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Abstract

As the number of cores per machine increases, memory architectures are being redesigned

to avoid bus contention and sustain higher throughput needs. The emergence of Non-Uniform

Memory Access (NUMA) constraints has caused affinities between threads and buffers to be-

come an important decision criteria for schedulers.

Memory migration enables the dynamically joined distribution of work and data across the

machine but requires high-performance data transfers as well as a convenient programming

interface. We present the improvement of the LINUX migration primitives and the implemen-

tation of a Next-touch policy in the kernel to provide multithreaded applications with an easy

way to dynamically maintain thread-data affinity.

Microbenchmarks show that our work enables a high-performance, synchronous and lazy

memory migration within multithreaded applications. A threaded LU factorization then re-

veals the large improvement that our Next-touch policy model may bring in applications with

complex access patterns.

Keywords: Memory Migration, Next-Touch, Lazy Migration, Multithreaded Applications,

Affinity, NUMA, Linux.

1 Introduction

While the number of cores within machines keeps increasing, the way to exploit the computing

power has to be redesigned. The architecture is indeed becoming more and more complex, with

multicore and/or multithread processors and multiple level of shared caches. Threads are a con-

venient way to program these highly-parallel hosts and parallel programming languages such as

OPENMP try to ease the mapping of parallel algorithms onto the architecture.

It is well-known that the quality of the thread scheduling has a strong impact on the overall

application performance [4] because of thread and data affinities. However, this issue is now

becoming critical due to the variable memory access latencies that more and more architectures
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exhibit. NUMA (Non-Uniform Memory Access) architectures indeed appear as the solution to ease

the scalability of modern memory architectures, by interconnecting distributed memory banks.

With local data access being significantly faster than remote access, data locality emerges as a

critical criteria for scheduling threads, and it becomes important to be able to migrate data buffers

together with their accessing tasks.

Modern operating systems provide the ability to manage these NUMA architectures by allo-

cating data buffers on a given node or migrating at runtime. Such features for instance enable

the adaptation of the data distribution to the current thread scheduling in dynamic and irregular

applications such as adaptive mesh refinement. While being the most widely used operating sys-

tem in high-performance computing, LINUX however only gained NUMA awareness recently and

still has limited support for migrating buffers within multithreaded architectures. We thus propose

in this article an in-depth study and optimization of the LINUX migration primitives to provide

application with a convenient way to react to dynamic thread scheduling.

The remaining of the paper is organized as follows. Background about NUMA architectures,

affinities between threads and memory, and memory migration in LINUX are introduced in Sec-

tion 2 as well as our motivations. Section 3 describes the implementation of a high-performance

memory migration primitive for threaded applications, its usage within a user-space Next-touch

policy, and the design of an optimized Next-touch strategy in the LINUX kernel. These ideas are

evaluated in Section 4 which presents microbenchmarks and application performance. Before con-

cluding, related works are summarized in Section 5.

2 Background and Motivations

In this section, we introduce NUMA architectures and their impact on application programming

through affinities between threads and memory. We then present how LINUX deals with memory

migration before describing our motivations to improve the provided features.

2.1 NUMA Architectures

The emergence of highly parallel architectures with many multicore processors raised the need

to rethink the hardware memory subsystem. While the number of cores per machine quickly in-

creases, memory performance remains several orders of magnitude slower. Concurrent accesses

to central memory buses imply contention, causing the overall performance to decrease. It led

hardware designers to drop the centralized memory model in favor of distributed and hierarchical

architectures, where memory nodes and caches are attached to some cores and far away from the

others (Non-Uniform Memory Access, NUMA). This design has for instance been widely used in

high-end servers based on the ITANIUM processor. It now becomes mainstream since AMD HY-

PERTRANSPORT [5] (see Figure 3) and the upcoming INTEL QUICKPATH memory interconnects

will dominate the server market soon. Indeed, these new memory architectures assemble multiple

memory nodes into a single distributed cache-coherent system. It has the advantage of being as

convenient to program as regular shared-memory SMP processors, while bringing a much higher

memory bandwidth and much less contention.
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However, while being cache-coherent, these distributed architectures have non-constant phys-

ical distance between hardware components, causing their communication time to vary. Indeed,

a core accesses local memory faster than other memory nodes. The ratio is often referred to as

the NUMA factor. It generally varies from 1.2 up to 3 depending on the architecture. It therefore

has a strong impact on application performance. Not only the application will execute slower if

accessing remote data, but also contention may appear on memory links if two processors access

each others’ memory nodes.

2.2 Threads and Memory Affinity

The increasing number of processing cores in machines raises the need to parallelize applications

within single nodes. Many approaches still rely on MPI to enable communication between all

processes running on the same node. This model brings a uniform interface to communicate with

both local and distant processes. However, while being convenient for programmers, this approach

has performance issues and may only be interesting for clusters. Using threads, for instance with

OPENMP, is now considered as a promising approach to exploiting shared-memory hosts, even

when mixed with MPI for inter-node communications [3].

Running multiple threads on a NUMA machine raises the problem of NUMA penalties as we

explained in the former section. Achieving optimal performance requires to carefully place each

thread as close as possible to the data it accesses [2, 1]. It may be achieved either by migrat-

ing threads or by migrating memory buffers. However, such migrations have to be decided after

looking at the overall load-balancing among all cores and memory banks in the machine in order

to maintain a good utilization of the hardware resources. Multithreaded applications may thus

distribute many threads on distant cores of a single host but they should place them while also

distributing the process buffers among all memory nodes.

The commonly-used strategy to get a proper memory placement is called First-touch. It relies

on the operating system laziness: each virtual page is allocated in physical memory only when

touched for the first time. A NUMA-aware operating system is thus able to allocate the page on

a memory bank near the core that caused the page-fault by touching it. However, many dynamic

applications cannot rely on such a policy since there is often few guarantees that the first touching

thread will be the one accessing the data intensively in the future. The application may thus only

manually place the page on the right memory node at startup, assuming it knows where the asso-

ciated thread will be running in the future. Another strategy would be to rely on page migration

later.

Highly-dynamic applications such as adaptive mesh refinement have their thread/data affinities

actually varying during the execution since the amount of computation in each buffer depends on

earlier results. When the optimal thread/memory distribution evolves, the load-balancing has to be

maintained between all the cores and the memory banks. If the application is aware of where the

buffers have been allocated and where its threads are running, it may migrate buffers accordingly

synchronously. Thus, another solution called Next-touch is a generalization of the First-touch

approach: memory buffers are marked as needing to be migrated near the thread that will first

touch them in the future [8, 9, 12]. This feature is very convenient for application developers since

they do not have to always know where all threads and buffers are placed. It is unfortunately rarely
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implemented, and as all memory migration operations, it has to be efficient so as to maintain the

application performance.

2.3 Memory Migration in LINUX

Some proprietary operating systems such as Solaris or IRIX have had advanced NUMA support

for a long time [15, 8]. These systems were widely used on NUMA architectures which at the

time were rare and needed specific software support. LINUX has been the most commonly used

operating system in high-performance computing for a decade but it is not yet the obvious choice

for NUMA machines due to its limited NUMA support up to recently. Although it has been

able to gather NUMA information from the hardware for a long time, the LINUX kernel only

acquired some actual NUMA abilities in the last years with the addition of some page binding

system calls (set_mempolicy, mbind, etc.) and recently some memory migration primitives

(move_pages, etc.) [7]. These features are made available to user-space applications thanks for

instance to the libnuma interface [6].

Thanks to these additions and now that NUMA architectures such as AMD HYPERTRANSPORT

and INTEL QUICKPATH are spreading into the mainstream server market, it is expected that an

increasing number of NUMA machines will run LINUX. It is therefore important to actually have

LINUX providing all features that NUMA-aware applications may require, and to implement them

efficiently.

There are two methods for migrating memory between NUMA nodes in LINUX, both are syn-

chronous system calls:

migrate_pages moves all pages of a process from a set of NUMA nodes to another set. It is

usually combined with the migration of threads on different cores, thus enabling the migra-

tion of entire processes to a different part of the machine. This is mostly a load-balancing

feature that administrators use to split a large single machine into pieces (cpusets) and share

it between multiple users.

move_pages moves an array of virtual addresses within a process address space to an array of

specified NUMA nodes. It enables fine-grain placement of different buffers within a single

application. This is therefore the interesting migration primitive for affinity-based scheduling

of threads and buffer placement.

2.4 Motivations

Given the possible impact of memory migration on application performance, it is important to of-

fer flexible programming interface to user-space. While thread schedulers are already able to place

threads according to their memory affinities [11], load-balancing also requires to spread threads

across all cores, and thus to redistribute data dynamically to match their needs. It is therefore im-

portant for memory migration primitives to be available and efficiently implemented. We hence

propose in this article a study and improvement of the LINUX migration system call implementa-

tion.
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The LINUX kernel only provides the aforementioned synchronous migration primitives. Pages

are therefore either allocated on the correct NUMA node in the first place, or have to be migrated

synchronously later. When migrating a thread onto another core, the scheduler has to know which

buffers are associated to this thread, and decide immediately whether they should be migrated

as well. However, there is no guarantee that all of the buffers will actually be accessed in the

near future and furthermore the same thread could migrate again soon. Moreover, maintaining a

knowledge database of all thread/memory affinities is difficult since each buffer may have different

reading and/or writing access patterns, by one or several threads at the same time.

An asynchronous Lazy Migration primitive based on the Next-touch policy thus appears as a

good solution to these dynamic behaviors since pages will only actually be migrated when needed.

Such a feature may be implemented in user-space using a segmentation-fault signal handler and

the aforementioned synchronous migration primitives [12]. But this solution has an important

overhead and requires the synchronous migration to be efficient. Fortunately, a kernel-based im-

plementation in Solaris [8] has proven that the Next-touch approach may bring interesting results.

We thus also envision in this article the implementation of such a lazy Next-touch migration scheme

in the LINUX kernel and the comparison of its performance with a user-level model. An efficient

solution is expected to provide a convenient and flexible way to support dynamic and irregular ap-

plications since the scheduler would take care of load-balancing across cores while the Next-touch

policy would make sure the data locality is maintained.

3 High-Performance Memory Migration in LINUX

We introduce in this section the design of our high-performance memory migration features for

threaded applications in LINUX. The performance of the synchronous move_pages system call

is first discussed, before being used as a user-level-based Next-touch model. We then describe an

optimized kernel-assisted Next-touch implementation.

3.1 Improving move pages Performance

The move_pages system call has been introduced in LINUX kernel 2.6.18 as a way to migrate

individual pages of a process address space. It is the preferred way to manipulate migration in

threaded applications since the other primitive (migrate_pages) migrates an entire process.

move_pages performs migration by reading an array of process virtual addresses and an array

of destination nodes from user-space. It then migrates the corresponding pages accordingly before

returning an array of status to user-space.

We diagnosed a dramatic performance problem when moving large buffers (see Section 4.2)

and discovered that it was caused by the quadratic complexity of the implementation. Indeed, the

processing of each array slot caused a linear lookup in the entire destination node array. By re-

working the implementation, we were able to restore a linear behavior by removing this potentially

very expensive lookup. This work will be integrated in the upcoming LINUX kernel 2.6.29. It en-

ables buffer-size independent migration throughput, making dynamic migration of large memory

areas in multithreaded applications acceptably fast (see Section 4.2).
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3.2 Naive Next-touch Migration

Implementing a Next-touch policy in user-space on top of the LINUX kernel requires to be notified

when the next touch occurs. Since memory accesses from the application are transparently pro-

cessed by the processor and its Memory Management Unit (MMU), the only way to get an event is

to generate a page-fault. The operating system page-fault handler usually either kills the process

because of an invalid access (segmentation fault) or allocates a new page and fills it with the cor-

responding data (swap-in, copy-on-write, ...). A first way to implement the Next-touch policy in

user-space would be to force pages to be swapped-out to the disk so that the next application access

moves them back to the host memory, possibly on a different NUMA node. However, LINUX does

not offer any reliable way to force such a swap-out1 and its performance will be strongly limited

by the storage subsystem.

The other solution consists in having the operating system generate a segmentation fault on

next-touch and letting a user-space library catch the corresponding signal in user-space. We imple-

mented this model thanks to the mprotect primitive enabling fake segmentation faults on valid

areas. The signal handler then migrates pages and restores the initial protection as described on

Figure 1.

The handler is actually responsible for deciding which buffer should be migrated. Since the

workset structure in memory is known to the user-space library, the handler knows which buffer is

actually accessed by the current thread. It is thus possible to benefit from move_pages optimized

performance by migrating large buffers at once instead of migrating single pages when they are

actually touched.

change PTE protection

page−fault

mprotect()

Application Operating System Processor

check VMA protection

move_pages()

mprotect()
migrate pages

restore PTE protection
handler exit

raise SIGSEGV

mark next−touch

SIGSEGV handler

change VMA protection

page−fault handler

restore VMA protection

touch

touch retry

Figure 1: Implementation of the Next-touch policy in user-space through mprotect and a signal

handler for segmentation fault.

Thanks to the move_pages performance improvement that we describe in the above section,

1The existing behaviors of the madvise system call in LINUX supports (for instance REMOVE or DONTNEED) do

not implement the exact proper behavior.
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this user-space implementation enables Next-touch migration with satisfying throughput. Once

memory areas have been marked as Next-touch, each thread will automatically migrate the areas it

accesses to its local memory bank. This approach also enables variable granularity since the user

library may migrate larger or more complex areas (for instance a matrix column) since it knows

the data structure in memory and the thread access patterns.

3.3 Kernel-based Next-touch Migration

The aforementioned user-space Next-touch model involves a return to user-space to run the signal

handler before re-entering the kernel again for migration. Moreover, the Translation Lookaside

Buffer (TLB) has to be flushed on all processors for each mprotect, while another flush is

already needed for migration. These possibly expensive overheads justify the idea of optimizing

the Next-touch implementation by modifying the LINUX kernel.

We propose a kernel-based Next-touch strategy that migrates pages within the page-fault han-

dler as described on Figure 2. Our implementation was inspired by the Copy-on-write implemen-

tation in LINUX. The application marks pages as Migrate-on-next-touch using a new madvise

parameter. The LINUX kernel removes read/write flags from the page-table entries (PTEs) so that

the next access causes a fault. The page-fault handler checks whether the page has been marked as

Migrate-on-next-touch. If so, it allocates a new page, copy the data and frees the old one. This im-

plementation enables Next-touch migration since the new page is allocated on the current NUMA

node by default.

change PTE protection

page−fault

Application Operating System Processor

madvise()

restore PTE protection

set next−touch flag

page−fault handler

check next−touch flag

migrate page

remove next−touch flag

mark next−touch

touch

touch retry

Figure 2: Implementation of the Next-touch policy in the LINUX kernel using madvise and a

dedicated flag in the page-table entry (PTE).

3.4 Taking Migration Decisions

Both user-space and kernel Next-touch implementations actually have different semantics. The

kernel one is page-based: even if the application touches many pages successively, each of them

is migrated individually. The user-space implementation manipulates larger or more complex ar-

eas: the library offering the method can obtain from the application the description of the whole
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memory area (for instance a matrix column) and migrate it entirely as soon as a single page is

touched. These different semantics are expected to make the kernel implementation to be used

for small granularities while the user-space high overhead makes it more suitable for very large

granularities. Moreover the user-space migration library knows the location of each page after the

Next-touch has occurred, it does not have to query the kernel again for page location. This addi-

tional knowledge could enable some optimization for complex migration patterns where multiple

successive migration are involved.

The migration decision should be taken when the scheduler actually moves a thread to a core

on a different NUMA node. A basic model would synchronously migrate all buffers attached to

the thread. The Next-touch policy provides a very convenient way to perform this joined migration

of threads and buffers: When a thread migration is expected, the whole workset may be marked

as Migrate-on-next-touch. Each migrated thread would then automatically migrate some pages in

the background as soon as it touches them. There is thus no useless migration (unaccessed buffers

are not touched and therefore not migrated) and the thread scheduler does not have to know which

buffers are attached to which thread. We envision that marking as Migrate-on-next-touch could be

driven by the OPENMP runtime system. Indeed, entering a new parallel section is usually a natural

event that would cause the thread distribution to evolve. Some dedicated OPENMP pragma could

also be used as a way to tell the system that the data layout in memory should be redistributed.

This work also leads to the idea of implementing a Lazy Migration model. Indeed, instead of

migrating synchronously with move_pages when a thread starts accessing a distant buffer, the

thread could mark the buffer as Next-touch and have it migrate in the background when it touches

its pages. This is actually a very different usage of the Next-touch policy since the destination node

is known in advance (Next-touch usually serves as a way to scatter a single buffer across multiple

NUMA nodes when multiple threads start accessing it in a unpredictable manner). Additionally,

if the thread actually touches only part of the buffer, only the corresponding pages will be mi-

grated for real, reducing the overall overhead. This Lazy Migration strategy is especially expected

to improve performance when the future access patterns of the threads are unknown, causing a

synchronous migration of the entire buffer to be hard to decide.

4 Performance Evaluation

We now present in this section a performance evaluation of our migration techniques. We first look

at microbenchmarks to understand each strategy performance and then look at real applications

with a LU matrix factorization.

4.1 Experimentation Platform

The experimention platform is composed of a single host with four quad-core 1.9 GHz OPTERON

8347HE processors as depicted on Figure 3. Each processor contains a 2MB shared L3 cache and

has 8 GB memory attached. This NUMA machine thus consists in four memory nodes (one per

processor). Accessing a buffer on a non-local node costs from 1.2 to 1.4 more than accessing local

memory.
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2MB L3 Cache

Quad−Core Opteron

4 Cores
CPU

8GB

#2

#0

CPU
8GB

I/O

#3

CPU
8GB

#1

8GB
CPU

I/O

HyperTransport

Interconnect

NUMA Node #2

Figure 3: The experimentation host is composed of 4 quad-core OPTERON.

The machine runs LINUX kernel 2.6.27 with our move_pages performance improvement

patch as well as our Next-touch page-fault-based implementation.

4.2 Synchronous Migration Performance

Figure 4 presents the throughput of memory copy and migration on our experimentation plat-

form. It first shows that our improvement of the move_pages system call behaves as expected.

When thousands of pages are manipulated at once (several megabytes), the throughput remains

near 600 MB/s while the original implementation drops dramatically. However, the base overhead

remains high (near 160 µs). According to profiling results, this is caused by intensive locking and

page-table manipulations that cannot be optimized easily.

Migrating an entire process with migrate_pages (instead of only part of the address space

with move_pages) has a higher overhead (near 400 µs) due to the whole process virtual address

space having to be traversed. However, once the process address space is large, the throughput of

migrate_pages reaches 780 MB/s. We think that this better throughput is related to a better

locality and less locking being involved since the virtual addresses are processed in order while

move_pages has to support random sets of pages.

Both migration primitives are however much slower than a regular memory copy between

NUMA nodes. First, the kernel does not benefit from optimized copy instructions as user-space

does (MMX/SSE). We observed that pages are copied during move_pages at only 1 GB/s. Sec-

ondly, expensive virtual memory management operations are involved during migration, for in-

stance TLB flushing and page-table updates. We take a deeper look at these overheads in the next

section.

4.3 Next-touch and Lazy Migration Microbenchmarks

Figure 5 presents Next-touch migration performance. It shows that the user-space strategy basically

maps the move_pages performance, reaching 600 MB/s for large buffers. Indeed, as shown in

Figure 6(a), the additional Next-touch operations (signal handler and changing the protection) are

almost negligible. The base overhead of move_pages appears very high. Even for large buffer
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migration, the Control (locking, page-table updates, ...) represents 38 % of the overall migration

cost, while one would expect the actual copy to be the only expensive part.
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Figure 6: Next-touch implementation overhead details.

On the other hand, our kernel-based Next-touch implementation achieves 800 MB/s even for

very small buffers. As shown on Figure 6(b), the page-fault management and migration Control

cost is only 20 %, causing the overall performance to be much higher. The lower overhead is

related to our optimized Next-touch implementation in the kernel which was only designed for this

specific operation while move_pages supports a wide variety of pages, shared mappings, etc.

This result justifies the aforementioned idea (see Section 4.3) of implementing a Lazy Migra-

tion. Indeed, since our kernel-based Next-touch is 30 % faster than the synchronous move_pages

strategy, the lazy migration will as well perform much faster. And obviously, if part of the buffer

to migrate is never touched by the thread, the corresponding pages will not be migrated for real,

improving the observed migration throughput accordingly.

4.4 Threaded Migration Scalability

Now that we explained the performance of synchronous and lazy migration strategies, we look at

their scalability. Indeed, NUMA architectures have multiple cores per node. The thread scheduler

is expected to group on the same node threads which are accessing the same data, for instance

within an OPENMP parallel section. We thus expect to have concurrent accesses from several

threads to a buffer needing to be migrated.

Figure 7 presents the migration throughput on our experimentation platform when some threads

are bound to NUMA node #1 and migrating memory from node #0. It first shows that parallelizing

the migration (either lazy or synchronous) does not bring any improvement for buffers smaller than

1 MB. We feel that this is related to lock contention in the kernel in both implementations.

The figure also shows that both strategies achieve between 50 and 60 % improvement when

migrating large buffers with 4 threads (one per core). Lazy migration seems to scale a bit better

since it still improves a bit (+6 %) when adding a fourth thread, achieving up to 1.3 GB/s. This
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throughput remains much lower than a regular memory copies between NUMA nodes (see Fig-

ure 4), but it has to be noted that a page-fault and intensive page-table locking are involved in

each underlying page migration. Even if the overall throughput is limited, threaded migration still

appears as an interesting solution when multiple threads working on the same dataset are migrated

to another node at the same time.

4.5 Threaded LU Matrix Factorization

To study the impact of our Next-touch implementation on multithreaded real applications, we now

look at a threaded LU matrix factorization. As usual, the implementation splits the matrix into

smaller data blocks that are actually manipulated by a BLAS library. During each step, a new

“pivot” block is computed on the diagonal. Then, the values for the corresponding column and

row are updated as well as the ones for the remaining bottom-right blocks. This is done using for

loops.

We added OPENMP parallel for pragmas in these update loops so that they are computed in

parallel by one thread per core. We also inserted a Next-touch madvise hook at the beginning of

each iteration so that the data is redistributed among the NUMA nodes when needed, depending

on OPENMP thread access patterns. The data was initially allocated among all NUMA nodes in an

interleaved manner since it seems to be the best static allocation policy for this memory-bandwidth

intensive problem. Indeed, when using the GCC OPENMP compiler, there is no guarantee about

which thread will compute which block on which processor.

Table 1 presents the factorization time. It shows that the Next-touch approach benefits the over-

all performance as soon as large worksets are involved: at least 512 elements per block dimension,

within large matrices. It is not clear why some large test-cases get small improvement (a few per-

cent) while some other get about a factor 2. We feel that small improvements are mostly caused

by the removal of remote memory accesses thanks to our Next-touch policy increasing data local-

ity. Larger improvements may be related to congestion when multiple threads access each others’
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Matrix size Block size Static Next-touch Improvement

4k × 4k 64 × 64 2.60 s 4.92 s -47.1 %

4k × 4k 128 × 128 2.60 s 3.58 s -27.5 %

4k × 4k 256 × 256 4.66 s 5.07 s -8.04 %

8k × 8k 128 × 128 19.9 s 24.4 s -18.2 %

8k × 8k 256 × 256 26.8 s 27.8 s -3.81 %

8k × 8k 512 × 512 87.5 s 69.2 s +26.5 %

16k × 16k 256 × 256 166 s 173 s -4.15 %

16k × 16k 512 × 512 675 s 363 s +85.8 %

16k × 16k 1024 × 1024 1721 s 1651 s +4.24 %

32k × 32k 256 × 256 2553 s 1519 s +68.2 %

32k × 32k 512 × 512 6819 s 2971 s +129 %

Table 1: Execution time of the LU matrix factorization with 16 OPENMP threads.

NUMA memory across a single HYPERTRANSPORT link.

The 512 block size threshold is actually related to a single page not being shared between

2 threads. Indeed, when using smaller blocks, a single page contains some lines from different

consecutive blocks, causing all of them to migrate at once as soon as a single one is accessed.

Once each block is large enough to be page-independent, it migrates independently near its single

accessing thread thanks to the Next-touch policy. We do not present the impact of our user-level

Next-touch implementation because its overhead makes it unusable for such small granularities.
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Figure 8: Execution time of a 16 concurrent BLAS3 matrix multiplications within 16 independent

threads.

To confirm this result, we ran some independent BLAS3 multiplications within multiple threads

to evaluate when it actually becomes important to migrate data before computation. Figure 8 con-

firms that 512 is the block size where data locality becomes critical since memory migration (even
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with the user-space implementation) becomes interesting. This result is specific to BLAS3 oper-

ations since they are memory bandwidth intensive. We observed that the performance of BLAS1

operations (vector operations) never improves thanks to memory migration, probably because the

processor cache hides the remote access latency and thus makes migration almost useless.

5 Related Works

The need to place threads and memory buffers depending on their affinities has been known for

a long time [2, 11]. Solaris [8], IRIX [15] and LINUX [7] all acquired some NUMA-aware capa-

bilities within their memory management and thread schedulers. The needs for efficient memory

migration emerged with the advent of large NUMA architectures [10, 1, 16].

A Next-touch approach has already been implemented in LINUX using with mprotect and

a segmentation fault signal handler [12]. This implementation is similar to ours (see Section 3.2)

and it helped performance on some small threaded test-cases. However, it relies on move_pages

and thus cannot expect to be efficient for large buffers (megabytes) unless the implementation is

fixed as shown in this paper. Given the increasing amount of data that real applications manipulate

nowadays, large buffer migration has to be efficient, and this is one of the strong points of our

work.

Solaris used to provided a Next-touch implementation and it has been successfully used for

improving threaded application performance [8]. This kernel implementation was based on the

MADV_ACCESS_LWP flag for madvise which would indicate that the next accessing thread will

touch the pages intensively. This implementation may be similar to ours (see Section 3.3) but it

has never been described or evaluated in a published paper to the best of our knowledge.

We propose in this work an in-depth description and performance evaluation of our Next-touch

implementation in LINUX. This is the first such implementation as far as we know and we feel

that it is important that a widely used operating system such as LINUX offers such a feature.

NUMA architectures are indeed becoming mainstream (through INTEL QUICKPATH and AMD

HYPERTRANSPORT technologies), raising the need to be able to exploit them efficiently.

Our kernel-based implementation appears 30 % faster than the user-space model and has a

much lower base overhead when migrating small buffers. However, as explained in Section 3.4,

the user-space implementation seems to be a good candidate for migrating large and complex

memory buffers while keeping the knowledge of migrated page locations.

6 Conclusion and Future Works

The increasing complexity of modern architectures, with many cores and distributed memory

banks, raises the need to involve affinities between threads and data in scheduling decisions. Dy-

namic applications such as adaptive mesh refinement with OPENMP threads have complex and

irregular access patterns that cause the ideal thread and data distribution across the machine to

evolve during the execution. Migrating data buffers near the threads is known to provide a conve-

nient way to dynamically distribute work and data jointly.
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We showed in this paper that although the LINUX kernel is NUMA-aware, its memory migra-

tion primitive for multithreaded application (move_pages) had a significant performance limi-

tation for large buffers. We were able to restore a constant migration throughput and integrated

this work in the upcoming LINUX kernel 2.6.29. We also presented two different implementations

of the Next-touch policy which brings a convenient way to have data automatically follow its ac-

cessing threads. Our kernel-based design shows an improved throughput even for small buffers,

and it enables the idea of high-performance Lazy memory migration that can be easily parallelized.

Applying this Next-touch policy to a threaded LU matrix factorization shows a significant per-

formance improvement for large worksets thanks to better data locality being maintained during

the whole execution. We are now running similar experiments on larger NUMA machines where

data locality is more critical to the overall performance, making the Next-touch policy even more

interesting.

Our Next-touch implementation should still be improved by first supporting shared areas and

file mappings instead of only private anonymous pages so that all existing applications can benefit

from it. Then, we will study the idea of replicating read-only pages among NUMA nodes so

as to achieve local access performance from anywhere. We are also looking at improving the

LINUX migration system call interface to reduce the move_pages overhead further more. Huge

pages are another feature that will have to be studied since they are known to help performance by

reducing the TLB pressure, but LINUX does not currently support their migration.

This research is carried out in the context of designing an efficient OPENMP runtime system

for hierarchical and NUMA architectures. A tight integration of our Next-touch support within the

NUMA-aware MARCEL user-level threading library [13] is expected to lay the foundations of a

combined model for dynamically scheduling threads and placing memory buffers depending on

their affinities. It should enable a clever distribution of work and data within our FORESTGOMP

OPENMP runtime which has been designed to run on these architectures [14].
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