
HAL Id: inria-00359138
https://hal.inria.fr/inria-00359138

Submitted on 5 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On MPR-OSPF Specification and Implementation in
Quagga/GTNetS
Juan Antonio Cordero

To cite this version:
Juan Antonio Cordero. On MPR-OSPF Specification and Implementation in Quagga/GTNetS. [Re-
search Report] RR-6827, INRIA. 2008, pp.37. �inria-00359138�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50193506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00359138
https://hal.archives-ouvertes.fr

appor t
de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
68

27
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On MPR-OSPF Specification and Implementation in
Quagga/GTNetS

Juan Antonio Cordero

N° 6827

Février 2009

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

On MPR-OSPF Specification and

Implementation in Quagga/GTNetS

Juan Antonio Cordero∗

Thème COM — Systèmes communicants
Équipe-Projet Projets Hipercom

Rapport de recherche n° 6827 — Février 2009 — 37 pages

Abstract: This document analyses the MPR-OSPF current specification and
compares it with the implemented version for the Quagga / Zebra routing suite,
adapted for the GTNetS network simulator. It presents the relationship be-
tween Quagga/Zebra core and the GTNetS simulation framework, describes the
inner architecture of the MPR-OSPF extension in the OSPF Quagga general
implementation and identifies the different protocol main elements in the im-
plemented code.

Key-words: Routing, protocol, OSPF, MANET, mobile networks, ad hoc
networks, Multipoint Relaying, MPR-OSPF, implementation, network simula-
tion, GTNetS, Quagga, Zebra, specification, comparison, analysis

∗ juan-antonio.cordero@inria.fr

On MPR-OSPF Specification
and Implementation in

Quagga/GTNetS

Résumé : Ce document analyse la spécification du MPR-OSPF et la compare
avec la version implementée dans le logiciel d’enroutement de réseaux Quagga /
Zebra, adapté pour le simulateur GTNetS. Il présente aussi la relation entre le
noyau Quagga / Zebra et le cadre de simulation GTNetS, décrit l’architecture
intérieure de l’extension MPR-OSPF dans l’implementation générale du OSPF
à Quagga et en identifie les différents éléments principaux du protocole mis en
oeuvre dans le code.

Mots-clés : Enroutement, protocol, OSPF, MANET, réseaux mobiles, réseaux
ad hoc, Multipoint Relaying, MPR-OSPF, implementation, simulation de réseaux,
GTNetS, Quagga, Zebra, spécification, comparaison, analyse

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 3

Contents

1 Introduction 3

2 OSPF6 architecture overview 4
2.1 Interaction between GTNetS and Quagga/Zebra 4
2.2 OSPF6 daemon implementation 6
2.3 Interface architecture . 8
2.4 Interface & neighbor state machines 9
2.5 Message management . 10

3 Data structure and selection procedures 13
3.1 Flooding MPR selection procedure 14
3.2 Path MPR selection procedure 15

4 Hello protocol 16
4.1 Specification (IETF-03) . 16
4.2 Implementation . 19

4.2.1 Packet generation and transmission 19
4.2.2 Reception and processing 19

5 Adjacencies 21
5.1 Specification (IETF-03) . 21
5.2 Implementation . 22

6 LSA generation and flooding 23
6.1 Specification (IETF-03) . 23

6.1.1 Classic OSPF LSA flooding 24
6.1.2 Flooding changes in MPR-OSPF (draft IETF-03) 26
6.1.3 MPR-OSPF complete flooding procedure 27

6.2 Implementation . 29
6.2.1 LSA generation and advertised routers 29
6.2.2 LSU processing . 29
6.2.3 LSA processing & flooding 31

7 Link State Acknowledgments 33
7.1 Specification (IETF-03) . 33
7.2 Implementation . 34

8 Routing table and SPT calculation 35
8.1 Specification (IETF-03) . 36
8.2 Implementation . 36

9 References 37

1 Introduction

This report presents the implementation of MPR-OSPF extension of OSPF
protocol for MANET networks and its correspondence to the official current
specification. The versions considered for this comparison are the following:

RR n° 6827

4 Juan Antonio Cordero� Version 03 of the OSPF MPR Extension for Ad Hoc Networks, known as
draft-ietf-ospf-mpr-ext-03.txt1.� OSPF6 daemon for GTNetS, valid at February 21, 2008, over a
Quagga/Zebra routing suite v0.98.5.

This report is organized as follows. Section 2 presents the structure of the
examined OSPF6 daemon, its connection with the GTNetS simulation core and
gives also an overview about the main issues of the implementation. Section 3
describes the elements of the MPR-OSPF data structure for a concrete network
interface. Section 4, 5, 6 and 7 focus on different features of the MPR-OSPF
extension: the neighbor sensing procedure and format (Hello protocol), the ad-
jacency forming and handling algorithm, the Link State Advertisements (LSA)
generation and flooding and the acknowledgement policy. For each feature,
there is presented the specification (IETF-03) and the implemented extensions
for the Quagga ospf6d daemon. It is also discussed the consistency between
specification and implementation: the gaps between them are presented and
some code modifications are suggested to solve them.

2 OSPF6 architecture overview

The OSPF6 code that this report is focusing on constitutes the implementation
of the ospf6d daemon of the Quagga/Zebra network routing suite. This is linked
to the GTNetS simulator code and its core deploys the mechanisms stated in
RFCs 2328 [RFC2328] and 2740 [RFC2740]. Several additions to this initial
core have adapted the implementation to the three main OSPF extensions over
MANET, in particular MPR-OSPF. Description and analysis of this extension
is the main goal of the report.

However, it is also worthy to present more in detail the kind of relationship
among GTNetS, Quagga/Zebra and the MPR-OSPF extension, to expose the
main principles of the OSPF6 core and the way that the different structures and
algorithms provided in the specifications are developed.

2.1 Interaction between GTNetS and Quagga/Zebra

The Georgia Tech Network Simulator (GTNetS) offers a generalistic C++ based
network simulation framework. It admits many scenarios, network configura-
tions (in particular, wireless and mobility issues are accepted) and traffic pat-
terns, different monitoring tools and provides support for a wide variety of OSI
stack-based protocols (layers 2 to 5). Scheme in figure 1 shows the basic GTNetS
architecture elements.

1The family draft-ietf-ospf-mpr-ext-xx continues the
draft-baccelli-ospf-mpr-ext-xx, corresponding the IETF-00 to Baccelli-05. Here-
after I will refer, for comparability purposes, to the current draft ([IETF-03]) and to
[Baccelli-04] as well.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 5

Figure 1: GTNetS architecture scheme

The Quagga project, an evolution of the GNU Zebra project, is a network
routing suite for Unix that includes routing support for protocols such as RIP
(v.1 and 2), OSPF (v.2 and 3) and BGP (v.4). Each of these protocols are imple-
mented by means of a specific daemon. The daemon for OSPFv3 is called ospf6d.
All these protocol-specific daemons are coordinated by the zebra daemon, which
assumes IP routing handling and route redistribution among protocol daemons
tasks. A diagram of the Quagga architecture is shown in figure 2 (remarked,
the OSPF6 daemon).

Figure 2: Quagga architecture diagram

The Quagga routing engine and the GTNetS simulation framework can in-
teract each other in order to perform simulations involving any of the Quagga-
supported routing protocols, in particular, experiments running networks based
on OSPF6 or some OSPF MANET extension (e.g., MPR-OSPF). This interac-
tion is schematically shown in figure 3. On one hand, the GTNetS layer take
care of highest-level tasks (those nearest to the user), such as traffic patterns
definition, scenario configuration or GTNetS-specific statistics collecting. It also
manages the physical behavior of the network (propagation model), most of the

RR n° 6827

6 Juan Antonio Cordero

OSI stack protocols performance and, therefore, nodes lowest-level (link and
network layer) communication.

On the other hand, OSPF packet processing tasks (transport-application
layer) are transferred to the Quagga engine. GTNetS provides the classes
OSPF6Application (inherited from the more general Application class)
and OSPF6Demux (inherited from L4Demux class). OSPF6 packets are pro-
cessed normally following the OSI stack protocol model and in layer 4 they
are demultiplexed (OSPF6Demux) and transferred to the OSPF6 application
(OSPF6Application). Objects of OSPF6Application class interact with the
Quagga interface, in particular, with the ospf6d daemon.

This interaction takes part by means of the VTY (Virtual TeletYpe) inter-
face, which allows GTNetS to configure and debug the different OSPF6 issues
(interfaces, areas, global parameters) and is processed by the ospf6d implemen-
tation code.

Figure 3: GTNetS-Quagga joint architecture diagram

According to this diagram, which is consistent with the standard (section A.1
[RFC2328]), OSPF-based received packets are processed by physical, link and
network (IP) layers before multiplex/demultiplex and specific OSPF6 daemon
processing – and reversely for transmitted packets.

2.2 OSPF6 daemon implementation

The implementation of the Quagga ospf6d ’s implementation (OSPF6) consists
of a set of C++ files that distribute elements and tasks in the way that the
following list shows:

ospf6d OSPF6 daemon initialization.

ospf6 abr Support to Area Border Router (ABR) tasks, including ABR refresh
for area enable/disables and summary-LSA origination.

ospf6 area Data structure of an area to which the router is attached, en-
able/disable router interfaces in the area and management.

ospf6 asbr Support to Autonomous System Border Router (ASBR) tasks, in-
cluding LSA processing and AS-ext-LSA data structure handling and orig-
ination.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 7

ospf6 flood Link State Advertisement (LSA) processing (as part of a LSUp-
date packet2), flooding procedure functions (including installation in
LSDB), acknowledge management.

ospf6 interface Interface data structure and management, interface states and
events handling(finite machine state).

ospf6 intra LSA data structures (as parts of LSUpdate packets: Router-LSA,
Network-LSA, Link-LSA, Intra-Area-Prefix-LSA), LSA generation.

ospf6 lsa LSA data structure (header, definition...) and internal management
(as part of a LSDB).

ospf6 lsdb LSDB data structure and management.

ospf6 main Configuration parameters, attached VTY and finite state machine
of the ospf6d Quagga daemon.

ospf6 message Hello, DBD, LSReq, LSUpdate and TLVs data structures,
generic and specific (DBD, Hello, LSReq, LSUpdate, LSAck) send/receive
functions, Hello packet generation and processing, LSUpdate processing.

ospf6 mdr Support to MDR/BMDR selection algorithm, including matrix cal-
culation, tree data structure and management.

ospf6 mpr Calculation, update and management of relays and relays selectors,
initialization of Path MPR / Path MPR selectors.

ospf6 neighbor Neighbor data structure3 and management, neighbor states
and events (finite machine state), adjacency management.

ospf6 network OSPF6 socket implementation, including message
send/receive tasks.

ospf6 proto Inner protocol parameters (fixed and configurable constants, pro-
tocol number and version), IPv6 prefix data structure and management
(see section A.4.1 [RFC2740]).

ospf6 route Data structure and management (lookup, adding and removing
elements) of routes and paths in the network.

ospf6 sim printing Notification of relays, neighborhoods, retx and push-back
lists for user information proposals (in simulation scenarios).

ospf6 snmp Support for the Simple Network Management Protocol (SNMP),
MIB configuration and handling.

ospf6 spf Vertex data structures for Shortest Path Tree (SPT) algorithm, cal-
culation of the (area) SPT by implementing and adapting the Dijkstra
algorithm, and construction of the routing tables.

2The OSPF6 implementation differentiates between the LSA as an element of a Link State
Update packet (LSUpdate) for transmission/reception purposes, and units of the local Link
State Database (LSDB), for interface topology information purposes.

3Neighbor of an interface whom the neighbor’s data structure is attached to.

RR n° 6827

8 Juan Antonio Cordero

ospf6 top OSPF6 top data structure, implementation of ospf6d top router
basic commands (section 8.1 [Quagga]), LSA retransmission and push-
back timers management.

ospf6 zebra Implementation of ospf6d route redistribution tasks and interac-
tion with the zebra daemon features.

The following subsections show in more detail the implementation of the
main OSPF elements and procedures beyond their C++ files distribution.

2.3 Interface architecture

The interface (its data structure and the involving tasks implementation) is
the main center of the OSPF6 activity, that is, the element taking care of the
network state, transmitting, receiving and processing the routing flooding. In
OSPF, and more in particular in MPR-OSPF, a node’s interface is expected to
collect information about:� General data of the interface (OSPF interface state, router priority, flags,

synch status in case of MPR-OSPF extension) and OSPF context infor-
mation (area whom the interface belongs, DR/BDR references).� Network configuration parameters, including general OSPF parameters
(Hello, Dead and Rxmt intervals), MANET-specific parameters (ac-
knowledgment interval) and MPR-OSPF-specific parameters (retransmis-
sion/pushback interval, MPR-OSPF options such as the MPR Topology
Reduction mechanism).� Complete network topology map, which is maintained by means of the
interface Link State Database (LSDB).� 1- and 2-hop neighbors status, both in a general approach and a MPR-
OSPF perspective (which includes relay and relay selectors lists).

All this structure is implemented in the ospf6 interfaceospf6 interface.h

struct, which contains several other structs addressed to other data elements
such as LSDB, relays, 2-hop neighbors and so on. From these, the most rele-
vant is the ospf6 neighborospf6 neighbor.h struct, dedicated to information kept
by the attached interface about the corresponding 1-hop neighbors.

There is one ospf6 neighbor-like variable for each 1-hop neighbor in the
ospf6 interface-like variable attached to a certain interface. This contains
the following elements:� General data of the neighbor node (OSPF neighbor state, router priority,

DR/BDR references) and status as a MPR-OSPF neighbor (synch node,
Path MPR / Path MPR selector or MPR selector).� Information about the neighbor’s neighbors, that is, 2-hop neighbors of
the attached interface.� Lists showing the messages waiting to be (re)transmitted from the
interface to the neighbor. This includes LSA being transmitted as
part of the LSDB synchronization in the adjacency forming process

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 9

(summary ls), LS requests from the interface to be answered by the neigh-
bor (request list), the messages being retransmitted to the neighbor
until they are acknowledged (retrans list) or the received messages re-
quiring an acknowledge from the interface (lsack list). There are also
stored the acknowledgments received from the neighbor (mack list).

2.4 Interface & neighbor state machines

Figures 4 and 5 depict the implementation of the finite state machines (FSM)
corresponding to interfaces and neighbors evolution in OSPF. They are detailed
in section 9 and 10 [RFC2328], respectively. The figures show the states alias
and the transition functions.

Concerning the interface state machine, state alias are attached in
ospf6 interface.h to numbers from 0 to 8. Transitions between states
are handled in the ospf6 interface state changeospf6 interface.c function.
The Loopback state is considered (code 2) and the function loopind is
expected to deploy the LOOPIND event, although it is not yet fully im-
plemented. The OSPF6 INTERFACE LOOPBACK and two new state identifiers
(OSPF6 INTERFACE MAX, 8, and OSPF6 INTERFACE NONE, 0) do not receive any
of the foreseen transitions in the implemented interface state machine.

Figure 4: OSPF6 interface Finite State Machine (FSM) implementation.

Referring to the neighbor FSM implementation, state alias are attached in
ospf6 neighbor.h to numbers from 1 to 8. The Attempt state is included,
although there are not transitions provided from/to that state (it was exclu-
sive to NBMA networks, according to the specification). Transitions between
states are handled in the ospf6 neighbor state changeospf6 neighbor.c func-
tion. The implementation includes two additional events corresponding to the
MPR-OSPF extension, in particular the MPR Adjacency Reduction mechanism
(OSPF6 MANET MPR ADJ REDUC OSPF MPR label enabled). These new events (not
defined in classic OSPF specification as proper events and not corresponding
to the prescribed behavior) allow every interface to begin adjacency forming
processes with non-yet-symmetric neighbors, and are the following:

RR n° 6827

10 Juan Antonio Cordero

DBD received from Two-Way It is implemented in the transition function
two way dbdesc recvospf6 neighbor.c and it is triggered when the neighbor
state is TWO-WAY and a Database Description (DBD) packet is received
from it. In that case, the neighbor passes to the EXSTART state (begin-
ning of the adjacency forming process) and assumes the Master role in the
database exchange procedure.

DBD received from Init It is implemented in the transition function
init dbdesc recvospf6 neighbor.c and it is triggered when the neighbor
state is INIT and a DBD packet is received from it. As in the previ-
ous case, the state passes to the EXSTART state, being the neighbor the
Master in the database exchange process.

It is worth to remind that [RFC2328] (section 10.6) states that DBD packets
should be ignored when received from a TWO-WAY state neighbor and should
trigger the TwoWayReceived event when coming from a INIT state neighbor.

Figure 5: OSPF6 neighbor Finite State Machine (FSM) implementation (with
MPR-OSPF-specific additions).

The AdjOK? event, even when it is implemented as the figure shows, is not
used at all in the MPR-OSPF extension.

2.5 Message management

The message forming, transmission and processing issues involve many different
functions in the OSPF6 implementation, which are placed in several code files.
In fact, message transmission inner and attached features (data collection before

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 11

transmitting and data updates after processing) integrate the main core of the
OSPF protocol and their MANET extensions, in particular MPR-OSPF. Figure
6 shows the basic blocks diagram of the deployed tasks in message handling.

Figure 6: Message processing blocks diagram in OSPF6.

Origination tasks (a) consist of collecting and updating information about
to transfer, the 1-hop neighborhood in case of Hello packets (with different
variations depending of the OSPF extension), the adjacent links or routes to
external destinations in case of LSA flooding. The different LSA messages
are originated in ospf6 intra.c (Router-LSA, Link-LSA, Network-LSA, Intra-
Prefix-LSA), ospf6 abr.c (Inter-Area-Prefix-LSA) and ospf6 asbr.c (AS-ext-
LSA) files.

Construction tasks (b) include functions dumping the collected data to the
corresponding OSPF6 packet format so that it can be transmitted through the
network. OSPF6 packet formats are detailed in Appendix A [RFC2328], mod-
ified by Appendix A [RFC2740]. Specific formats or modifications for MPR-
OSPF are stated in section 7 of the specification (IETF-03). Although separa-
tion between message origination and packet construction is not always clear in
the OSPF6 functions, there are specific functions in ospf6 lsa, which deploy
part of the creation LSA tasks. In contrast, other parts of the creation pro-
cedure is developed in origination functions, both in the case of specific LSA
formats (ospf6 intra.c, ospf6 abr.c and ospf6 asbr.c files) and the Hello
packets (ospf6 message.c file).

Transmission (c) and reception (d) tasks are contained in ospf6 message.
That includes the packet-specific functions
for tx/rx (ospf6 hello sendospf6 message.c / ospf6 hello recvospf6 message.c,
ospf6 lsupdate sendospf6 message.c / ospf6 lsupdate recvospf6 message.c and so
on) and the generic OSPF6 tx/rx functions (ospf6 sendospf6 message.c and
ospf6 receiveospf6 message.c).

Deconstruction tasks (e) are often deployed in the same function as packet
reception is performed. Only in the case of individual deconstruction of LSA
there is a specific function (ospf6 receive lsaospf6 flood.c) in addition to the
function performing deconstruction (and reception) of LSUpdate, the LSA con-
tainer packet.

Finally, packets and messages process involves many different functions.
Hello processing implies update neighborhood data structures and eventually
adjacencies (ospf6 neighbor.c file), since LSA processing includes local instal-
lation, but also new LSA or acknowledgements transmission (ospf6 flood.c

file).

RR n° 6827

12 Juan Antonio Cordero

Figure 7: Message transmission diagram for GTNetS and Quagga OSPF6 im-
plementation

Figure 7 shows more in detail the transmission/reception structure, not
only the Quagga ospf6d daemon behavior, but also the relationship with
the GTNetS simulation engine. In the simulation framework, packets are
originated and created in the Quagga architecture, but are sent through
the network by means of the GTNetS support for the OSI stack, not the
Quagga/Zebra communication mechanism4. GTNetS interface to Quagga
OSPF6 implementation is provided in the OSPF6Application family objects.
In particular, network transmission simulation is deployed by means of the
method OSPF6Instance :: SendMessageapplication−ospf6d.cc. This method sends
the packet from layer 5 of the transmitting node to the layer 3 processing proto-
col, where it is forwarded for encapsulation in lower OSI stack layers of the trans-
mitting node and then sent to the receiving node(s). In each receiving node, the
packet is treated in the corresponding OSI stack layers before layer 4 OSPF6
demultiplex (OSPF6Demux :: Demuxospf6demux.cc) and specific OSPF6Application
handling by means of OSPF6Instance :: ReceiveMessageapplication−ospf6d.cc

method. This method transfers message management to ospf6d daemon, in
concrete to the function corresponding to the received packet type.

It is worthy to remark that Quagga provides its
own way for transmission/reception of OSPF6 routing messages. Functions
ospf6 sendmsgospf6 network.c and ospf6 recvmsgospf6 network.c are able to com-
municate each other by using the Unix socket features (sendmsg and recvmsg)

4When handling routing messages transmission and reception in a computer network,
Quagga uses the ospf6 sendmsgospf6 network.c and ospf6 recvmsgospf6 network.c functions, which
rely on sendmsg / recvmsg Unix mechanisms. Connection between them in figure 7 does not il-
lustrate the loopback internal connection, but the logical Unix socket between different routers.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 13

tasks). But the functionalities provided by these functions are not used when
the Quagga structure is addressed to simulation purposes. As it is shown in
the figure, message transmission inside the simulated network flows exclusively
through the GTNetS interface to Quagga and the OSI protocols stack, exclud-
ing the Unix socket processing performed by ospf6 recvmsgospf6 network.c and
ospf6 receiveospf6 message.c. Instead of this, packet distinction is performed in
the OSPF6Instance :: ReceiveMessageapplication−ospf6d.cc method, from where
the received data are directly forwarded to the packet-specific processing func-
tion.

3 Data structure and selection procedures

The MPR-OSPF data structure is detailed in section 5.1 of the specification,
and consists of the following sets:

N List of the symmetric 1-hop neighbors of the interface. This list cor-
responds to the neighbors belonging to the neighborlist pList in
ospf6 interfaceospf6 interface.h struct whose state is higher than or equal
to TWO-WAY5. Every member of this pList is a ospf6 neighbor-like
variable (ospf6 neighbor.h), and contains a state variable, the router id
(corresponding to 1 HOP SYM id in the draft) and the timestamp (cor-
responding to 1 HOP SYM time), among many other parameters.

N2 List of the symmetric 1-hop neighbors of the nodes in N, that
is, the 2-hop neighbors of the current interface, without consid-
ering the node itself and the members of N. The list is reach-
able from two ways: on one hand, in the two hop list pList in
ospf6 interfaceospf6 interface.h struct, with every member being an
ospf6 2hop neighbor-like variable (ospf6 neighbor.h); and in the
other hand, in the two hop neighbor list pList attached to every
ospf6 neighbor-like variable, collecting the elements of N2 having a 1-hop
distance to the corresponding neighbor.

Flooding MPR set The subset of 1-hop neighbors selected by the current
interface as relays. The set is implemented in the relay list pList
in ospf6 interfaceospf6 interface.h struct, with every member being an
ospf6 relay-like variable (ospf6 interface.h). Each variable contains
the router id (corresponding to the Flooding MPR id in the draft) and
the expire time (corresponding to the Flooding MPR time parameter in
the draft).

Flooding MPR selector set The subset of 1-hop neighbors selecting the
current interface as relay. This is listed in the relay sel list

pList in ospf6 interfaceospf6 interface.h struct, with every member
being an ospf6 relay selector-like variable (ospf6 interface.h).
Each variable contains the router id (corresponding to the Flood-
ing MPR SELECTOR id in the draft) and the expire time (correspond-
ing to the Flooding MPR SELECTOR time parameter in the draft).
Neighbors selected as MPR selectors enable the boolean parameter
isMprSelector in the ospf6 neighbor struct.

5That is, interface and neighbor have at least a symmetric relationship.

RR n° 6827

14 Juan Antonio Cordero

Path MPR set The subset of 1-hop neighbors providing shortest paths from
each of the 2-hop neighbors to the origin router. Neighbors selected as
Path MPR by a concrete interface enable the boolean parameter adv MPR

in their own ospf6 neighbor-like variable attached to the corresponding
interface.

Path MPR selector set The subset of 1-hop neighbors selecting the current
router as Path MPR relay. A neighbor belonging to the Path MPR selector
set enables the boolean parameter adv MPRS in its ospf6 neighbor-like
variable attached to the current interface.

MPR set and selector set The MPR (selector) set is the joint of the Flood-
ing MPR (selector) sets and the Path MPR (selector) set of the router.

Maintenance of N and N2 is performed in the function reacting to the neigh-
bor state change (ospf6 neighbor state changeospf6 neighbor.c), either explic-
itly for N, either by calling an
auxiliary function (ospf6 ospf mpr update 2hop neighbor listospf6 neighbor.c)
for N2. Relay-related sets are based on the ospf6 calculate relaysospf6 mpr.c

function, which is called immediately before a Hello message is sent, then peri-
odically each HelloInterval seconds.

The neighborhood lists (N and N2) and the Flooding MPR (selector) sets
have an interface scope; there is one of them per interface. In contrast, there is
only one Path MPR (selector) set per router. Since the implementation point
of view, there is no difference since a single interface is provided per node, on
one side, and the assumed hop metric makes equivalent the Path MPR and the
Flooding MPR computations (see subsection 3.2), on the other side.

3.1 Flooding MPR selection procedure

A working heuristic for the Flooding MPR selection algorithm is detailed in
Appendix A of the specification (IETF-03). The main steps are the following:

1. Input: x, N, N2.
Let x be the router performing the Flooding MPR selection, N be the set
of 1-hop neighbors of x and N2 the set of 2-hop neighbors of x.

2. If there exist 2-hop neighbors only reachable from x certain 1-hop neigh-
bors, these 1-hop neighbors are added to the Flooding MPR subset.

3. After that, the algorithm includes in the Flooding MPR set those 1-hop
neighbors with best (greater) reachability6, until every 2-hop neighbor in
N2 is covered by the Flooding MPR set.

4. Output: MPR(x, N, N2) ∈ N , verifying that every 2-hop neighbor of x
is covered by -at least- one member of MPR(x, N, N2).

This is implemented in function ospf6 calculate relaysospf6 mpr.c.

6Reachability of a 1-hop neighbor n is the number of 2-hop neighbors non-yet-reached by
the Flooding MPR set, which are reachable by n.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 15

3.2 Path MPR selection procedure

Every node selects a Path MPR set among its 1-hop neighbors. Members of the
Path MPR set provide shortest-paths to 2-hop neighborhood of the performing
node. Selection procedure is detailed in Appendix B of MPR-OSPF specification
(IETF-03), and its basic points are presented in the following:

1. Input: x, N, N2.
Given A and B two 1-hop neigbhors, let cost(A, B) be the cost of the
direct link between A and B. Given A and C be two 2-hops neighbors, let
dist(A, C) be the cost of the shortest-path between A and C.

2. The router calculates the router cost matrix (RCM), which cointains link
costs among neighbors (either 1- or 2-hop neighbors). Figure 8 shows the
scheme of the RCM. It is worthy to remark that, since radio links are not
necessarily bidirectional, the RCM matrix is not necessarily symmetric
(cost(i, j) 6= cost(j, i)).

Figure 8: Router Cost Matrix for a router x, detailed in the specification (IETF-
03)

3. The following subsets, N ′ ∈ N , N2′ ∈ N2, are calculated:
N ′ = {n ∈ N |cost(x, n) = dist(x, n)}
N2′ = {n ∈ N, N2|n /∈ N ′, ∃m ∈ N ′ : cost(n, m) + cost(m, x) = dist(n, x)}

4. The router runs the MPR selection procedure (see previous subsection)
with arguments x, N’ and N2’.

5. Output: Path MPR(x, N, N2), providing shortest-paths from 2-hop
neighbors to x (reverse shortest-paths).
Path MPR(x, N, N2) = MPR(x, N ′, N2′)

The Path MPR set of a node x is determined by running the MPR selection
procedure over the sets N’ and N2’ and the result is a subset of N, not necessar-
ily the same as (neither included in or including) the Flooding MPR selection
set. Both sets (Path MPR and Flooding MPR relays) would match together in
the case that all link costs had a unity (1) value. In that case, sets N’ and N2’
would be equivalent to N and N2, respectively.

N ′ = {n ∈ N |cost(x, n) = dist(x, n)} = [cost(x, n) = 1, dist(x, n) = 1] =
{n ∈ N |1 = cost(x, n) = dist(x, n) = 1} = {n ∈ N} = N

N2′ = {n ∈ N, N2|n /∈ N ′, ∃m ∈ N ′ : cost(n, m) + cost(m, x) =
dist(n, x)} = [N = N ′] = {n ∈ N2|∃m ∈ N : cost(n, m) + cost(m, x) =

RR n° 6827

16 Juan Antonio Cordero

dist(n, x)} = [dist(n, x) = 2, cost(n, m) = cost(m, x) = 1] = {n ∈ N2|∃m ∈ N :
1 + 1 = 2} = {n ∈ N2} = N2

If link costs are not equal to 1, then Path MPR and Flooding MPR are
different sets both included in N. Figure 9 shows an example of this situation.

Figure 9: Network example: Flooding MPR set and Path MPR of node 1 are
different. MPR nodes are the dark grey ones (2 and 3), Path MPR nodes are
the light grey ones (2 and 4). White nodes are 2-hop neighbors of node 1. Thick
grey lines show shortest-path links to 2-hop neighbors.

Node 1 (black) performs Flooding MPR and Path MPR calculation among 1-
hop neighbors; the white nodes (5, 6 and 7) are 2-hop neighbors of node 1. Link
costs are advertised with parenthesys. According to the algorithms shown in
this subsection and the previous one, MPR(1) = 2, 4 and Path MPR(1) = 2, 3.
That is, node 3 would be selected as Path MPR because it provides the shortest-
path (indicated by a thick grey link line) to node 7.

The Path MPR selection procedure is not yet implemented in MPR-
OSPF specification (IETF-03). Instead of it, every 1-hop neighbor se-
lected as Flooding MPR of a certain node is marked also as Path
MPR of that node, and then advertised in flooded LSA. This is
done in the functions ospf6 refresh relay listospf6 mpr.c (for relays) and
ospf6 refresh relay selector listospf6 mpr.c (for selectors). In both cases
the function enables the corresponding Path MPR variable in ospf6 neighbor

struct (adv MPR or adv MPRS, depending on whether it is a relay or a selector).
Therefore, the relays that are included in the originated LSA (which are explic-
itly selected in ospf6 router lsa originateospf6 intra.c) are those with either
adv MPR or adv MPRS enabled but, in fact, the function is taking those selected
as Flooding MPR relays or selectors. This makes sense, or at least has no ef-
fect in terms of network performance, because OSPF6 and GTNetS simulation
framework assume an unitary cost for every link in the network, and then Path
MPR set can be identified with Flooding MPR set of the performing node.

4 Hello protocol

4.1 Specification (IETF-03)

The Hello protocol is detailed in section 5.2 of the MPR-OSPF draft.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 17

The packet base format is specified at sections A.3.2 of RFCs 2328 and 2740.
This classic OSPF structure is complemented by the addition of the following
TLV7 pieces:

TLV type 3 (fig. 1 section 7 draft [IETF-03]) This states the router’s willing-
ness, the number of symmetric neighbors and Flooding MPR relays listed
in the Hello packet. According to subsection 5.2.3 of the draft (IETF-03),
symmetric neighbors are prior to asymmetric ones in the list, and Flooding
MPR relays should be placed before symmetric non-MPR neighbors.

TLV type 4 (fig. 2 section 7 draft [IETF-03]) This lists the metric cost of each
of the links to the neighbors previously listed in the packet, according to
subsection 5.2.4 of the draft (IETF-03).

TLV type 5 (fig. 3 section 7 draft [IETF-03]) The last TLV contains informa-
tion concerning the Path MPRs selected by the sending interface. This
includes a list of the neighbors elected as Path MPR relays, and the cost
of the links connecting to each of them (see subsections 5.2.4 and 5.2.6
[IETF-03]).

Between the classic OSPF Hello format and the TLVs addition (LLS data),
there is included a LLS header (32 bits) containing the checksum (16 bits)
computed in the way that RFC 1071 states, and the added TLVs’ length (16
bits). This follows the specification of RFC 4813 OSPF Link-local Signaling.
The complete Hello packet format is shown in figure 10.

7Type-Length-Value data unit, to be attached to Hello packets format.

RR n° 6827

18 Juan Antonio Cordero

Figure 10: MPR-OSPF HELLO packet format detailed in the specification
(IETF-03)

When a node receives a Hello packet, the N and N2 data structures should
be updated in the receiving interface. If these structures change due to new
Hello data, Flooding MPR and Path MPR sets have to be recomputed. Data
changes in Flooding MPR or Path MPR lists from a 1-hop neighbor should
make the receiving interface to update its own Flooding MPR and Path MPR
selector sets.

Beyond the specific details in the draft, the expected behavior of an interface
when receiving a Hello packet coming from a symmetric neighbor affects the
different data structures in the following way:

N The transmitting neighbor is the only member of N that could be affected
with the Hello packet reception. If it doesn’t recognize the receiving inter-
face as a neighbor, its state as neighbor of the receiving interface should
fall to ONE-WAY.

N2 List of 2-hop neighbors can change due to changes in the 1-hop neighbor-
hood of the Hello-transmitting neighbor, so N2 should be recalculated

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 19

if a received Hello shows changes in the interface’s 2-hop neighborhood.
However, this changes would be restricted to those 2-hop neighbors being
also 1-hop neighbors of the Hello-transmitting node, so the recalculation
should be constrainted to that scope, if possible.

Flooding MPR / Path MPR Since these sets depend on 2-hop neighbors,
the same rule of the previous case can be applied. That is, changes in 2-
hop neighborhood noticed by a 1-hop neighbor of the interface must cause
Flooding MPR / Path MPR recalculation, but only restricted to decide
whether the Hello-transmitting node should became or not an MPR /
Path MPR relay.

Flooding MPR / Path MPR selectors Hello reception can only cause
changes in the transmitting neighbor status as selector.

4.2 Implementation

Hello packets are generated, sent and received in the OSPF6 implementation
for GTNetS following the specifications and format detailed in draft Baccelli-04,
not [IETF-03] (figure 4 shows the implementated Hello packet structure).

4.2.1 Packet generation and transmission

Hello packet generation is deployed in the ospf6 hello sendospf6 message.c func-
tion, which forwards to ospf6 ospf mpr hello sendospf6 message.c in the case of
MPR-OSPF extension. This function states the Hello packet header, creates
and orders the neighbor list (MPR-Other symmetric-Asymmetric) by calling
ospf6 ospf mpr create neighbor listospf6 message.c, adds the corresponding
LLS header (function ospf6 append lls headerospf6 message.c), adds the Flood-
ing MPR TLV type 3 (function ospf6 append flooding mprospf6 message.c) and
adds the old Path MPR TLV type 4 corresponding to draft Baccelli-04, which
contains the number of adjacent and Path MPR relays and a new list of adjacent
and Path MPR neighbors, including direct and reverse cost to each of the links
(in the ospf6 append path mprospf6 message.c function).

Before sending a Hello packet, the sending interface updates its relays (via
ospf6 calculate relaysospf6 mpr.c and ospf6 refresh relay listospf6 mpr.c

functions) and selectors (ospf6 refresh relay selector listospf6 mpr.c), both
Flooding MPR and Path MPR. The ospf6 refresh-like functions update the
relays (monitoring the timestamp, basically) and select automatically as Path
MPR relays/selectors these active (non-expired) Flooding MPR relays/selectors;
the specific Path MPR algorithm (Appendix B [IETF-03]) has not yet been de-
veloped.

4.2.2 Reception and processing

Reception of Hello
packets is implemented in function ospf6 hello recvospf6 message.c, redirected
to ospf6 ospf mpr hello recvospf6 message.c for MPR-OSPF extension. There
are performed some basic checks (consistency of HelloInterval, RouterDeadIn-

RR n° 6827

20 Juan Antonio Cordero

terval and E-bit8), then the TLVs are processed by calling a specific func-
tion (ospf6 mpr process TLVsospf6 message.c) that details the kind of relation-
ship between the neighbor and the interface (dumped into twoway, seeMeAdj,
isMprselector and isSynchNode variables).

It is also updated the own neighbor status as a selector.
The different nodes’ lists of the interfaces are also updated. If the

received Hello packet shows changes in 1-hop neighbors of the trans-
mitting neighbors (that is, 2-hop neighbors of the receiving interface),
2-hop neighbors linked to transmitting node are updated by calling
the ospf6 ospf mpr update 2hop neighbor listospf6 neighbor.c function. If
this actualization implies a 2-hop neighbor addition or delete, variable
mpr change is enabled, and then the relays are recalculated by calling the
ospf6 calculate relaysospf6 mpr.c function.

In summary, N, N2, Flooding MPR and Flooding MPR selectors are cor-
rectly updated due to changes in the Hello packet lists. Path MPR-related
sets (relays and selectors) are updated in the same way that those corre-
sponding to the Flooding MPR sets (functions ospf6 refresh relay list and
ospf6 refresh relay selector list). The selector status is updated when
receiving the Hello packet, the relays are updated before sending a new Hello
packet.

Figure 11: MPR-OSPF HELLO packet format implemented in GTNetS (corre-
sponding to draft Baccelli-04)

8The E-bit (for ExternalRoutingCapacity) is enabled in interfaces belonging to areas able
to become stub areas, and disabled in interfaces belonging to the backbone and non-stub areas
(see section 4.5 [RFC2328]).

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 21

Some checks are finally done to evaluate the modifications related to in-
terface status, such as Router Priority, DR and BDR references. Depending
on evolution in these parameters, changes in the interface state machine are
planned.

5 Adjacencies

5.1 Specification (IETF-03)

Current MPR-OSPF specification (section 5.3) provides two main ways to be-
come adjacent over MANET interfaces:� A node becomes at least adjacent to its MPR set and its MPR selectors9,

which are part of its 1-hop neighborhood.� In addition, certain routers, called synch routers, become adjacent to all
their 1-hop neighbors. A router elects itself as a synch router if and only if
its id is higher than every id of its 1-hop neighbors and the nodes advertised
in the Link State Database (LSDB).

The synch router dessignation is a supplementary strategy that is added
to the main one (inherited from OLSR) in order to assure connection in the
adjacency set, according to the following results.

Lemma Let’s assume that a network adjacency set is split into several (two
or more) disconnected subsets. Then, the 1-hop neighborhood of every
network node contains at least one member of each disconnected adjacent
subset (i.e., every disconnected adjacent subset is dense in the network).

Proof Let’s call N a node belonging to the adjacency set (and, in particular, to
one of its disconnected subsets). It can be proved that, in fact, every node
is connected (that is, there is a 1-hop distance) with the N’s adjacency
subset by induction on the distance k (in hops) from a generic node to N.
The cases of k=1 and k=2 are trivial by the MPR definition. Assuming
that every node k-distant from N is connected (1-hop) to the adjacent
subset containing N (induction hypothesis), it is immediate to show that
a (k+1)-distant node belongs to the 2-hop neighborhood of a certain node
in the MPR connected set, and again by MPR definition, it is reachable
through a 1-hop neighbor that belongs also to the adjacent connected subset.
Therefore, its distance to the adjacent subset is 1 and it can be concluded
that every connected adjacent subset is dense in the network.—Q.E.D.

Corollary The election of an only synch router, that is, a router that becomes
adjacent to all its 1-hop neighbors, guarantees the connection of the MPR
adjacency set.

The formed adjacencies should be kept as long as possible although one
neighbor falls from the FULL state. Only in the case that the relationship
falls below the TWO-WAY state, the adjacency is allowed to break. When this
occurs and the linked interface notices (e.g., due to Hello packet reception), the

9MPR (selector) set includes Flooding MPR (selector) set and Path MPR (selector) set.

RR n° 6827

22 Juan Antonio Cordero

neighbor should take an EXSTART (if it was a MPR Selector) or TWO-WAY
state (otherwise).

In addition to this, MANET interfaces are allowed to send routing packets
(that is, Hello packets, LS Updates, LS Requests, LS Acknowledgements and
DBD) when standing at TWO-WAY state. Nodes have to receive and process
routing packets when coming from neighbors with state equal or higher than
TWO-WAY.

Relaxing of the neighbor state reception condition (from EXCHANGE state
in classic OSPF to TWO-WAY in MPR-OSPF) for routing protocol packets
relies on the fact that MPR-OSPF cannot guarantee that routes are exclusively
made up by adjacent links – at least in the first hop (section 5.3.1 of the spec-
ification [IETF-03]). Thus, processing routing packets coming from symmetric
(and not necessarily adjacent) neighbors would assure that these packets would
be successfully flooded over the adjacent set.

There are five packet formats in OSPF (section A.3.1 [RFC2328]): Hello
messages, DBDesc packets, LS requests (LSReq), LS acknowledgments (LSAck)
and Link State Update packets (LSUpdate). From these types, Hello packets are
not involved in routing tasks and DBDesc, LSReq and LSAck are elements of a
node-to-node synchronization process. Any of them are expected to be flooded
beyond the first hop. Thus, the only packet format that could be processed
when coming from a symmetric neighbor is the Link State Update container,
whose LSA are expected to be flooded over the whole network.

5.2 Implementation

Adjacency creation conditions for MPR-OSPF are detailed in function
need adjacencyospf6 neighbor.c. This function, which is called when processing
the event TwoWayReceived (deployed in twoway receivedospf6 neighbor.c) and
the neighbor state is lower-or-equal than TWO-WAY, returns 1 in case that
the adjacency is allowed and 0 otherwise. According to the specification, the
adjacency is formed in the two following cases:� One of the link endpoints is the MPR relay of the other. MPR Se-

lector property of a neighbor (related to a certain node) is stored in
the isMprSelector variable of the ospf6 neighborospf6 neighbor.h struct.
MPR relays and selector assignments are deployed in the ospf6 mpr.c

functions, in particular ospf6 calculate relaysospf6 mpr.c.� One of the link endpoints is a synch router. In interfaces belong-
ing to a synch router, the synchNode variable is enabled in the cor-
responding ospf6 interfaceospf6 interface.h struct; and in synch neigh-
bors of a given node, the isSynchNode variable of the corresponding
ospf6 neighborospf6 neighbor.h struct is enabled. Synch router election is
performed in function ospf6 check synch nodeospf6 interface.c.

For OSPF-MDR there is also a keep adjacency function, which states the
conditions for maintain an existing adjacency when the relationship falls be-
low the FULL state. The special conditions in MPR-OSPF (see section 5.3.2)
for adjacency conservation, in particular those preventing adjacency break in
case of state higher or equal to TWO-WAY, are also implemented in function
twoway receivedospf6 neighbor.c. There, neighbor state change (from FULL) is

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 23

rejected if the seeMeAdj variable is enabled or one of the adv MPR/adv MPRS

variables is enabled.
The specification states that the adjacency break should be avoided in case

of transitions from FULL to states higher or equal than TWO-WAY for former
adjacent nodes or former MPR / MPR Selectors. Instead of this, adv MPR and
adv MPRS variables are enabled for neighbors belonging to Path MPR or Path
MPR Selector sets of the performing node. This works while Path MPRs and
Flooding MPRs are equivalent, that is for uniform link cost networks (see section
3.2). In case that a metric other than the hop count is implemented, Path MPRs
should be splitted from Flooding MPRs, in particular in this aspect.

Moreover, when a node receives a Hello packet showing that the transmit-
ting neighbor is no longer adjacent (that is, it has lost complete LSDB syn-
chronism with the receiving interface), it should change the neighbor state to
EXSTART or TWO-WAY, depending on its previous particular Flooding MPR
status. In this sense, the ospf6 ospf mpr hello recvospf6 message.c function calls
the TwoWayReceived event for the case of symmetric relationship between re-
ceiving interface and transmitting neighbor. In case that the previous state
was FULL, but the received Hello indicates an adjacency breaking (the neigh-
bor does not sees the node as adjacent), the twoway receivedospf6 neighbor.c

function checks the adjacency convenience (via need adjacencyospf6 neighbor.c)
and it changes the neighbor’s state to TWO-WAY or EXSTART, depending on
whether the neighbor is a MPR selector / part of a synch link or not.

Specification also states (section 5.3.1) that nodes should receive routing
traffic when coming from neighbors in a state higher or equal than TWO-WAY.
Nonetheless, the different routing packets (LSUpdate, LSReq, LSAck, without
considering the Hello transmission) are not processed if they come from neigh-
bors in state lower than EXCHANGE10. DBDesc packets are processed when
coming from neighbors in state higher or equal than TWO-WAY if enabled the
adjacency reduction mechanism from MPR-OSPF (in case they come from a
INIT neighbor, its state upgrades to TWO-WAY and is then processed). Ac-
tually, only these packets and LSUpdate (as a LSA container) are processed
from TWO-WAY neighbors: this permits to include first-hop non-necessarily-
adjacent step in the flooding route.

6 LSA generation and flooding

6.1 Specification (IETF-03)

Link State Advertisements (LSA) are mainly generated in the MPR-OSPF ex-
tension in the way that OSPF general specifications (RFCs 2328 and 2740)
detail. The only significant changes are due to the MPR Topology Reduction
feature (section 4.2), which allows a router not to advertise adjacent neighbors,
but only those selected as Path MPR (relays and selectors).

Flooding process of these LSA in MPR-OSPF becomes more different to the
classic procedure. In this case, the changes mentioned in the draft (section 5.4.1)
overlaps and replaces partially the mechanisms provided in the two reference
RFCs. In the following, I will briefly expose the initial procedure stated in

10That means that the database exchange process has been at least started, after the mas-
ter/slave status has been negotiated.

RR n° 6827

24 Juan Antonio Cordero

[RFC2328] and the modifications due to new OSPF standards or MPR-OSPF
drafts releases.

6.1.1 Classic OSPF LSA flooding

Section 13 [RFC2328] states the main algorithm for reception of Link State
Updates, processing and flooding of Link State Advertisements in a OSPF-
based network. This is slightly modified in section 3.5 [RFC2740], in order to
adapt the procedure to IPv6 conditions (in italic the steps affected by these
changes).

1. When an interface receives a LSUpdate packet, some basic consistency
checks are deployed in order to state the neighbor and area from where
the LSU is coming. In case that the transmitting neighbor’ relationship
with receiving interface is lower than EXCHANGE, the packet is expected
to be discarded, since there is no adjacency neither adjacency-forming link
between them.

2. The LSUpdate packet can contain several Link State Advertisements
(LSA) inside. After preliminary consistency checks, processing is done
for each LSA belonging to the received LSUpdate.

2.1 Checksum is verified, LSA discarded if verification fails.

2.2 LSA type is examined. If LSA type is unknown, the area is a stub area
and the LSA flooding scope is the AS, or the U-bit = 1 (that is, the
LSA should be flooded even with unknown type) then the LSA should
be discarded.

2.3 The LSA scope is examined. If it is reserved, then the LSA should be
discarded.

2.4 Age is checked. If it is equal to MaxAge, there is no instance of the
LSA in the local LSDB and the receiving interface have no other11

neighbors in forming-adjacency state (EXCHANGE of LOADING),
LSA is acknowledged to the sending neighbor and then discarded.

2.5 The interface looks up the LSA in its own LSDB. If LSA contains
newer information than the LSDB (that is, there is no instance in the
LSDB or the local information is older than the received LSA), the
following steps should be performed.

2.5.1 It is verified that the LSA has been received after the minimal
time interval (MinLSArrival) required after the last LSA pro-
cessing. If not, the LSA is discarded.

2.5.2 Flooding procedure is started up. For each neighbor of the pro-
cessing interface, the steps exposed in subsection 13.3 [RFC2328]
are performed, with the definition of eligible interfaces shown in
subsection 3.5.2 [RFC2740].

11The specification defines the condition as ”none of router’s neighbors are in states Ex-

change of Loading” (step 4 of section 13, [RFC2328]). However, the router’s neighbor that
transmits the LSA is necessarily in higher-than-EXCHANGE state.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 25

2.5.2.1 For each neighbor of the processing interface:
(a) If state is lower than EXCHANGE, ignore.
(b) If the neighbor is not completely adjacent (FULL
state), examine the request list associated to the neigh-
bor, look up an instance of the flooding LSA, eventually
updating it (removing the instance in case that it is equal
or newer than the received LSA, ignoring the neighbor
it the received LSA is not newer than the instance)) or
adding the LSA to the retransmission list for the neigh-
bor (in case it was not found an up-to-date LSA instance
in the request list).

2.5.2.2 If the LSA has not been added to any retransmission
list, any neighbor required the LSA flooding.

2.5.2.3 Otherwise, if the interface received the LSA and it came
from a DR/BDR neighbor, it should not be further
flooded, since DR/BDR transmissions have probably
reached the whole network. Flooding is also stopped
in case that the interface is BDR, since the flooding re-
sponsibility goes to the DR.

2.5.2.4 In other case, the LSA should be flooded out the inter-
face and its age updated.

2.5.3 The current (old) database instance is removed from retrans-
mission lists to every neighbor.

2.5.4 The received LSA is installed in the own Link State Database
(LSDB), and new LSAs corresponding to this instance will not
be accepted during the MinLSArrival time interval. The LSA is
stored in three different structures depending on its scope (global
OSPF data structure for AS scope, the area data structure for
LSAs with area scope or Ubit enabled, and the corresponding
interface data structure for LSAs with link-local scope or U-bit
disabled).

2.5.5 Acknowledgment policy is developed (for ack discussion, see next
section).

2.5.6 In case of self-originated LSA, it should be made up by a new
updated LSA in case that it corresponds to a LSA flooded before
the last interface restart, or flushed in case that it corresponds
to an LSA that the interface does not want to longer flood. This
is specificated in subsection 13.4 [RFC2328].

2.6 In case that LS database contains newer information than the received
on the LSA, adjacency forming process has failed and it should be
restarted by running the BadLSReq event.

2.7 In case that both LSA (the received one and the existing instance in
the LSDB) are the same, the receiving router should acknowledge the
LSA or treat it as an implicit ack (depending on whether the LSA was
requested to the receiving interface or not).

2.8 In case that the instance in local LSDB is more recent than the re-
ceived, then it is possible that the received packet has wrapped its
SeqNumber (and then it should be discarded). Otherwise, the copy in

RR n° 6827

26 Juan Antonio Cordero

the local database should be sent back to the transmitting neighbor
without acknowledging the older received LSA.

6.1.2 Flooding changes in MPR-OSPF (draft IETF-03)

Section 5.4.1 of draft (IETF-03) states modifications to the classic OSPF flood-
ing procedure detailed in the RFCs. This can be summarized as follows:� LSA processing and flooding is allowed for packets coming from neighbors

in a TWO-WAY or higher state (instead of EXCHANGE or higher state).� Substeps detailed in section 13.3 [RFC2328] (modified by section 3.5.3
[RFC2740]) are replaced by the following procedure:

1. If the received LSA is older than the instance in LSDB, then it should
be acknowledged but not further processed.

2. In other case, it should be assigned an scope to the LSA. Depending
on this assigned scope the following default flooding algorithm is
deployed:

(a) LSA installation.

(b) Increase of the LSA age.

(c) (Reserved scope) Discard.

(d) (Area scope) Flooding over all router’s interfaces belonging to
the area (either MANET or non-MANET).

(e) (Non-area scope)
- Flooding over all non-MANET interfaces of the router.
- If the LSA comes from a MPR Selector12, flooding over all
router’s MANET interfaces within the corresponding LSA scope.

This substitution is not consistent with the expected behavior of MPR-OSPF
extension and the OSPF flooding procedure structure.

Substeps of section 13.3 [RFC2328] manage the interfaces selection procedure
for flooding. This procedure is only triggered in case that received LSA data is
newer than the instance in LSDB.

In contrast, the steps expected to replace them in the MPR-OSPF specifica-
tion (subsection 5.4.1, [IETF-03]) modify the behavior before deciding whether
the received LSA is newer than the LSDB instance or not. They involve flood-
ing procedure modifications (some of them, due to IPv6 address format), but
also preliminary checks and look-up processing. So, they should be integrated
in the global flooding procedure, not only in the part restricted to section 13.3
[RFC2328] (as the specification [IETF-03] states).

Thus, next section states the complete procedure, merging the basic algo-
rithm (RFCs 2328 and 2740) with requirements of the MPR-OSPF specific
structure.

12The restriction makes sense because MPR-OSPF allows LSA processing (not flooding)
from TWO-WAY neighbors. But it also should include the case of LSA coming from/to synch

neighbors. This could be done by replacing the MPR Selector condition with an adjacency-
forming state (at least) requirement.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 27

6.1.3 MPR-OSPF complete flooding procedure

In order to make easier the comprehension of the definitive specification of
LSA flooding and processing, the complete process for MPR-OSPF extension
over MANETs is exposed. As mentioned in previous section, some aspects, in
particular the foreseen algorithm steps substitution of section 5.4.1 of the draft
(IETF-03) has not been literally respected; and references to DR and BDR have
been supressed, since they make no sense in the framework of the MPR-OSPF
extension13. Modifications are signalized with italic text format.

1. When an interface receives a LSUpdate packet, some basic consistency
checks are deployed in order to state the neighbor and area from where
the LSU is coming. In case that the transmitting neighbor’s relationship
with receiving interface is lower than TWO-WAY, the packet is discarded.

2. The LSUpdate packet can contain several Link State Advertisements
(LSA) inside. After preliminary consistency checks, processing is done
for each LSA belonging to the received LSUpdate.

2.1 Checksum is verified, LSA discarded if verification fails.

2.2 LSA type is examined. If LSA type is unknown, the area is a stub
area and the LSA flooding scope is the AS, or the U-bit = 1 (that is,
the LSA should be flooded even with unknown type) then the LSA
should be discarded.

2.3 The LSA scope is examined. If it is reserved, then the LSA should be
discarded (section 3.5.1 [RFC2740], steps 2.2 and 2.3 of section 5.4.1
of the draft [IETF-03]).

2.4 Age is checked. If it is equal to MaxAge, there is no instance of the LSA
in the local LSDB and the receiving interface have no other neighbors
(differents to the transmitting neighbor) in forming-adjacency state
(EXCHANGE of LOADING), LSA is acknowledged to sending neigh-
bor and then discarded.

2.5 The interface looks up the LSA in its own LSDB. If LSA contains
newer information than the LSDB (that is, there is no instance in the
LSDB or the local information is older than the received LSA), the
following steps should be performed.

2.5.1 It is verified that the LSA has been received after the minimal
time interval (MinLSArrival) required after the last LSA pro-
cessing. If not, the LSA is discarded.

2.5.2 Flooding procedure is started up. Flooding interfaces set is se-
lected depending on LSA scope.
- (Area scope) The flooding interfaces set consists of all
router’s interfaces belonging to the area (either MANET or non-
MANET).
- (Non-area scope) The flooding interfaces set consists of (a) all
the non-MANET router’s interface, and (b) if the LSA comes

13DR and BDR fields in messages are kept for OSPF compatibility, but their only play a
role in interfaces of wired OSPF networks and wired OSPF interfaces in hybrid networks.
None of these interfaces would run the wireless MPR-OSPF extension.

RR n° 6827

28 Juan Antonio Cordero

from a MPR Selector14, all the MANET router’s interfaces
within the corresponding LSA scope.
For each flooding interface of the set, the following steps are
performed:

2.5.2.1 For each neighbor of the flooding interface:
(a) If state is lower than EXCHANGE, ignore.
(b) If the neighbor is not completely adjacent (FULL
state), examine the request list associated to the neigh-
bor, look up an instance of the flooding LSA, eventually
updating it (removing the instance in case that it is equal
or newer than the received LSA, ignoring the neighbor
it the received LSA is not newer than the instance) or
adding the LSA to the retransmission list for the neigh-
bor (in case it was not found an up-to-date LSA instance
in the request list).

2.5.2.2 If the LSA has not been added to any retransmission
list, flooding is not required by any neighbor.

2.5.2.3 Otherwise, the LSA should be flooded out this interface
and its age updated.

2.5.3 The current (old) database instance is removed from retrans-
mission lists to every neighbor.

2.5.4 The received LSA is installed in the own Link State Database
(LSDB), and new LSAs corresponding to this instance will not
be accepted during the MinLSArrival time interval. The LSA is
stored in three different structures depending on its scope (global
OSPF data structure for AS scope, the area data structure for
LSAs with area scope or U-bit enabled, and the corresponding
interface data structure for LSAs with link-local scope or U-bit
disabled).

2.5.5 Acknowledgment policy is developed (for ack discussion, see next
section).

2.5.6 In case of self-originated LSA, it should be made up by a new
updated LSA in case that it corresponds to a LSA flooded before
the last interface restart, or flushed in case that it corresponds
to an LSA that the interface does not want to longer flood. This
is specificated in subsection 13.4 [RFC2328].

2.6 In case that the LSDB information is not older (so, it is equal or
newer) than the received LSA, the LSA should be acknowledged and
not further processed (step 2.1 of section 5.4.1 [IETF-03])15.

14The restriction makes sense because MPR-OSPF allows LSA processing (not flooding)
from TWO-WAY neighbors. But it also should include the case of LSA coming from/to synch

neighbors. This could be done by replacing the MPR Selector condition with an adjacency-
forming state (at least) requirement.

15This is consistent with allowing that LSA coming from non-adjacency-forming neighbors
(that is, in TWO-WAY state) are processed, according to the stated in section 5.3.1 of the
draft (IETF-03).

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 29

6.2 Implementation

Implementation of Link State Advertisements (LSA) management includes gen-
erating the LSA, receiving the Link State Update (LSU) packets and processing
the LSA that are aggregated to a single LSU. That includes flooding over other
interfaces in the neighborhood.

6.2.1 LSA generation and advertised routers

The Link State Advertisements (LSA) generation and the advertised nodes elec-
tion in MPR-OSPF mainly follow the general OSPF6 policy. The only modifica-
tion stated in the draft (IETF-03) relies on advertising only Path MPR and Path
MPR selectors in Router-LSA (those selected as adv MPR or adv MPRS). That
is performed in the MPR-OSPF-specific excerpt of the Router LSA generation
function (ospf6 router lsa originateospf6 intra.c).

6.2.2 LSU processing

In contrast, flooding and processing implementation in MPR-OSPF has many
differences to the classic OSPF procedure. Figure 12 shows the main diagram
of LSU and LSA processing.

RR n° 6827

30 Juan Antonio Cordero

Figure 12: LSU/LSA processing diagram in the GTNetS MPR-OSPF imple-
mentation

Beyond the general reception function (function ospf6 receive), processing
and flooding
are implemented in first term in the ospf6 lsupdate recvospf6 message.c func-
tion. This provides the general mechanisms and verifications to be done over
the Link State Update (LSUpdate) packet, such as neighbor lookup and con-
sistency checks involving the following ones (step 1, mostly implemented in
function ospf6 header examinospf6 message.c):� OSPF version,� area correspondence and

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 31� OSPF6 instance id16.

6.2.3 LSA processing & flooding

Each LSA belonging to the received LSU is processed independently by call-
ing the ospf6 receive lsaospf6 flood.c function in the MPR-OSPF version
(only enabled if the label OSPF6 MANET MPR RETRANS OSPF MPR is on). In
first term, new verifications are performed, corresponding to checksum check
(step 2.1, by calling the ospf6 lsa checksumospf6 lsa.c), type verification17

(step 2.2, AS-scope LSA discarded in stub areas), scope analysis (step 2.3,
LSA is discarded if its scope is reserved), age update and evaluation (via
ospf6 is maxage lsa dropospf6 neighbor.c, which lets the LSA, in case it is up
to date or any neighbor belonging to the area is in adjacency-forming state, to
be after processed in the way that step 2.4 details).

Second part of LSA processing includes look-up in the local link state
database (LSDB). The LSA is stored in the acknowledge-pending list for the
transmitting neighbor (function ospf6 store mackospf6 neighbor.c), and three
scenarios are considered depending on the search results. In each of them,
the list of requests from the neighbor to the main interface is examined, the
received LSA is looked up. If the request is equal or older than the received
LSA, the corresponding request is removed from the list.

1st scenario The received LSA contains new information not stored in the
local LSDB (that is, there is no instance in the database or the instance
is older). If the time interval between the two last receptions is less that
MinLSArrival, then the new LSA is flooded (if non self-originated18 and
sent by a MPR selector), installed and acknowledged.

Flooding procedure is initiated in ospf6 floodospf6 flood.c function and
follows the diagram in figure 13.

16The OSPF6 instance has only a link-local meaning, so that different protocol instances
can be running over the same link (defined in section A.3.1 [RFC2740]).

17According to [RFC2740], section 3.5.1, step (2), the LSA type evaluation should discard
the LSA in case of unknown type, stub area and AS scope or U-bit on, which is not imple-
mented.

18Self-originated LSA are those whose transmitting router is the same that the one process-
ing it, according to new definition of section 3.6 [RFC2740].

RR n° 6827

32 Juan Antonio Cordero

Figure 13: Flooding process functions in the GTNetS MPR-OSPF implemen-
tation

The process involves the OSPF6 instance that is running over the
router of the receiving interface. The flooding process in extended
to those areas connected to router’s interfaces, and, in each area, the
attached router interfaces manage its own flooding policy, detailed in
ospf6 flood interface ospf mprospf6 flood.c for MPR-OSPF extension.

This function discards for flooding the receiving router interfaces having
received the LSA in state BDR or from an DR/BDR transmitting inter-
face19.

LSA is decided to be flooded over the receiving router interfaces’ neighbors.
For each of them, some checks are developed and the request list for the
neighbor is examined in order to avoid flooding in the following cases:� There are requests for the LSA that are newer than or equal to the

LSA in the request list for the neighbor (if the request is older or
equal, it is removed).� The neighbor relationship is lower than EXCHANGE (not adjacency
forming), substep 2.5.2.1 (a).� The neighbor has generated or already transmitted the LSA.� The LSA has been already acknowledged.

Excluding these cases, the neighbor is added to the LSA retransmission
list for the neighbor (ospf6 retrans lsa addospf6 top.c) and the LSA is
signalized to be acknowledged (neighborShouldAck). Finally, the LSA

19It is not clear that these decisions make sense in MPR-OSPF extension, in which DR/BDR
status has no place in the whole design. Moreover, the same steps are repeated at the end
of the function, so either the first, either the last, either both are unneeded and could be
removed.

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 33

is scheduled for retransmission (if the list is non-empty) and flooding out
the interface (ospf6 lsdb addospf6 lsdb.c).

Install process is deployed in the ospf6 install lsaospf6 lsa.c function,
which also includes removal of the current database instance in the re-
transmission lists (steps 2.5.3 and 2.5.4). Acknowledgement policy (step
2.5.5) will be detailed in next section. And self-originated LSAs, which
have been prevented from flooding, generate a new instance of the LSA
to be flooded20 (step 2.5.6).

2nd scenario LSA and LSDB instance have the same age. LSA does not con-
tain useful information to be flooded, so it is acknowledged and discarded
without further processing.

3rd scenario Database instance is more recent than the received LSA. The
received LSA is likely to be in SeqNumber wrapping21, in this case the LSA
is discarded. Otherwise, the local copy is more recent than the received
LSA, and it is consequently flooded over the transmitting neighbor, if it
is within an adjacency-forming LSDB exchange process (EXCHANGE or
LOADING) state22.

7 Link State Acknowledgments

7.1 Specification (IETF-03)

MPR-OSPF acknowledge policy relies on the principle that nodes belonging to
the adjacency set have to acknowledge every Link State Advertisement (LSA),
either explicitly or implicitly. According to this main rule, the protocol is ex-
pected to behave in the way that the flux diagram in figure 14 indicates.

20Flooding a new instance is one of the possible alternatives (following section 13.4
[RFC2328]), the other one is to flush the packet; in any of these cases the self-originated
LSA should be flooded.

21The SeqNumber parameter is higher than the maximum allowed value and it has been
reinitialized.

222nd and 3rd scenarios seem to be collapsed in the specification; both of them are ex-
pected to imply an acknowledgment without further processing (step 2.6). Does not MPR-
OSPF needs to manage SeqNumber wrapping events, for instance? In that case, this should
be removed from ospf6 receive lsaospf6 flood.c for MPR-OSPF. Otherwise, this should be
included or mentioned in the draft.

RR n° 6827

34 Juan Antonio Cordero

Figure 14: Acknowledge diagram in MPR-OSPF (draft IETF-03)

If an LSA has not been received from an adjacent neighbor, it should not be
acknowledged. If the transmitting neighbor is adjacent, then the LSA should
be acknowledged. The way it is acknowledged depends on whether the LSA is
received for the first time. If not (that is, if other neighbor has sent the same
LSA before), the receiving neighbor is not going to perform retransmission of
the LSA through the neighborhood, so no implicit acknowledges (due to retrans-
missions) are going to be deployed. In that case, the receiving neighbor should
acknowledge explicitly the LSA by means of an Link State Acknowledgment
(LSAck) packet.

In contrast, if the LSA has been received for the first time, the neighbor will
sent an LSAck in the case that no retransmissions are foreseen according to the
flooding policy. If the node retransmits the LSA, then it works as an implicit
acknowledgment for the transmitting neighbor.

LSAck packets may be delayed so that they can be aggregated in multiple-
acks transmissions. Jitter features can also be implemented in order to reduce
collision likelihood.

7.2 Implementation

Acknowledge policy is cen-
tralized in the ospf6 acknowledge lsaospf6 flood.c function, which derives to
two different subfunctions (ospf6 acknowledge lsa bdrouterospf6 flood.c and
ospf6 acknowledge lsa allotherospf6 flood.c) depending on the OSPF6-like
state of the acknowledging interface. Since MPR-OSPF extensions does not
take care of DR/BDR/DROther interface states, their specific acknowledging
mechanisms are only deployed in the function referring to allother (neither DR
nor BDR) interfaces, ospf6 acknowledge lsa allotherospf6 flood.c).

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 35

This function mainly implements the decisions detailed in the ”All-other
states” column on table 19 (section 13.5) [RFC2328], with some minor modifi-
cations due to MPR-OSPF and OSPF-MDR particularities.� If LSA has been flooded back out the receiving interface, it should not be

acknowledged, according to [RFC2328]. In fact, the draft does not provide
special behavior for flooded-back LSAs, though OSPF6 LSA FLOODBACK flag
is enabled for packets in which the processing interface is the same to
the LSA generating interface. To be consistent with the specifications,
both flag activation and acknowledgement floodback processing should be
supressed, except that this is expected to be added to the specific policy
of MPR-OSPF.� If LSA is more recent than the instance in the LSDB, but it was not flooded
back to the receiving interface (so previous step has been avoided), the
interface should send a delayed acknowledgement. It is consistent with the
theorical behavior (see previous subsection) on MPR-OSPF extension: in
the case that the retransmission (equivalent to floodback in a wireless
medium) is avoided, then the packet needs to be explicitly acknowledged,
as stated in step 2.5.5 of subsection 5.1.3 of this report.� No implied acknowledgement
flags are enabled in MPR-OSPF-based routers when processing an LSA
(function ospf6 receive lsaospf6 flood.c). In case of duplicate LSA (flag
OSPF6 LSA DUPLICATE enabled), that is, the received LSA is the same as
the LSDB instance, the packet should be acknowledged, according to the
draft (IETF-03).� If LSA age reaches MaxAge, no instance is found in the LSDB and any
of the router’s neighbors is in forming-adjacency state (EXCHANGE or
LOADING), then the LSA should be acknowledged. This is implemented
directly in ospf6 receive lsaospf6 flood.c (and not in specific acknowl-
edgement processing function), after age check.

With all these mechanisms, the main algorithm detailed in previous sub-
section is basically respected. In addition, it is worth reminding that ac-
knowledge is restricted (in the acknowledgment handling part of function
ospf6 receive lsaospf6 flood.c) to LSAs coming from neighbors in state higher-
or-equal than EXCHANGE, following the specification (section 5.4.2, point 1).

8 Routing table and SPT calculation

Each network node is expected to maintain a unique routing table. This ta-
ble maps packet destination with next hop identity, and permits each node to
forward correctly a packet when it is received and addressed to a further desti-
nation.

RR n° 6827

36 Juan Antonio Cordero

8.1 Specification (IETF-03)

There are not explicit references to routing table construction in the current
specification. According to classic OSPF policies23, the routing table is com-
puted taking into account the information collected by the node from the differ-
ent received LSA messages24. The Dijkstra algorithm is run to determine the
shortest path tree of every area attached to the computing node25.

After the SPT calculation, the routing table is filled by routing entries, one
per destination. Each entry stores the shortest path(s) to the corresponding
destination, their (minimum) cost and the next hop(s) to reach it.

In MPR-OSPF, Router-LSAs of MANET routers contain the set of Path
MPR and Path MPR selectors of the originating node. Consequently, the SPT
is calculated over the Path MPR sets of each node in the network. Since Path
MPR peers are selected to be intermediate nodes in the min-cost links from the
1- (when possible) and 2-hop neighbors of the computing node, the outgoing
routing entries from the SPT algorithm are expected to cover at least every
destination 2-hops away or further from the computing node. They are excluded,
however, these 1-hop neighbors whose shortest path to the computing node is
the direct link. Thus, routing entries to these 1-hop nodes are required (at least)
to complete the routing table with every possible destination in the network.

Actually, MPR-OSPF nodes include neighbors belonging to N and N2 to
the Shortest Path Tree calculation: this should be included in the specification,
since it is a specific feature from MPR-OSPF not considered (not required) in
the classic OSPF documentation.

8.2 Implementation

The SPF and routing tables of a router attached to a certain area are stored
inside an ospf6 areaospf6 area.h structure, in the ospf6 route table-like vari-
ables spf table and route table. The routing table struct consists of a set
of entries, each of them stored in a ospf6 routeospf6 route.h-like variable. Aux-
iliary data structures for the routing entries handling and the SPF algorithm
are detailed in ospf6 route.h and ospf6 spf.h, and the procedures for SPT
calculation and routes management are deployed in the corresponding C files.

In particular, the Shortest Path Tree calculation procedure, which adapts the
Dijkstra algorithm, is implemented in ospf6 spf calculationospf6 spf.c. The
calculation is done is two steps. In the first one, the tree root (computing
router), the 1- and 2-hop neighbors of the root’s interfaces in the area are
added as candidates (vertices) to the tree, calculating the cost to the root26, the
number of hops and the next hop from the root. The second step iterates over the
candidate list: for each candidate node, it is installed (if there is no better route)
in the route table (in ospf6 spf installospf6 spf.c), removed from the candidate
list and they are explored the link-state descriptions of its corresponding LSA.
If these links are bidirectional, the involved neighbors are also added to the
candidate list. When the iteration is finished (that is, no more candidates

23Sections 11 and 16 [RFC2328] and sections 3.3 and 3.8 [RFC2740].
24Router-LSAs for intra-area routes, summary-LSAs (inter-area-prefix-LSAs and inter-area-

router-LSA, in OSPFv3 terminology) for inter-area routes, AS-external-routes for routes to
external destinations and intra-area-prefix-LSA for prefix information.

25Section 16, step (2) [RFC2328].
26To the root or from the root?

INRIA

On MPR-OSPF Specification and Implementation in Quagga/GTNetS 37

exist), the route table of the calculating router associated to the area contains
the shortest paths to every destination in the area.

9 References

[RFC2328] J. Moy: RFC 2328, OSPF Version 2. Internet Society (ISOC). April 1998.

[RFC2740] R. Coltun, D. Ferguson, J. Moy: RFC 2740, OSPF for IPv6. Internet
Society (ISOC). December 1999.

[RFC4813] B. Friedman, L. Nguyen, A. Roy, D. Young: RFC 4813, OSPF Link-local
Signaling. Internet Society (ISOC). February 2007.

[IETF-03] E. Baccelli, P. Jacquet, D. Nguyen: Internet-Draft, OSPF MPR Extension
for Ad Hoc Networks. OSPF WG of the Internet Engineering Task Force
(IETF). draft-ietf-ospf-mpr-ext-03.txt. November 2008. (work in
progress)

[Baccelli-04] E. Baccelli, P. Jacquet, D. Nguyen: Internet-Draft, OSPF MPR Exten-
sion for Ad Hoc Networks. OSPF WG of the Internet Engineering Task
Force (IETF). draft-baccelli-ospf-mpr-ext-04.txt. October 2007.
(expired)

[Quagga] K. Ishiguro et al.: Quagga. A routing software for TCP/IP networks.
Quagga v0.98.6. http://www.quagga.net/docs/quagga.pdf. June 2005.

[Evaluation] J.A. Cordero: Evaluation of OSPF extensions in MANET routing. Master
Thesis. Équipe HIPERCOM, Laboratoire d’Informatique (LIX) - École
Polytechnique. September 2007.

[GTNetS] G. F. Riley: The Georgia Tech Network Simulator. Proceedings of the
ACM SIGCOMM 2003 Workshops. August 2003.

[SNMP] R. J. Millán: ”SNMPv3”, in BIT #139. June-July 2003.

RR n° 6827

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	OSPF6 architecture overview
	Interaction between GTNetS and Quagga/Zebra
	OSPF6 daemon implementation
	Interface architecture
	Interface & neighbor state machines
	Message management

	Data structure and selection procedures
	Flooding MPR selection procedure
	Path MPR selection procedure

	Hello protocol
	Specification (IETF-03)
	Implementation
	Packet generation and transmission
	Reception and processing

	Adjacencies
	Specification (IETF-03)
	Implementation

	LSA generation and flooding
	Specification (IETF-03)
	Classic OSPF LSA flooding
	Flooding changes in MPR-OSPF (draft IETF-03)
	MPR-OSPF complete flooding procedure

	Implementation
	LSA generation and advertised routers
	LSU processing
	LSA processing & flooding

	Link State Acknowledgments
	Specification (IETF-03)
	Implementation

	Routing table and SPT calculation
	Specification (IETF-03)
	Implementation

	References

