR+2\BR) + (Lu,Xdj)BR+2\BR

= (D(n)⊤AD(∇)u, dj)SR
+ (f,XRdj)BR+2\BR

,

where n = −R−1x, hence we obtain for R ≥ R0

(2.35)
(D(n)⊤A0D(∇)u, dj)SR

= (f•, dj)Ω• + (g1, dj)Γ + (f,XRdj)Ω − (f,XRdj)BR+2\BR
.

Since f(1 + r)5/2 ∈ L2(Ω) the integral
∫
Ω

djf converges and we may pass to the
limit R → ∞ in the right-hand side of (2.35), note that the last integral in (2.35)
vanishes then. To calculate the limit of the left-hand side, we insert the asymptotic
representation (2.29) of u into (2.35), then by (2.31), (D(n)⊤AD(∇)ũ, dj)SR

=
O(R−1) as R → ∞, and we are left with the terms

(D(n)⊤AD(∇)U, dj)SR
,

which can be interpreted as a distribution with compact support applied to the
C∞-function dj . Here we mention that due continuity arguments in spaces of
distributions, Green’s formula

(L(∇)u, v)BR
− (u, L(∇)v)BR

(D(n)⊤ = AD(∇)u, v)SR
− (u, D(n)⊤AD(∇)v)SR

can be extended from u, v ∈ C∞(R3)3 to u = ∂αFk, where Fk is a column of the
fundamental solution F . Then the first integral has to be replaced by 〈∂αδ, vk〉 =
(−1)|α|∂αvk(0). We apply this argument for u = U , and v = dj , together with
formulae (2.32), this leads to

(D(n)⊤AD(∇)U, dj)SR
〈d(−∇)⊤a I3δ, dj〉 + 〈D(−∇)⊤b I3δ, dj〉

=
(
d(∇)d⊤j (x) · a + D(∇)dj(x)⊤ · b

) ∣∣∣
x=0

= aj .

�

In order to derive an integral formula for the coefficient vector b in the asymptotic
representation (2.29) consider problem (2.6) – (2.8) with the special right-hand sides

(2.36)
f•
(k)(x) = D(∇)⊤A•(x)e(k), f(k)(x) = D(∇)⊤A(x)e(k),

g0
(k) = 0, g1

(k)(x) = D(n(x))⊤(A•(x) − A)e(k),

where e(k) = (δ1,k, . . . , δ6,k)⊤ is the k-th unit vector in R6. Note that f(k) has a

compact support contained in BR0
due to the choice of the matrix A(x) = A0 +

Ae(x). The data in (2.36) arise if we replace u in the transmission problem (2.6),
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(2.7) by the rows of the matrix −D(x). We denote the corresponding unique weak
solutions to (2.6) – (2.8) by {Z(k) , Z•

(k)} 2. Since

∫

Ω•

d(x)f•
(k) (x) dx +

∫

Ω

d(x)f(k) (x) dx +

∫

Γ

d(x)g1
(k) (x) dsx = 0 ∈ R6 ,

Lemma 2.5 turns the asymptotic form (2.29) for the solution Z(k) into

(2.37) Z(k)(x) = (D(∇)F (x)⊤)⊤P(k) + Z̃(k)(x)

where the remainder Z̃(k) satisfies (2.31) and P(k)(= −b) denotes a column of height
6. Regarding Z(k)(x) as a column for each x, we define the 3 × 6-matrix Z(x) =
(Z(1)(x), . . . , Z(6)(x)), and, analogously, Z•(x). Hence, due to (2.36) and (2.32),
the columns of the matrix

(2.38) ζ(x) = D(x)⊤ + {Z(x), Z•(x)}

are formal solutions of the homogeneous problem (2.6), (2.7) (as well as the columns
of the matrix d(x)⊤), although they do not belong to the energy space H. A slight
modification of the proof of Lemma 2.5 (cf. [44, 51]) provides the following assertion.

Lemma 2.6. The coefficient column b ∈ R6 in (2.29) is given by the integral
formula

b =

∫

Ω•

ζ(x)⊤f•(x) dx +

∫

Ω

ζ(x)⊤f(x) dx

+

∫

Γ

ζ(x)⊤g1(x) dsx −
∫

Γ

{
D(n(x))⊤AD(∇)ζ(x)

}⊤

g0(x) dsx.

(2.39)

2.3. The polarization matrix and its properties. Rewriting the asymptotic
representation (2.37) in the condensed form

(2.40) Z(x) = (D(∇)F (x)⊤)⊤P + Z̃(x),

there appears the matrix P of size 6 × 6 composed of the coefficient columns
P(1), . . . , P(6) in (2.37). As in [34, 44] and others, we call P the polarization matrix
for the elastic inclusion Ω•.

By Lemma 2.6 and formula (2.36) we obtain the integral representation

P = −
∫

Ω•

(
D(x)⊤ + Z•(x)

)⊤

D(∇)⊤A•(x) dx

−
∫

Ω

(
D(x)⊤ + Z(x)

)⊤

D(∇)⊤A(x) dx

−
∫

Γ

(
D(x)⊤ + Z(x)

)⊤

D(n(x))⊤
(
A•(x) − A(x)

)
dsx.

(2.41)

2Note, that the rows of D(x) are solutions to the transmission problem which grow at infinity
while {Z(k) , Z•

(k)
} decays at infinity.
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Let us transform the right-hand side of (2.41). Using D(∇)⊤D(x) = I6 and
integrating by parts, we find

∫

Ω•

(
A•(x) − A0

)
dx +

∫

Ω

Ae(x)dx

=

∫

Ω•

(
D(∇)D(x)⊤

)(
A•(x) − A0

)
dx +

∫

Ω

(
D(∇)D(x)⊤

)
Ae(x)dx

= −
∫

Ω•

D(x)⊤D(∇)⊤
(
A•(x) − A0

)
dx −

∫

Γ

D(x)⊤D(n(x))⊤
(
A• − A0

)
dsx

−
∫

Ω

D(x)⊤D(∇)⊤Ae(x) dx +

∫

Γ

D(x)⊤D(n(x))⊤Ae(x) dsx

= −
∫

Ω•

D(x)⊤D(∇)⊤A•(x)dx −
∫

Ω

D(x)⊤D(∇)⊤A(x)dx

−
∫

Γ

D(x)⊤D(n)⊤(A•(x) − A(x))dsx,

the last equality holds true due to D(∇)⊤A0 = 0. Since the columns of {Z, Z•}
are contained in H and fulfill definition 2.2 with data given in (2.36) we may use
identity (2.19) with {u, u•} = {Z, Z•} = v and obtain further

−
∫

Ω•

Z•⊤ D(∇)⊤A• dx −
∫

Ω

Z⊤ D(∇)⊤A dx −
∫

Γ

Z⊤D(n)⊤
(
A − A•

)
dsx

= −
∫

Ω•

(
D(∇)Z•

)⊤

A•D(∇)Z• dx −
∫

Ω

(
D(∇)Z

)⊤

AD(∇)Z dx.

Thus, we have another integral representation of the polarization matrix

P = −
∫

Ω•

(
A0 − A•(x)

)
dx +

∫

Ω

Ae(x)dx

−
∫

Ω

(
D(∇)Z

)⊤

AD(∇)Z dx −
∫

Ω•

(
D(∇)Z•

)⊤

A•D(∇)Z• dx.

(2.42)

The last two matrices are but Gram’s matrices for the sets of vector functions
{Z(k)} and {Z•

(k)}, hence in particular, they are symmetric and non-negative. Thus

we can formulate two intrinsic properties of the polarization matrix.

Theorem 2.7. The polarization matrix P is always symmetric. If Ae = 0, i.e.
A(x) = A0 everywhere in Ω, and A•(x) < A0 for x ∈ Ω• then P is negative
definite.

2.4. A homogeneous inclusion. In this section we assume that the inclusion Ω•

as well as the elastic space are homogeneous, i.e., A•, A are constant matrices. We
put

(2.43) Z•(x) = Z∗(x) − Z0(x), Z0(x) = D(x)⊤(A•)−1(A − A•).

Then the columns of {Z, Z∗} satisfy problem (2.6)-(2.8) with

f = 0, f• = 0, g1 = 0, g0(x) = −Z0
(k)(x).
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Applying Lemma 2.6 to this problem, we derive

−P =

∫

Γ

(
D(n)⊤AD(∇)ζ

)⊤

Z0 dsx

= −
∫

Γ

(
D(n)⊤AD(∇)(D⊤ + Z)

)⊤

Z dsx +

∫

Γ

(
D(n)⊤A•D(∇)

(
D⊤ + Z∗ + Z0

))⊤

Z∗dsx

= −
∫

Γ

(
D(n)⊤AD(∇)Z

)⊤

Z dsx +

∫

Γ

(
D(n)⊤ A•D(∇)Z∗

)⊤

Z∗dsx

−
∫

Γ

(
D(n)⊤A

)⊤

Z dsx +

∫

Γ

(
D(n)⊤A•

(
I6 + (A•)−1(A − A•)

))⊤

Z∗ dsx.(2.44)

The sum of the first two integrals in the right-hand side of (2.44) is equal to

(2.45) −
∫

Ω

(
D(∇)Z

)⊤

AD(∇)Z dx −
∫

Ω•

(
D(∇)Z∗

)⊤

A• D(∇)Z∗ dx

and gives rise to a non-positive symmetric 6 × 6-matrix. The sum of the last two
integrals in (2.44) coincides with

∫

Γ

(
D(n(x))⊤A

)⊤

Z0(x) dsx =

∫

Ω•

AD(∇)D(x)⊤(A•)−1(A − A•) dx

= A (A•)−1 (A − A•)
∣∣Ω•

∣∣ = A
[
(A•)−1 − A−1

]
A

∣∣Ω•
∣∣,(2.46)

where
∣∣Ω•

∣∣ denotes the volume of the domain Ω•. Thus we have proved the following
assertion.

Theorem 2.8. If the matrix A• is constant and (A•)−1 < A−1, then the polariza-
tion matrix P is positive definite.

Certain positivity/negativity properties of the polarization matrix P can be ex-
pressed in terms of the eigenvalues λ1, . . . , λ6 of the matrix A−1/2A•A−1/2. This
matrix is symmetric and positive definite, and hence λj > 0 and the eigenvectors

aj ∈ R6 can be normalized by the condition
(
ak

)⊤
aj = δj,k , j, k = 1, . . . , 6. Then

the columns bj = A−1/2aj satisfy the formulae

(2.47) A•bj = λjAbj ,
(
bk

)⊤
Abj = δk,j .

Theorem 2.9. 1) If λj > 1 then
(
bj

)⊤
Pbj > 0.

2) If λj < 1 then
(
bj

)⊤
Pbj < 0.

3) If λj = 1 then
(
bj

)⊤
Pbj = 0.

Proof. 1) Recalling (2.44) – (2.46), we see that −P 6
(
A(A•)−1 A − A

) ∣∣Ω•
∣∣.

Thus, in virtue of (2.47),

−
(
bj

)⊤
Pbj

6
(
bj

)⊤(
A(A•)−1A − A

)
bj

=
(
bj

)⊤
A(λ−1

j − 1)bj
∣∣Ω•

∣∣ = (λ−1
j − 1)

∣∣Ω•
∣∣ < 0.(2.48)

2) By (2.42), we have P 6 (A• − A) |Ω•| and
(2.49)(

bj
)⊤

Pbj 6
(
bj

)⊤(
A• − A

)
bj

∣∣Ω•
∣∣ =

(
bj

)⊤
A(λj − 1)bj

∣∣Ω•
∣∣ = (λj − 1)

∣∣Ω•
∣∣ < 0.
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3) Repeating calculations (2.48) and (2.49), we change “< 0” for “= 0” to see
the assertion. �

2.5. Affine transformations. Again we consider the case of homogeneous solids,
i.e. A and A• are constant matrices. In addition, we assume that the inclusion Ω•

h

is defined through rescaling:

(2.50) Ω•
h = {x : h−1x ∈ Ω•} ,

where h > 0 is the similarity coefficient (cf. Remark 1.3). Since the matrix function
D(x) depends linearly on the variables xj , the solution ζh of the homogeneous
elasticity problem for the composite elastic space Ωh ∪Ω•

h is related to the solution
ζ by the formula

ζh(x) = h−1ζ(hx) .

Thus, in view of formula (2.40), we obtain that

(2.51) P (Ω•
h) = h−3P (Ω•) .

In [17, 18] the affine transformation

(2.52) x 7→ x̂ = tx

is applied to the elasticity problem in three spatial dimensions and the notion
of algebraically equivalent anisotropic media (see [1, 14]) is used to evaluate the

fundamental matrix solution F̂ (x̂) = (t⊤)−1F (t−1x̂)t−1. Thereby, t = (tjk)3j,k=1

is an arbitrary, not necessarily orthogonal, matrix of size 3 × 3. In view of the
coordinate dilatation (2.50) we may assume that

(2.53) det(t) = 1 ,

i.e., the affine transformation preserves volume. As verified in [17, 18] matrices

A, A• are transformed in the composite plane Ω̂ ∪ Ω̂• = tΩ ∪ tΩ• into the new
Hooke’s matrices

(2.54) Â = TAT⊤ , Â• = TA•T⊤ ,

where the (6 × 6)-matrix T depends on the entries of t in the following way

T =




t
2
11 t

2
12 t

2
13

√

2 t12t13

√

2 t11t13

√

2 t11t12

t
2
21 t

2
22 t

2
23

√

2 t22t23

√

2 t21t23

√

2 t21t22

t
2
31 t

2
32 t

2
33

√

2 t32t33

√

2 t31t33

√

2 t31t32
√

2 t21t31

√

2 t22t32

√

2 t23t33 t23t32 + t22t33 t23t31 + t21t33 t22t31 + t21t32
√

2 t11t31

√

2 t12t32

√

2 t13t33 t13t32 + t12t33 t13t31 + t11t33 t12t31 + t11t32
√

2 t11t21

√

2 t12t22

√

2 t13t23 t13t22 + t12t23 t13t21 + t11t23 t12t21 + t11t22 .




.

¿From the calculations in [18] it follows that the polarization matrix P̂ (Ω̂•) for

the algebraically equivalent composite plane Ω̂ ∪ Ω̂• takes the form

(2.55) P̂ (Ω̂•) = TP (Ω•)T⊤ .

Formula (2.55) becomes explicit if the original matrix P (Ω•) is known. If Ω
•

is a
cavity, then affin transformations of type (2.52) are useful to simplify the anisotropic
properties of the medium. For example, in two spatial dimensions it is known that
any anisotropic material is algebraically equivalent to an orthotropic material with
four symmetry axes (see [1, 14]).
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2.6. An application of the Eshelby theorem. Again we assume that the Hooke
matrices A and A• are constant, and the inclusion Ω• is an ellipsoid given by the
relation

|tx| < t0,(2.56)

where t0 > 0 is a real number and t ∈ R3×3 a fixed 3 × 3 matrix with det t = 1.
It is known since the work of Eshelby [11] (see [16, 29] and [13, 15], where the
three-dimensional case is considered as well) that a constant deformation ε∞ at
infinity generates constant strains and stresses in the ellipsoidal inclusion Ω•. In
our notation this means that the formal matrix solution (2.38) of the homogeneous
problem (2.6), (2.7) satisfies

(2.57) D(∇)ζ• = Q, x ∈ Ω•,

where Q is a real 6 × 6 matrix. We call Q the Eshelby-Matrix, it depends on the
Hooke-matrices A, A•, and the position and size of the ellipsoidal inclusion (2.56).

To find the relation between the polarization matrix P = P (Ω•) and the Eshelby
matrix Q, we recall that the vector functions (2.37) satisfy problem (2.6)–(2.8) with
the right-hand sides (2.36). Since A, A• are constant we have f•

(k) = f(k) = 0

in addition. The matrix {Z, Z•} admits the asymptotic form (2.40) and can be
regarded as a solution in H to the elasticity problem in the whole space (recall the
notation L = D(−∇)⊤AD(∇))

D(−∇)⊤AD(∇)Z(x) = 0, x ∈ Ω

D(−∇)⊤AD(∇)Z•(x) = F • := D(−∇)⊤(A − A•)D(∇)Z•, x ∈ Ω•
(2.58)

with a jump in the Neumann data on the surface Γ

D(n(x))⊤AD(∇)Z(x) − D(n(x))⊤AD(∇)Z•(x) =

= G1(x) := D(n(x))⊤(A• − A)(I6 + D(∇)Z•(x)).
(2.59)

Evidently, ζ(x) = D(x)⊤ if a = A• in (2.36). Comparing (2.40) and (2.29), Lemma
2.6 leads to the representation

−P =

∫

Ω•

F •dx +

∫

Γ

G1(x)dsx =

=

∫

Ω•

D(x)D(∇)⊤(A• − A)D(∇)Z•(x)dx+

+

∫

Γ

D(x)D(n(x))⊤(A• − A)(I6 + D(∇)Z•(x))dsx

=

∫

Ω•

(A − A•)(I6 + D(∇)Z•(x))dsx.

Finally, the definition (2.57) of the Eshelby matrix Q yields the desired relation

(2.60) P = (A• − A)(I6 + Q)mes3Ω
•.

Special properties of the polarization matrix P as outlined in Section 2.3 lead
to some properties of the Eshelby matrix which are not known yet. Namely, by
Theorem 2.7, we derive
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Corollary 2.10. Let Q be the Eshelby matrix defined in (2.57), then

(A• − A)Q = Q⊤(A• − A)(2.61)

(A• − A)Q =
1

|Ω•|
( ∫

Ω

(D(∇)Z(x)⊤AD(∇)Z(x)dx(2.62)

+

∫

Ω•

(D(∇)Z•(x)⊤A•D(∇)Z•(x)dx
)

We introduce the symmetrized Eshelby matrix

Q =
1

2
((A• − A)Q + Q⊤(A• − A),

which is symmetric and positive due to Corollary 2.10. Then the formula (2.60)
turns into

P = (A• − A + Q)mes3Ω
•.

3. Shape sensitivity analysis for polarization matrices

Direct approach of the shape sensitivity analysis is used in two spatial dimen-
sions. There is no major difficulty to apply the same approach in the three spatial
dimensions, however we prefer to perform such an analysis in the framework of
standard boundary variation technique with the material derivatives and the shape
gradients of energy functionals. In this way we show that two general approaches
of the shape sensitivity analysis are applicable for polarization matrices.

3.1. Two dimensional problems. We start with the same assumptions as in
Section 2.4, only as a two-dimensional problem, i.e. R2 = Ω ∪ Ω•, where Ω• ⊂ R2

is bounded by a smooth contour Γ, and the elastic materials which fill up Ω• and
Ω = R2�Ω• are homogeneous with constant Hooke’s matrices of size 3 × 3 (see
Section 1.4).

In a neighborhood U of Γ we introduce a curvilinear coordinate system (s, n),
where n is the oriented distance to Γ, n > 0 in Ω•, and s is the arc length on Γ. In
our notation a point on Γ is identified with its coordinate s. Moreover, a function
x 7→ v(x), after the change of variables is still denoted v(n, s). By an appropriate
rescaling, the diameter of the inclusion becomes 1, so that all coordinates are di-
mensionless. Given a small parameter h and a function H ∈ C2(Γ), we introduce
the perturbed contour

(3.1) Γh = {x ∈ U : s ∈ Γ , n = hH(s)} ,

it becomes the boundary of the perturbed inclusion Ω•
h, while Ωh = R2�Ω•

h. We
use the notation introduced in Sections 2.1 and 1.4. The polarization matrix P (h)
of size 3 × 3 for the inclusion Ω•

h is determined from the transmission boundary
value problem

D(−∇)⊤AD(∇)Zh
(k)(x) = 0 , x ∈ Ωh(3.2)

D(−∇)⊤A•D(∇)Zh•
(k)(x) = 0, x ∈ Ω•

h(3.3)

D(nh(x))⊤(AD(∇)Zh
(k)(x) − A•D(∇)Zh•

(k)(x))

= −D(nh(x))⊤(A − A•)ek,

}
x ∈ Γh ,(3.4)

Zh
(k)(x) = Zh•

(k)(x) , x ∈ Γh(3.5)
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where ek = (δ1,k, δ2,k, δ3,k). The solutions Zh
(k), Z

h•
(k) exist and (2× 3)-matrix Zh =

(Zh1, Zh2, Zh3) admits the asymptotic form

(3.6) Zh(x) = (D(∇)F (x)⊤)⊤P (h) + O(|x|−2)

(cf. (1.24)). We are going to find the second term in the asymptotics of the
polarization matrix

(3.7) P (h) = P + hP + . . .

It is reasonable to suppose that the solutions {Zk, Z•k} and the matrix P are known
for the unperturbed inclusion Ω• = Ω•

0. Then, we need to find the correction terms
in the expansions

Zh
(k)(x) = Zk(x) + Zk(x) + . . .(3.8)

Zh•
(k)(x) = Z•k(x) + Z•k(x) + . . .

According to (2.38) the matrix functions ζh = D⊤ + Zh and ζ = D⊤ + Z solve the
homogeneous problem (3.2)-(3.5) in Ωh ∪Ω•

h and Ω∪Ω•, respectively. That is why,
it is more convenient to consider the expansions of theirs columns

ζh
(k)(x) = ζk(x) + Zk(x) + . . . ,(3.9)

ζh•
(k)(x) = ζ•k(x) + Z•k(x) + . . . ,

which immediately follow from (3.8).
Since the boundary Γ is smooth, the vector functions ζk and ζ•k can be extended

in the Sobolev class H2 from Ω and Ω• onto Ω ∪ U and Ω• ∪ U , respectively. The
extensions are still denoted by ζk and ζ•k. Clearly, Zk and Z•k have to verify the
homogeneous elasticity system

D(−∇)⊤AD(∇)Zk(x) = 0 , x ∈ Ω ,(3.10)

D(−∇)⊤A•D(∇)Z•k(x) = 0 , x ∈ Ω• .(3.11)

It remains to evaluate the main parts of discrepancies in the homogeneous trans-
mission conditions (3.4) and (3.5) which appear due to shift (3.1) of the contact
contour.

We introduce the projections ζn and ζs of the displacement vector ζ = (ζ1, ζ2)
on the axes n and s, respectively,

ζn(n, s) = n1(s)ζ1(n, s) + n2(s)ζ2(n, s) ,

ζs(n, s) = −n2(s)ζ1(n, s) + n1(s)ζ2(n, s) ,
(3.12)

where n = (n1, n2)
⊤ stands for the unit normal vector on Γ interior to the inclusion

Ω•. The curvilinear components of the strain tensor ε(ζ) take the form

εnn(ζ) = n2
1ε11(ζ) + n2

2ε22(ζ) + 2n1n2ε12(ζ) ,

εss(ζ) = n2
2ε11(ζ) + n2

1ε22(ζ) − 2n1n2ε12(ζ) ,

εns(ζ) = εsn(ζ) = n1n2(ε11(ζ) − ε22(ζ)) + (n2
1 − n2

2)ε12(ζ) .

(3.13)

In terms of displacements the components of the strain tensor are expressed as
follows:

εnn(ζ) = ∂nζn , εss(ζ) = J−1(∂sζs + κζn) ,(3.14)

εns(ζ) = εsn(ζ) =
1

2
(∂nζs + J−1(∂sζn − κζs)) ,
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where ∂n = ∂/∂n, ∂s = ∂/∂s, J(n, s) = 1 + nκ(s) is the Jacobian and κ(s) is the
curvature of the arc Γ at the point s.

The Hooke’s law (1.19) in the coordinates (n, s) takes the form




σnn(ζ;n, s)
σss(ζ;n, s)√
2σns(ζ;n, s)


 = A(s)




εnn(ζ;n, s)
εss(ζ;n, s)√
2εns(ζ;n, s)


 , A(s) = Θ(s)⊤AΘ(s) ,

(3.15)

where the matrix Θ(s) is given by formula (1.18) with cosϑ = n1 and sinϑ = n2.
For the transmission condition (3.5) the Taylor formula

ζ(hH(s), s) = ζ(0, s) + hH(s)∂nζ(0, s) + O(h2)(3.16)

readily yields

Zk(0, s) −Z•k(0, s) = H(s)(∂nζk(0, s) − ∂nζ•k(0, s)) , s ∈ Γ .(3.17)

Since (∂n, J(n, s)−1∂s) is the gradient operator in the curvilinear coordinates,
the unit normal nh and the tangential vector sh on Γh have the components

nh
n(s) = sh

s (s) = jh(s)−1/2, nh
s (s) = −sh

n(s) = −hjh(s)−1/2∂sH(s),

where jh(s) stands for the normalizing factor 1 + h2H ′(s)2 and H ′ = ∂sH. Hence

σnhnh(ζ + hZ;hH(s), s) = σnn(ζ; 0, s) + h(H(s)∂nσnn(ζ; 0, s)

−2H ′(s)σns(ζ; 0, s) + σnn(Z; 0, s)) + O(h2) ,

σnhsh(ζ + hZ;hH(s), s) = σns(ζ; 0, s) + h(H(s)∂nσns(ζ; 0, s)

+H ′(s)(σnn(ζ; 0, s) − σss(ζ; 0, s)) + σns(Z; 0, s)) + O(h2) .

(3.18)

On the other hand, the equilibrium equations in the coordinates (n, s) take the
form

−∂nσnn(ζ) − J−1(∂sσns(ζ) + κ(σnn(ζ) − σss(ζ))) = 0 ,

−∂nσns(ζ) − J−1(∂sσss(ζ) + 2κσns(ζ)) = 0

and for n = 0 we obtain

∂nσnn(ζ; 0, s) = −∂sσns(ζ; 0, s) − κ(σnn(ζ; 0, s) − σss(ζ; 0, s)) ,(3.19)

∂nσns(ζ; 0, s) = −∂sσss(ζ; 0, s) − 2κσns(ζ; 0, s)) .

Now, we are able to conclude on the second transmission condition for Zk,Z•k.
Since ζk, ζ•k satisfy the homogeneous transmission conditions on the unperturbed
contour Γ, the following identities are still valid on Γ

ζk
n = ζ•k

n , ζk
s = ζ•k

s , σnn(ζk) = σnn(ζ•k) , σns(ζ
k) = σns(ζ

•k) ,(3.20)

this considerably simplifies the above formulae. In particular, taking into account
the second relations in (3.18), (3.19) we have

σns(Zk) − σ•
ns(Z•k) = −H

(
∂nσns(ζ

k) − ∂nσ•
ns(ζ

•k)
)
− H ′

(
{σnn(ζk) − σ•

nn(ζ•k)}
)

+H ′
(
σss(ζ

k) − σ•
ss(ζ

•k)
)

= H
(
∂sσss(ζ

k) − ∂sσ
•
ss(ζ

•k) + 2κ{(σns(ζ
k) − σ•

ns(ζ
•k)})

)

+H ′
(
σss(ζ

k) − σ•
ss(ζ

•k)
)

= ∂sH
(
σss(ζ

k) − σ•
ss(ζ

•k)
)

,
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note that the terms in {} vanish due to (3.20). Similar calculations, in view of the
first relations in (3.18), (3.19) lead to the couple of transmition conditions

σnn(Zk; 0, s) − σnn(Z•k; 0, s) = −κ(s)H(s)(σss(ζ
k; 0, s) − σss(ζ

•k; 0, s)) ,(3.21)

σns(Zk; 0, s) − σns(Z•k; 0, s) = ∂s(H(s)(σss(ζ
k; 0, s) − σss(ζ

•k; 0, s)) , s ∈ Γ .

Problems (3.10), (3.11), (3.17), (3.21) with k = 1, 2, 3 admit decaying matrix solu-
tions

Z = (Z1,Z2,Z3) , Z• = (Z•1,Z•2,Z•3)

of the form

Z(x) = (D(∇)F (x)⊤)⊤P + O(|x|−2)(3.22)

(cf. (3.6)). According to Lemma 2.6, the entries of (3 × 3)-matrix P in (3.22) and
(3.7) have the integral representation

Pjk =

∫

Γ

(ζj)⊤(σ(n)(Zk) − σ•(n)(Z•k))dsx −
∫

Γ

(Zk −Z•k)⊤σ(n)(ζj)dsx =: I1 − I2 .

(3.23)

Note, that in view of the homogeneous conditions (3.5) and (3.4), the identities
ζj = ζ•j and σ(n)(ζj) = σ•(n)(ζ•j) hold true on Γ, which has been taken into
account in (3.23).

Using formulae (3.14) and (3.20) it follows that

∂nζk − ∂nζ•k = 2εns(ζ
k) − 2εns(ζ

•k) on Γ

and, by (3.17),

I2 = −
∫

Γ

(εnn(ζk) − εnn(ζ•k))σnn(ζj) + 2(εns(ζ
k) − εns(ζ

•k))σns(ζ
j)dsx .(3.24)

Furthermore, applying (3.21), (3.20), (3.14) and integrating by parts on the
contour Γ result in

I1 =

∫

Γ

(ζj
s∂s(H(σss(ζ

k) − σ•
ss(ζ

•k))) − ζj
nκH(σss(ζ

k) − σ•
ss(ζ

•k)))dsx

−
∫

Γ

H(σss(ζ
k) − σ•

ss(ζ
•k))(∂sζ

j
s + κζj

n)dsx −
∫

Γ

H(σss(ζ
k) − σ•

ss(ζ
•k))εss(ζ

j)dsx .

(3.25)

In order to explain the physical sense of the obtained expression, we recall the
notion of the surface enthalpy [48, 38], which is common in many applications in
mechanics, namely, the integral

Ξ(ζ) =
1

2

∫

Γ

ξ(ζ, ζ)dsx(3.26)

with the density3

ξ(ζ, η) = σnn(ζ)εnn(η) + σns(ζ)εns(η) + σsn(ζ)εsn(η) − εss(ζ)σss(η) .

3The quadratic functional (3.26) is but a Gibbs functional, obtained from the surface en-
ergy functional by the partial Lagrange transformation for the tangential components of the
stress/strain state [].
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We emphasize, that all terms evaluated for ζ and ζ• are continuous on Γ in view
of the homogeneous transmission conditions (3.5), (3.4), while all terms evaluated
for η may have jumps over Γ.

¿From (3.23) - (3.25) it is straightforward to obtain

Pjk =

∫

Γ

H(s)ξ(ζj , ζk; s)dsx −
∫

Γ

H(s)ξ•(ζ•j , ζ•k; s)dsx .(3.27)

In other words, the matrix P in (3.7) is given by the jumps of the weighted enthalpy
obtained for the special solutions ζ of the homogeneous problem (3.2)- (3.5) for the
composite plane Ω ∪ Ω• with the original contact contour Γ.

We have performed the formal asymptotic analysis which can be justified in
the same way as in [48] for elasticity problems in domains with rapidly oscillating
boundaries (but with the serious simplifications, see also [37] for a phase transition
problem in the same framework).

Proposition 3.1. The polarization matrix P (h) of the composite plane Ωh ∪ Ω•
h

with the perturbed contact contour (3.1) has the asymptotic form (3.7) where the
entries of matrix P are provided in (3.27), and the remainder is of order O(h2).

Let us consider the elastic plane with the hole Ω•
h bounded by the perturbed

contour (3.1) (cf. Section 1.2). The formula (3.7) in Proposition 3.1 crucially
simplifies

Pjk = −
∫

Γ

H(s)εss(ζ
j ; 0, s)εss(ζ

k; 0, s)ds

= −
∫

Γ

H(s)
(
A−1(s)

)
22

σss(ζ
j ; 0, s)σss(ζ

k; 0, s)ds ,

(3.28)

since A• = 0 and σnn(ζp) = σns(ζ
p) = 0 on Γ and, moreover, inverting the Hook’s

law (3.14) we obtain

εss(ζ
j ; 0, s) =

(
A(s)−1

)
21

σnn(ζp; 0, s)+

+
(
A(s)−1

)
22

σss(ζ
j ; 0, s) +

√
2

(
A(s)−1

)
23

σns(ζ
j ; 0, s)

=
(
A(s)−1

)
22

σss(ζ
j ; 0, s), s ∈ Γ .

Here, ζj(x) = Dj(x) + Zj(x) are solutions to the homogeneous exterior elasticity
problem (1.22) with linear growth in infinity. The entry

(
A(s)−1

)
22

of the com-

pliance matrix A(s)−1 is positive, and, hence, the matrix P with elements (3.28)
is positive definite in the case when the hole enlarges, that is for H(s) < 0 (recall
that n is the outward normal with respect to Ω = R2�Ω•). In contrast, shrinking
the hole leads to a decrease of eigenvalues of the polarization matrix P .

Remark 3.2. The virtual mass matrix m(h) for the exterior Neumann problem in
Ωh (see Section 1.2) gets the similar expansion

m(h) = m + hM + O(h2) ,(3.29)

Mjk = −
∫

Γ

H(s)∂sζ
j(0, s)∂sζ

k(0, s)ds ,

where m is (2 × 2)−matrix with the entries mjk in (1.3) and ζj(x) = xj + zj(x)
are given by the solutions to homogeneous problem (1.1) with the linear growth at
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infinity. The above conclusion on the positivity/negativity of the matrix P remains
valid for the matrix M with elements (3.29).

3.2. Shape sensitivity analysis in three spatial dimensions. The classical
shape sensitivity analysis in smooth domains can be applied in order to derive the
shape derivatives of the polarization matrix. In the special case g0 = 0 in (2.7)
the weak solution to the transmission problem (see Definition 2.2) minimizes the
energy functional

J0(Γ) =
1

2
(AD(∇)u), D(∇)u)Ω +

1

2
(A•D(∇)u•, D(∇)u•)Ω•(3.1)

−(f, u)Ω − (f•, u•)Ω• − 〈g1, u = u•〉Γ =:
1

2
a(u, u) − L(u).

Recalling the representation (2.42) we observe that the entries of the polarization
matrix can be obtained using such functionals which simplifies the derivation. Thus
we start with an auxiliary result on material derivatives of the minimizers to (3.1),
which seems to be interesting on its own. We point out that, in view of the repre-
sentation (3.35) of the polarization matrix, the shape derivatives of the polarization
matrix P with respect to the perturbations of the interface Γ can be deduced from
the shape differentiability of the energy functional (3.1), the resulting shape deriva-
tives are given by formula (3.36). The existence of the shape derivative dJ(Γ;V )
of the functional (3.1) follows by Lemma 3.5 combined with the standard results
on the differentiability of volume and surface i ntegrals [55] which are listed below,
in Lemma 3.3. The result is established by the differentiability of the functional
(3.31) with respect to the parameter t at t = 0. Another problem, important for
numerical applications of our results, is the identification of the obtained shape
gradient gΓ given in formula (3.33). The actual form of the shape gradient can
be given by the derivation with respect to t in the variable domain setting of our
problem. We exploit to this end the shape differentiability of the energy type shape
functionals, taking into account the decomposition of P in (3.26), (3.27) combined
with the representations (3.28), (3.29) for the entries of the functionals in (3.1). All
steps in this derivation of formula (3.36) can be performed along the lines of [55].

3.3. Deformations of interfaces. Let Ξ ⊂ R3 be a domain with smooth compact
boundary Γ of class C2,α at least, we can think of Ξ ∈ {Ω,Ω•}, and V ∈ Ck

0 (R3)3,
k ≥ 1, be a fixed given mapping with compact support in an open neighbourhood
of Γ. To V we relate the family of diffeomorphisms Tt : R3 7→ R3 with inverse T−1

t

defined by

Tt(x) := x + tV (x) = (I + tV )(x) , t ∈ [0, ǫ0).

We denote the change of variables by

y(x) := Tt(x),

and also introduce the families of transported domains and interfaces

Ξt := Tt(Ξ), Γt := Tt(Γ).(3.2)

If g(t, ·) := gt ∈ H1(Ξt) for t ∈ [0, ǫ0), then

(3.3) gt := gt ◦ Tt ∈ H1(Ξ)
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and with g = g(0, ·) ∈ H1(Ξ) the strong (weak) material derivative is defined as

ġ(V ) = lim
t→0

1

t
(gt ◦ Tt − g) = lim

t→0

1

t
(gt − g)

provided this limit exists strongly (weakly) in H1(Ξ). Thereby the Sobolev space
H1(Ξ) can be replaced by any other Sobolev space (eventually under additional
regularity assumptions for V ). In a similar manner, we can define ġ for functions
defined on Γt. If the weak material derivative exists in H1(Ξ), then the shape
derivative g′ ∈ L2(Ξ) in the direction of V is defined by

(3.4) g′ = ġ −∇g · V
If g ∈ H2(Ξ), then the tangential gradient ∇Γg := ∇xg − (∇xg · n)n exists in
H1/2(Γ) and we can define the boundary shape derivative

(3.5) g′Γ = ġ −∇Γg · V,

again provided ġ exists in H1/2(Γ) at least as a weak limit. In the following we deal
with two kinds of functions defined in the domain Ξt. The first type are functions
defined in the whole space R3 and then restricted to Ξt. They appear as data for
our problems, and their so-called shape and material derivatives are explicitly given
[55]. The second type of functions are the solutions to boundary value problems
defined in the variable domains, especially solutions to the transmission problem.
For these functions the material derivatives are defined by solutions of auxiliary
boundary value problems defined in the fixed domain Ξ, and there is a relation
between shape and material derivatives [55]. We use the following notation for the
functions and variables

y := y(x) = Tt(x) ∈ Ξt,

Tt(x) := ∇xTt(x) = (∂yi/∂xj)i,j=1,2,3,

ϑt(x) := det(Tt), T−⊤
t := (T−1

t )⊤.

(3.6)

Note that ϑt > 0 if t is small enough. Clearly we have

∂tTt(x)|t=0 = ∇xV (x) = T′(x),

∂tϑt(x)|t=0 = ∇x · V (x) = ϑ′(x),

∂tT
−⊤
t (x)|t=0 = −(∇V (x))⊤ = (T−⊤)′(x),

(3.7)

the last formula follows if we observe that T|t=0 coincides with the unit matrix I 4.
We recall some results on the transport of differential operators and integrals, they
are used in order to obtain the derivatives with respect to the parameter t at t = 0
of volume and surface integrals. For the proofs we refer to [55].

Lemma 3.3. For Ξ, Ξt, and gt as in (3.2) and (3.3), respectively, we have

(3.8)

∫

Ξt

gt(y)dy =

∫

Ξ

gt(x)ϑt(x)dx,

∫

Γt

gt(y)dsy =

∫

Γ

gt(x)θt(x)dsx,

where θt(x) is the surface Jacobian, i.e. θt(x) = |ϑt(x) (T−1
t (x))⊤ · n(x)|, n(x) the

unit normal vector in x ∈ Γ. The derivatives of the integrals (3.8) for t = 0 take

4The notation T′(x) etc is consistent with (3.4), it we observe that for a sufficiently regular
regular function g(t, x) defined on an open neighbourhood of

S

t∈[0,ǫ0) ⊂ R4 it follows: g′(x) =

∂tg(t, x)|t=0, and ġ(x) = d
dt

g(t, Tt(x))|t=0
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the form

d

dt

∫

Ξt

gt(y)dy|t=0 =

∫

Ξ

[ġ(x) + g(x)ϑ′(x)]dx,

d

dt

∫

Γt

gt(y)dsy|t=0 =

∫

Γ

[ġ(x) + g(x)θ′(x)]dsx,

where ϑ′(x) = ∇ · V (x) and θ′(x) = ∇ · V (x) − n(x)⊤∇V (x)⊤n(x).

Next we need to introduce transported differential operators. Let gt ∈ Hk(Ξt),
if we think of ∇ygt as a column vector, then the chain rule for derivatives gives

(3.9) (∇ygt(Tt(x)) = T−⊤
t (x) · ∇xgt := Nt(x)gt,

where Nt(x) can be considered as the transported ∇-operator. Eventually dimin-
ishing the interval [0, ε0), we may assume

(3.10) KV ε0 =: ‖∇xV ;L∞(R3)‖ ε0 < 1.

Since T = I + t∇xV , where I is the 3 × 3 unit matrix, we have

T−⊤
t (x) =

∞∑

ν=0

(−1)ktk(∇xV (x)⊤)k, |t| 6 ε0(3.11)

Interchanging differentiation and summation, elementary calculations show

‖T−⊤
t ;L∞‖ 6

1

1 − ε0KV
,(3.12)

‖∇xT−⊤
t ;L∞‖ 6

1

(1 − ε0KV )2
‖∇V ;L∞‖,(3.13)

‖∇2
xT−⊤

t ;L∞‖ 6 C

( ‖∇V ;L∞‖2

(1 − ε0KV )3
+

‖∇2V ;L∞‖
(1 − ε0KV )2

)
,(3.14)

here C is an absolut constant independent of V and t. The relations (3.9) and
(3.11) imply

(3.15) ∇ygt ◦ Tt =
(
I − t(∇xV )⊤ + t2((∇xV )⊤)2T−⊤

t

)
· ∇xgt.

3.4. The transported transmission problem. Now we return back to our trans-
mission problem (2.6) – (2.8). Let Ω, Ω• and Γ be defined as in Section 2.1, again
Γ of class C2,α at least. We fix V and Tt as as in Section 3.3, then Γt = TtΓ is of
class C2,α for all t ∈ [0, ǫ0),. In addition to the assumptions of Section 2.1 on the
Hooke matrices A•(x), A(x) = A0 + Ae(x), we require now A•, Ae ∈ C1

0 (R3), and
A•(x) is positive definit on a compact subset K ⊂ R3, which contains

⋃
t∈[0,ε0)

Ω•
t .

To the matrix differential operator D(∇y) we associate the transported operator
Dt(x,∇x) =: D(Nt(x)). With

At = A ◦ Tt, A•,t = A• ◦ Tt,

we define the transported elasticity operators on Ω, Ω• by

(3.16) L(•),t(x,∇x) = −Dt(x,∇x)⊤A(•),tDt(x,∇x).

Note that Lt, L•,t are second order differential operators with variable coefficients
which can be applied to any {u, u•} ∈ V 2

β (Ω) × H2(Ω•). In a similar manner,
we introduce transported boundary operators. By Nt and N •

t , we denote the
Neumann operators associated with the problem (2.6) – (2.8) on Ωt, Ω•

t . For
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x ∈ Γ, y = Ttx ∈ Γt, let n(x) and nt(y) be unit normal vectors in x and y (with
the same orientation) to Γ and Γt, respectively. Then it holds (see [55, Sect. 2.17])

(3.17) nt(x) := nt(Tt(x)) =
∣∣T−⊤

t · n(x)
∣∣−1

T−⊤
t · n(x),

and we set

(3.18) N (•)
t = D⊤(nt(x)) · A(•),t(x)Dt(x,∇x).

The particular representations (3.11) and (3.15) enables us to control the behavior
of the operators (3.16) and (3.18) at t = 0. To formulate our results, we introduce
the following natural spaces for the data and for strong solutions to our transmission
problems:

Dt = V 2
1 (Ωt)

3 × H2(Ω•
t )

3,

Rt = V 0
1 (Ω)3 × L2(Ω•)3 × H3/2(Γt)

3 × H1/2(Γt)
3,

(3.19)

and the operators related to the transmission problems

(3.20) At : Dt → Rt, (u, u•) 7→ (Lu,L•u•, (u − u•)|Γt
, (Ntu −N •

t u•)|Γt
).

To the transported operators (3.16) and (3.18) we relate the problem operator At.
For t = 0, we simply write D , R and A .

Lemma 3.4. Let V , Tt be defined as in Section 3.3, and t ∈ [0, ε0], so that Tt is a
diffeomorphism and (3.10) holds.

(i) The mapping It : (u, u•) → (ut, u
•
t ) = (u ◦ Tt, u

• ◦ Tt) defines a bounded
isomorphism between Dt and D . The norm of It as well as the norm of the
inverse It is bounded independent of t. An analogous result holds for the
spaces Rt and R.

(ii) To each set of data Ft = (ft, f
•
t , g0,t, g1,t) ∈ Rt there exists a unique solution

Ut = (ut, u
•
t ) ∈ Dt to the problem AtUt = Ft, and

‖Ut;Dt‖ 6 Ct‖Ft;Rt‖.
(iii) If AtUt = Ft, where Ut ∈ Dt, and Ft ∈ Rt, then by (i), U t ∈ D , F t ∈ R,

and A tU t = F t, in particular for t ∈ [0, ε0), the mapping A t is a bounded
isomorphism from D to R.

(iv) Let L (D ,R) denote the space of bounded linear operators from D to R,
provided with the usual operator norm. The mapping t 7→ A t is continuous
from [0, ε0) to L (D ,R), in particular we have limt↓0 A t = A .

Proof. The first assertion follows from the representation (3.9), the estimates
(3.12) – (3.14) and the transformation formula (3.8). Part (ii) follows from Propo-
sition 2.3 together with local regularity results [54] and [49, Sect. 4.3].

For the proof of (iii) we observe that the definition of the transformed operators
and functions immediately imply the equation A tU t = F t. The isomorphism
property follows from part (i) and (ii) since A t = It ◦At ◦ It, where the mappings
It : D → Dt and It : Rt → R are defined by ItU = (u ◦ T−1

t , u• ◦ T−1
t ) and

ItFt = F t.
Turning to (iv), we first prove the continuity result. Obviously the mapping

t → Tt is in C∞([0, τ ];C3
0 (R3)) even for any large τ > 0. Since A• ∈ C1(K), we

obtain then for t, t0 ∈ [0, ε0)

‖A•,t0 − A•,t;L∞(K)‖ + ‖∇(A•,t0 − A•,t);L∞(K)‖ → 0,(3.21)
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similarly, since A(x) = A0 + Ae(x)

‖At0 − At;L∞(R3)‖ + ‖∇(At0 − At);L∞(R3)‖ → 0, as t → t0.(3.22)

The representation (3.15) gives

Dt(x,∇x) = D(∇x) − tD((∇xV )⊤∇x) + t2D̃(t, x,∇x),

D̃(t, x,∇x) =

∞∑

ν=2

(−1)νtν−2D(((∇V )⊤)k∇x).
(3.23)

This means that D̃(t, x,∇x) is a first order (matrix) differential operator, where
the coefficient functions are bounded in C2(R3) uniformly in t and vanish for large
x, say |x| > R0. Representation (3.23) implies that the mapping t → Dt ∈
L (V k

β (Ω), V k−1
β (Ω)) as well as t → Dt ∈ L (Hk(Ω•), Hk−1(Ω•)) for k = 1, 2,

β ∈ R, is even Frechet-differentiable for all t ∈ [0, ε0), where the derivative is
just the operator D((∇xV )⊤∇) acting between the corresponding Sobolev spaces.
Furthermore, representation (3.17) shows that again for small t, the vector fields
nt, ∂tnt ∈ C2(Γ) and depend continuously on t. From here the continuity assertion
follows using (3.21), (3.22). �

We now assume that the data for the problem on the t-dependent domains are
generated by restrictions of fixed vector fields, then Lemma 3.4 leads to the following
result.

Corollary 3.5. For given

f• ∈ L2(R3)3, f ∈ V 0
1 (R3)3, G0 ∈ H2(R3)3, G1 ∈ H1(R3)3(3.24)

we set

ft = f |Ωt
, f•

t = f•|Ω•

t
, g0,t = G0|Γt

, g1,t = G1|Γt
.(3.25)

Let Ut := {ut, u
•
t } and U = {u, u•} be the corresponding solution to problem (2.6)

– (2.8) on {Ωt,Ω
•
t ,Γt}, and {Ω,Ω•,Γ}, respectively, further U t := {ut, u•,t} denote

the transported vector field according to (3.3). Then limt↓0 U t = U strongly in D ,
i.e.

‖ut − u;V 2
1 (Ω)‖ + ‖u•,t − u•;H2(Ω)‖ → 0, as t → 0.

Proof. With F t defined by the data (3.25) we have F t → F = F0 strongly in
R. Part (iv) of Lemma 3.4 implies A t,−1 converges to A −1 in L (R,D), hence

‖U t − U ;D‖ = ‖A t,−1Ft − A
−1F ;D‖

6 ‖A t,−1F t − A
t,−1F ;D‖ + ‖A t,−1F − A

−1F ;D‖ → 0. �

On the other hand, the material derivatives are not really needed for the shape
derivatives of the polarization tensor. Indeed, representation (2.42) shows that each
entry of the polarization tensor is composed from two kinds of functionals. Recall
that

Z(k) := {Z(k), Z
•
(k)}, k = 1, . . . , 6,
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is the solution to the transmission problem with data (2.36). The entries Pkl of the
polarization tensor can be calculated as follows

Pkl = Pkl + 2a(Z(k),Z(l)), where(3.26)

Pkl : = −
∫

Ω•

(
A0

kl − A•
kl(x)

)
dx +

∫

Ω

Ae
kl(x)(3.27)

a(Z(k),Z(l)) : = −1

2
(A(D(∇)Z(k), D(∇)Z(l))Ω

− 1

2
(A•(D(∇)Z•

(k), D(∇)Z•
(l))Ω• .

(3.28)

Then term (3.27) is independent of Z(k) while a is an energy type functional. The
energy for the field Z(k) is just a(Z(k),Z(k)), and we can evaluate the off-diagonal
elements of P , i.e. Pkl for k 6= l, by the formula

(3.29) 2a(Z(k),Z(l)) = a(Z(k),Z(k)) + a(Z(l),Z(l))− a(Z(k) −Z(l),Z(k) −Z(l)) .

It means, that all the entries of the matrix P are can be calculated using Lemma
3.3 and the rules for derivatives of the energy functional. To this end we only need
strong convergence of the minimizers as t → 0 which was shown in Corollary 3.5.
If the data of the problem (2.6) - (2.8) are given through restrictions of sufficiently
smooth data to the variable domains, then the methods of [55] for the first order
shape sensitivity analysis can be applied. In the same way it is possible to prove the
existence of strong material derivatives for the minimizers, which is here omitted,
since for the the shape differentiability of the energy type functionals the strong
convergence of unique minimizers is sufficient.

To determine the shape derivatives of the entries of polarization matrix, we first
consider the entries on the diagonal, to this end we fix the index (k) and put

Z := Z(k),

then Z is the minimizer of the functional (3.1) for fixed interface Γ, where f and
g1 are defined in (1.15). Let Γt be defined as in (3.2). Using the representation
(3.26) and (3.27) with k = l, it comes down to find the shape derivative of

J(Γ) := 2a(Z ,Z ) := 2a(Z(k),Z(k)),

which we rewrite as follows (cf (1.15) and (3.1))

J(Γ) = a(Z ,Z ) − 2L(Z ) = inf
v∈V 1

0

[a(v, v) − 2L(v)].

We repeat the same notation in the variable domain setting, hence

J(Γt) := 2at(Zt,Zt) = at(Zt,Zt) − 2Lt(Zt) = inf
vt

[at(vt, vt) − 2Lt(vt)].

To transport the minimized functional to the fixed domain, we replace simply the
test functions vt by test functions of a special form useful for our purpose, namely
vt := u ◦ T−1

t . In this way we get very simple expression to be differentiated

J(Γt) := inf
u

[at(u, u) − 2Lt(u)]

where at(u, u) and Lt(u) are the forms transported to the fixed domain and interface,
respectively. It is not difficult to find the derivatives with respect to t of the both
forms, which we denote ȧ and L̇, respectively. Thus, the energy functional is shape
differentiable and we get the expression

dJ(Γ;V ) = ȧ(Z ,Z ) − 2L̇(Z )
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for its shape derivative. To be more precise, we get the shape derivatives of Pkk

for all k. The expression of this particular form is already very useful for the
numerical analysis, however, using the structure theorem we can also identify the
boundary expression for the shape derivative, assuming the necessary regularity of
the minimizers and of the interface.

The second step is just to extend the analysis of the shape differentiability for
the arbitrary indices (k), (l) which can be performed in the same way in view of the
formula (3.29). It means that we get exactly the same form of shape derivatives
of all entries of the polarization matrix as for the entries on the diagonal with
(k) = (l).

3.5. Energy matrix function. We denote by J(Γt) the 6 × 6-matrix, where the
entries Jk,l(Γt) are defined with the help of Zt,(k) in the perturbed domains, i.e.

Jk,l(Γt) =
1

2
at(Zt,(k),Zt,(l)) − Lt(Zt,(l)) = −1

2
at(Zt,(k),Zt,(l)) =(3.30)

=
1

2
(AD(∇)Zt,(k), D(∇)Zt,(l))Ωt

+
1

2
(A•D(∇)Z•

t,(k), D(∇)Z•
t,(l))Ω•

t
−

−(ft, Zt,(l))Ωt
− (f•

t , Z•
t,(l))Ω•

t
− (g1

t , Zt,(l) = Z•
t,(l))Γt

=

−1

2
(AD(∇)Zt,(k), D(∇)Zt,(l))Ωt

− 1

2
(A•D(∇)Z•

t,(k), D(∇)Z•
t,(l))Ω•

t

where ft = f(l) ◦Tt, g1
t = g1

(l) ◦Tt and f(l), g1
(l) are taken from (2.36). Assuming for

simplicity that the matrices A, A• are constant, we transport Jk,l(Γt) to the fixed
domain which leads to the following expression

J(Γt) =
1

2
at(Z t

(k),Z
t
(l)) − Lt(Z t

(l)) = −1

2
at(Z t

(k),Z
t
(l)) =(3.31)

=
1

2
(ϑ(t)ADt(∇)Zt

(k), D
t(∇)Zt

(l))Ω +
1

2
(ϑ(t)A•Dt(∇)Z•,t

(k), D
t(∇)Z•,t

(l) )Ω•−

−(θ(t)F t, Zt
(l))Ω − (θ(t)F •

t , Z•,t
(l) )Ω• − (θ(t)g1,t, Zt

(l))Γ =

−1

2
(ϑ(t)ADt(∇)Zt

(k), D
t(∇)Zt

(l))Ω − 1

2
(ϑ(t)A•Dt(∇)Z•,t

(k), D
t(∇)Z•,t

(l) )Ω• ,

where again Dt(∇) = D(T−⊤∇x) according to the transformation rules. From
Lemma 3.5 it follows that in the fixed domain setting we have the shape differen-
tiability result.

Proposition 3.6. All entries Jk,l(Γ) of the matrix shape functional J(Γt) are shape
differentiable i.e., the following limits exist

(3.32) dJk,l(Γ;V ) = lim
t→0

1

t
(Jk,l(Γt) − Jk,l(Γ)) .

Furthermore, the Hadamard structure theorem of the shape gradient [55] implies
the continuity of the mapping C1

0 (R3) ∋ V 7→ dJk,l(Γ;V ) ∈ R. Therefore, there are
shape gradients gΓ

k,l such that

(3.33) dJk,l(Γ;V ) = 〈gΓ
k,l, V · n〉Γ

in the duality pairing on the interface Γ.

The direct evaluation of the shape derivative dJ(Γ;V ) leads to quite complicated
expressions, however, explicit formulae are useful from the point of view of possible
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applications. We are going to present the formal time derivative at t = 0 of the en-
ergy functionals where we suppose regularity assumptions under which the surface
integrals make sense,

dJk,l(Γ;V ) :=
d

dt
Jk,l(Γt) =

1

2

∫

Γ

{(AD(∇)Z(k), D(∇)Z(l)) − (A•D(∇)Z•
(k), D(∇)Z•

(l))}V · ndsx

−
∫

Γ

(f − f•, Z(l))V · ndsx −
∫

Γ

(θ′(0)g1 + (g1)′Γ), Z(l))V · ndsx ,(3.34)

where (g1)′Γ is the so-called boundary shape derivative [55] of the element g1.
If there is no regularity required here, the shape derivative dJ(Γ;V ) can be

expressed in terms of material derivatives by volume integrals, and the structure
theorem [55] can be used in order to obtain the boundary formula in the sense of
distributions.

3.6. Polarization tensor. The shape differentiability of energy functionals implies
the shape differentiability of the polarization tensor. From formula (2.42) we get
for the perturbed interface

(3.35) Pt = −
∫

Ω•

t

(
A0 − A•(x)

)
dx +

∫

Ωt

Ae(x) + 2J(Γt) .

Therefore, the time derivative P ′ of the tensor Pt is given by the formula

(3.36) P ′ = −
∫

Γ

(
A0 − A•(x) + Ae(x)

)
V · ndsx + 2dJ(Γ;V ) .
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