
HAL Id: inria-00359182
https://hal.inria.fr/inria-00359182

Submitted on 6 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Aware Mining of Itemsets
Bashar Saleh, Florent Masseglia

To cite this version:
Bashar Saleh, Florent Masseglia. Time Aware Mining of Itemsets. TIME, Jun 2008, Montreal, Canada.
pp.93-97, �10.1109/TIME.2008.12�. �inria-00359182�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50193465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00359182
https://hal.archives-ouvertes.fr

Time Aware Mining of Itemsets

Bashar Saleh
INRIA

2004 route des lucioles - BP 93
bsaleh@sophia.inria.fr

Florent Masseglia
INRIA

2004 route des lucioles - BP 93
fmassegl@sophia.inria.fr

Abstract

Frequent behavioural pattern mining is a very important
topic of knowledge discovery, intended to extract correla-
tions between items recorded in large databases or Web ac-
ces logs. However, those databases are usually considered
as a whole and hence, itemsets are extracted over the en-
tire set of records. Our claim is that possible periods, hid-
den within the structure of the data and containing compact
itemsets, may exist. These periods, as well as the itemsets
they contain, might not be found by traditional data mining
methods due to their very weak support. Furthermore, these
periods might be lost depending on an arbitrary division of
the data. The goal of our work is to find itemsets that are
frequent over a specific period but would not be extracted
by traditional methods since their support is very low over
the whole dataset. In this paper, we introduce the definition
of solid itemsets, which represent a coherent and compact
behavior over a specific period, and we proposeSIM , an
algorithm for their extraction. This work may find many
applications in sensitive domains such as fraud or intrusion
detection.

1 Introduction

The problem of association rule mining has been de-
fined in [1]. The goal is to obtain, among a very large set
of records, the frequent correlations between the items of
the database. This problem has many application in mar-
keting, business management or decision analysis, for in-
stance. The core of this problem lies in the extraction of
frequent itemsets. In market basket analysis, for instance,
frequent itemset mining aims to discover sets of items that
correspond to a large number of customer. If this num-
ber is above a certain threshold (given by the user) then
this itemset is considered frequent. However, in the ini-
tial definition of frequent itemset mining, the search is per-
formed over the whole database (i.e. given minsupp, the
user’s minimum support, the extracted itemsets appear in at

least|D| ×minsupp transactions of databaseD). However,
for many real world applications, this definition of frequent
itemsets is not well adapted. Possible interesting itemsets
might remain undiscovered despite their very specific char-
acteristics. In fact, interesting itemsets are often related to
the moment during which they can be observed. We may
consider, for instance, the behaviors of the users on the web
site of an on-line store after a special discount on record-
able DVDs and CDs, advertised on TV. Another example
could be the adverse drug reports related to a specific drug
that appeared after an alert was publicized on that precise
drug. Similarly, the web site of a conference will observe
that frequent behavior related to the submission procedure
mainly occurs within a window of a few hours before the
deadline. A necessary condition in order to discover this
kind of knowledge is that each transaction is associated to
a time-stamp. This condition has already been proposed,
for instance in [2] and the authors proposed the notion of
temporal association rules. Their idea consists of extract-
ing itemsets that are frequent over a specific period that is
shorter than the whole database. However, the periods pro-
posed in [2] are defined by the lifetime of each item. There-
fore, a data mining process for extracting the periods is not
necessary since they only depend on the first and last occur-
rence of each item.

In this paper, we propose to find itemsets that are fre-
quent over a contiguous subset of the database. For in-
stance, navigations on the web page of recordable CDs and
DVDs occur randomly all year, but the correlation between
both items is not frequent if we consider the whole year.
However, the frequency of this behavior will certainly be
higher within the few hours (or days) that follow the TV
spot. Therefore, the challenge is to find the time window
that will optimize the support of this behavior. In other
words, we want to findB, a contiguous subset ofD where
the support of the behavior onB is above the minimum
support and the size ofB is optimal. Let us consider that
the TV spot was on March 3 and it has influenced the cus-
tomers for two days. Our goal is to find the following kind
of knowledge: “25% of the users, between March 3 and

March 5, have requested the page about recordable CDs,
the page about recordable DVDs and the page about special
discounts.” The support of this behavior would certainly
be too low for its extraction over the whole year, but this
knowledge (i.e. the behavior along with its associated pe-
riod of frequency) may be very important for deciders since
they will want to discover this behavior and its specific win-
dow of frequency, and finally link it to the TV spot.

This problem could seem similar to the problem of min-
ing bursty events in data streams [9, 4]. However, we will
show that our method is able to combine several require-
ments that have not yet been met together in the fields of
burst mining or data stream mining (i.e. we are able to ex-
tract itemsets with no fixed window size and to obtain the
exact and exhaustive set of periods of optimal frequency for
these itemsets).

The remainder of this paper is organized as follows. Sec-
tion 2 gives the necessary definitions of itemset discovery
and our new definitions for mining solid itemsets (with a
comparison to temporal aspects of itemset mining in the lit-
erature). Section 3 summarizes the complexity of the prob-
lem exposed in this paper and Section 4 presents our algo-
rithm for the extraction of solid itemsets. Finally, Section 5
gives a synthesis of our experiments leading to the conclu-
sion of Section 6 with future avenues.

2 Definitions

The problem of association rule mining is based on the
extraction of frequent itemsets. This problem has been pro-
posed in [1], and numerous algorithms have been proposed
in the literature to solve it. Definition 1 states the charac-
teristics of frequent itemsets. It is different from the initial
or traditional definitions in [1] since we consider that each
item in the database is associated to a time-stamp. There-
fore a transaction may cover a range of several timestamps.

Definition 1 Let I = {i1, i2, ..., in} be a set of items. Let
X = {i1, i2, ..., ik}/k ≤ n and∀j ∈ [1..k] ij ∈ I. X is
called aitemset(or a k−itemset). LetT = {t1, t2, ..., tm}
be a set of times, over which a linear order<T is defined,
whereti <T tj meansti occurs beforetj . A transaction T
is a coupleT = (tid, X) wheretid is the transaction iden-
tifier and X is the associated itemset. Associated to each
item i in X we have a time-stampti which represents the
valid time of occurrence ofi in T .
A transactionT = (tid, I) is said to support an itemset
X ∈ I if X ⊆ I. A transaction databaseD is a set of
transactions. Thecover of an itemsetX in D is the set
of transaction identifiers of transaction inD that support
X : cover(X, D) = {tid/(tid, I) ∈ D, X ∈ I}. Thesup-
port of an itemsetX in D is the number of transactions
in the cover ofX in D: support(X, D) = |cover(X, D)|.

The frequency of an itemsetX in D is the fraction of
transactions inD that supportX : frequency(X, D) =
support(X,D)

|D| . Given a user’s minimum thresholdγ ∈]0..1],
an itemsetX is said to befrequent if frequency(X, D) ≥ γ.

Definition 2 The setF of frequent itemset inD with
respect to γ is denoted by F (D, γ) = {X ∈
I/frequency(X, D) ≥ γ}.

Given a set if itemsI, a transaction databaseD and a
minimal thresholdγ, the problem offrequent itemset min-
ing aims to findF (D, γ) and the actual support of the item-
sets inF . Example 1 gives an illustration of the notions
presented above.

Example 1 Figure 1 shows the example databaseD. To
each transaction Id is associated the set of items in the
transaction. In order to simplify the illustration, we assume
that the transactions ofD are recorded by order of date
(i.e. T1 occurred beforeT2, etc.) and a unique time-stamp
is associated to all the items of a transaction (whereas in
our definition, each separate item has a time-stamp). Let
us consider a minimum frequencyγ = 1

2 given by the user.
With such a support, the frequent items (highlighted in the
transactions of figure 1) area, b andc. The frequent item-
sets ofD, with γ = 1

2 , are (a), (b), (c), with a threshold of
6
10 , and(a, c), with a threshold of12 .

Figure 1. Frequent itemsets on D where γ = 1
2

Our problem is based on the timestamps associated to the
records inD and aims to provide itemsets that are frequent
on particular periods of times inD. In the following def-
initions, we introduce the notions of temporal itemset and
solid itemset, that are the core of this paper.

Definition 3 A period P = (Ps, Pe) is defined by a start
time Ps and an end timePe. The set of transactions that
belong to periodP is defined asTr(P) = {T/T ⊆ D, ∀i ∈
T, Ps ≤ Pi ≤ Pe} with Pi the time-stamp associated toi
in transactionT . We define asPR the set of all potential
periods overD.

In other words, the set of transactions that belong to a
periodP is defined as the set of transactions having all their
items associated to a time-stamp in the time range ofP .
The frequency ofx overTr(P) the transactions of a period
P is denoted by frequency(x, P) whenever it is clear from
the context (as well as cover(x, T r(P)) which is denoted
by cover(x, P) and support(x, T r(P)) which is denoted by
support(x, P)).

Definition 4 A Temporal Itemsetx is a triple (xi, xp, xσ)
wherexi is an itemset,xp is a period associated toxi and
xσ is the threshold ofxi over xp. Let k be the size ofxi,
thenx is called ak−temporal itemset.

Let us consider the temporal itemsety =
({a, b, c}, [7..10], 3

4) in D from figure 1. The itemset
of y (i.e. yi) is {a, b, c}. The period ofy (i.e. yp) is [7..10]
and the threshold ofy overyp (i.e. yσ) is 3

4 (yi is supported
by transactions 7, 9 and 10 in periodyp onD).

Givenγ, a user’s minimum threshold, we introduce the
characteristics of solid itemsets in Definition 5.

Definition 5 Let x be a temporal itemset.x is called a
Solid Itemset (SI) iff the following conditions hold:
1) xσ ≥ γ
2) ∀p2 ∈ PR/xp ⊆ p2 we have either a) or b) or both:

a) support(xi, p2) < γ
b) cover(xi, p2) =cover(xi, xp)

3) ∀p2 ∈ PR/p2 ⊆ xp, cover(xi, p2) <cover(xi, xp)
Letk be the size ofxi, thenx is a k-solid itemset. Finally,
SIk is the set of allk-solid itemsets.

The first condition of definition 5 ensures thatx repre-
sents an itemset that is frequent over its associated period.
The second condition ensures that the size ofxp is maxi-
mal. Actually, if a larger period exists, then, on this period,
xi is not frequent or the cover ofxi is the same (i.e. it is
not worth extending the period fromxp to p2, since the ex-
tension will not contribute to the support ofxi). Finally, the
third condition ensures that the size ofxp is minimal. In
fact, xi is supported by the first and last transaction inxp,
so if a smaller period exists wherexi is frequent, the cover
will be lower anyway (i.e. relevant transactions supporting
xi would have been dropped from the period and should be
kept). An illustration is given in example 2.

Example 2 Figure 2 shows the example databaseD of fig-
ure 1 and the extractedk-solid itemsets. We can observe
that the solid itemsets of size 1 are(a), (b) and(c), and their
period corresponds to the entire database with a threshold
of 6

10 . Then, we have three solid itemsets of size 2:

• (a c), with a threshold of510 and a period that corre-
sponds to the entire database.

• (a b) and(b c), on the period[7..10] with a threshold
of 3

4 .

Finally, there is one solid itemset having size 3:(a b c)
which occurs during the period[7..10] with a threshold of
3
4 . We can observe that, thanks to the definition of solid
itemsets, a new kind of knowledge has been extracted. This
knowledge concerns punctual behaviors of the users. InD
it is illustrated by, for instance, a compact itemset of size
3 (i.e. (a b c)) occurring on a very specific period (i.e.
[7..10]). This itemset, associated to this period, is optimal
(as stated in definition 5) since:

• This itemset is frequent over this period.

• No longer period allows this itemset to have the mini-
mum threshold (condition 2 in definition 5 is respected
for all periods larger than[7..10]).

• no shorter period allows this itemset to have the mini-
mum threshold without diminishing the cover.

On the other hand, let us consider the following tem-
poral itemsets: y = ((a b c), [9..10], 100%) and
z = ((a b c), [6..10], 3

5). We can observe thatyi and
zi have the minimum support over their respective periods.
However, there exists a periodp2 = [7..10] where(a b c)
is frequent and the cover is larger than the cover ofyi on
yp. Hence,y is not a solid itemset since condition 2 of
definition 5 is not respected. Finally,zi is frequent onp2

and its cover is the same onp2 and zp, so condition 3 of
definition 5 is not respected andz is not a solid itemset.

Let us note that itemsets(a b), (b c) and(a b c) were not
frequent over the whole database in example 1 withγ = 1

2 ,
since their threshold onD is 4

10 . However, thanks to the
definition of solid itemsets, they can be discovered along
with their associated periods of frequency.

Figure 2. Solid itemsets in D where γ = 1
2

Definition 6 The set ofMaximal Solid Itemsets (MSI) is
defined as follows: letx be a SI,x is aMSI if the following
condition holds:
∀y ∈ SI/x 6= y if xi ⊆ xi thenxp 6= yp.

The goal of this paper is to propose an optimized algo-
rithm in order to extract the exact and entire set of maximal
solid itemsets, as stated in definition 6.

Our problem can be compared to two main fields of data
mining: mining burst events from data streams and mining
temporal itemsets. An event is considered bursty if it oc-
curs with strong support in a certain time window. The def-
initions of bursts may vary in the literature, but the idea is
generally to find the items that correspond to this time win-
dow and a significant threshold [5, 7, 9, 4]. The notion of
burst is thus close to our definition of solid itemsets. How-
ever, at this time and to the best of our knowledge, there
is no method for mining bursty itemsets since the existing
methods propose to detect events of one item (except [4]
with events made of correlations between multiple items,
but with fixed window sizes and disjoined itemsets). Let us
mention that mining in data streams implies to find a com-
promise between the time response and the quality of the
result. Hence, approximation is a key in data stream min-
ing methods, whereas in our framework, we want to extract
the exact set of solid itemsets without compromise on the
quality of the result.

Interesting studies have been proposed for the temporal
aspects related to association rule mining. We propose to
divide these studies into three main categories:1) A specific
period is givenand the goal is to find the frequent itemsets
within this period [2],2) A specific pattern is givenand the
goal is to find the corresponding periods [3] and3) Mining
periodic (repetitive) patterns and the timestamps are
analyzed in order to find repetitive patterns [6]. Eventually,
we note that an instructive survey on temporal knowledge
extraction can be found in [8].

3 Motivation

As illustrated in example 2, our problem could be seen
as a mere lowering of the minimum threshold (the itemset
(a b c) in example 1 has a threshold of4

10 overD) in order to
find the itemsets corresponding to our solid itemsets. How-
ever this point of view has two main drawbacks, compared
to our problem definition:

1. Lowering the support is a well known source of fail-
ure for existing data mining algorithms. Generally, the
number of candidates, or the number of frequent items,
will not fit in main memory. Even if this set is able to
fit in memory, the response time will be prohibitive.

2. Even with a lower support, if the itemsets are extracted
despite their number, they will not be associated to
their period of frequency (actually they would be ex-
tracted because they are frequent on a period corre-

sponding to the whole database, which is not really in-
structive from the localization point of view).

Another naive method would consist of dividing the
database into multiple subsets corresponding to periods of
fixed size. For instance, the web access log file of a shop for
one year could be divided into 365 subsets corresponding to
each day of this year. In this case, we have to keep in mind
that undiscovered periods will remain (for instance a period
of two consecutive days or a period of one hour embedded
in one of the considered days) and the method would be
based on an arbitrary division of the data (why working on
each day and not on each hour or week or half day?).

Eventually, let us note that the total amount of combina-
tions for enumerating the possible solid itemsets is(2n×k!)
with n the number of itemsets andk = |D|. So, 2n is
the number of potential itemsets onD andk! is the num-
ber of possible contiguous subsets (windows) ofD. For-
tunately, the monotonicity property of frequent itemsets
allows avoiding the enumeration of2n possible itemsets.
Based on this property our goal is to show that avoiding the
enumeration of thek! potential periods is also possible, and
we provide in section 4 an exhaustive and optimized algo-
rithm for mining solid itemsets.

4 General Principle & Algorithm

This section is devoted to the presentation of “Solid
Itemset Miner” SIM designed for the extraction of solid
itemsets in databases. The notion of kernels, introduced
in this section, will allow extracting the solid itemsets ef-
ficiently. First, we give an overview of the principle and
main idea for this extraction in Section 4.1 and the details
of the algorithm are given in Section 4.2.

4.1 General Principle

SIM introduces a new paradigm for the counting step of
the generated candidates. Actually, let us considert a tem-
poral itemset that is not a solid itemset (i.e. tσ < gamma).
Any supersetu = (ux, up, uσ)/ux ⊆ tx ∧ up ⊆ tp of t
cannot be a solid itemset (i.e. uσ < gamma). SIM thus
extends the Generating-Pruning principle of apriori in order
to generate candidate solid itemsets and count their support.
The generating principle is provided with a filter on the pos-
sible intersection of the candidates (i.e. if two solid itemset
of sizek have a common prefix but do not share a common
period, then they are not considered for generating a new
candidate).

However, the counting step (or “pruning” in apriori) is
not straightforward in our case. Let us considerc, a candi-
date. A possible solution would be to count the occurrences
of c over its lifetime withincp. This is not a good solution.

Now let us consider the candidatec = ((a b), [1..10], cσ)
the candidate temporal itemset that has been generated
thanks to the solid itemsets of size 1:x = ((a), [1..10], 6

10)
and y = ((b), [1..10], 6

10). c is not a solid itemset since
cσ = 4

10 . However cp contains a solid itemsetc′ =
((a b), [7..10], 3

4). Based on this observation, our goal, dur-
ing the counting step, is to build “kernels” of the candidate
temporal itemsets over their period of possible frequency.
Then, the kernels will be merged in order to find the cor-
responding solid itemsets. Details are given in Definition
7.

Figure 3. Kernels and period of itemset (b)

The following definition is based on the fact that we per-
form successive scans over the data in order to find the pe-
riods that correspond to solid itemsets. The way a scan is
performed (i.e. reading the transaction from the first to the
last one) implies discovering the kernels “on-the-fly”.

Definition 7 A kernel is a period. LetK(x, P, γ) be the set
of kernels for the itemx over the periodP with respect to
the minimum thresholdγ. K(x, P, γ) is defined as follows:
Let k ⊆ P be a period such thatx ⊆ Tr(ks) ∧ Tr(ks)
is the first occurrence ofx in P . If k does not exist then
K = ∅. If k exists, then letN be the set of timestamps such
that∀n ∈ N, n ∈ P ∧n > ks∧frequency(x, [ks..n]) < γ
(in other words,N is the set of timestamps inP such that
extending the periodk up to any of those timestamps leads
to lose the frequency forx). If N is empty thenke is defined
as the last occurrence ofx in P , andK(x, P, γ) = {k}.
Otherwise (i.e.N 6= ∅), let m ∈ N/∀n ∈ N, n > m (m
is the first time-stamp such that frequency ofx is lost on
[ks..m]). Then,ke is defined as the last occurrence ofx in
[ks..m] andK(x, P, γ) = {k} ∪K(x, P − [ks..ke], γ)

Example 3 Let us consider the candidate temporal itemset
of size 1c = ((b), [1..10], cσ). Figure 3 gives the boolean
table of occurrences for the itemb. There are two kernels
of (b) over cp (i.e. [1..3] and [6..10]). Those kernels can
be merged (the frequency of the itemset on the resulting pe-

riod is above the minimum threshold) in order to obtain the
resulting solid itemset((b), [1..10], 6

10) .

Let us consider that we are provided with an itemset
x andK the kernels ofx over a periodP with respect to
γ. Based on lemma 1 we show that merging the kernels
with algorithm MERGEKERNELS allows finding the solid
itemsets ofx overP with respect toγ.

Algorithm MERGEKERNELS

In: x an itemset,K a set of kernels forx
andγ a minimum support.

Out: The modifications ofc.kernels, containing the
optimal periods forx with γ

mergeable← true;
While (mergeable)
mergeable← false;

Foreach(q ∈ K)
Foreach(r ∈ K/r 6= q∧ cover(x,q)|+|cover(x,r)|

|q∪r| ≥ γ)
K ← K + q ∪ r;
cover(x, q ∪ r) = cover(x, q) ∪ cover(x, r)
mergeable← true;
toRemove← toRemove+q + r;

endFor
endFor
Foreach(k ∈ toRemove)K ← K − k;
toRemove← ∅

End while
End Algorithm MERGEKERNELS

Lemma 1 LetK be the set of kernels ofx onP with respect
to γ. Algorithm MERGEKERNELS allows finding all the
solid itemsetss = (x, xp, σ) onP with respect toγ.

Proof Let k ∈ K, be a kernel ofx after Algorithm
MERGEKERNELS (i.e. k cannot be merged with any other
kernel inK), then:
1) Support(x, k) > γ. Actually, according to Definition 7,
x is frequent on each kernel. Furthermore ifk is the result
of a merging, then Algorithm MERGEKERNEL checks the
frequency ofx on the resulting period.
2) ∀q/k ⊆ q we have one of the following cases:

• x ∈ k−q, thenx is not frequent onq (otherwise, let us
considerk′ the kernel to which belongs the occurrence
of x in q, thenk andk′ would have been merged).
• x 6∈ k − q, then cover(x, q)=cover(x, k) (in this case,

x may remain frequent onq or not, depending on the
size ofq).

3) According to Definition 7,x is supported by the first and
the last transaction ink. Then,x will have a lower cover on
any sub-period ofk.
Based on the three observations above, letTx =

{(x, k, σ)∀k ∈ K)} be the set of temporal itemsets cor-
responding to all the merged kernels ofx onP with respect
to γ, thenTx is the set of all solid itemsetss = (x, xp, σ)
onP with respect toγ �

4.2 SIM Algorithm

Our algorithm is based on the candidate generating prin-
ciple. Our goal is to start with solid itemsets of size 1 and
explore the support of larger solid itemsets with a limited
number of scans over the database. To this end, we need to
find the periods of frequency for a candidate solid itemset
in only one scan. Letc ∈ Ck be a candidate of sizek in
the set of candidates (Ck). Then, in our data structure,c
is associated toc.i, the itemset,c.p, the period of possible
frequency (i.e. the limits within c has to be compared to a
transaction) andc.kernels, the set of kernels ofc.i overc.p
with respect toγ (one of our goals is to extractc.kernels
for all the candidates inCk during one single scan). Fur-
thermore, a boolean value allows knowing the status of the
current kernel (“kernel_closed” means that definition 7 was
not respected “on-the-fly” during the scan). For each ker-
nel c.kerneli, of a candidatec, we havec.kerneli.s (the
starting time-stamp of the kernel),c.kerneli.e (end of the
kernel), c.kerneli.last (the last occurrence ofc.i in the
current kernel),c.kerneli.freq (the frequency ofc.i over
[c.kerneli.s..c.kerneli.e]) and c.kerneli.cov (the size of
the cover ofc.i over [c.kerneli.s..c.kerneli.e]). Finally,
c.current refers to the current kernel ofc (the last opened
kernel).

Let us consider that we are provided withCk, a set
of candidates. During the scan, the goal of Algorithm
UPDATE is to update the information about the kernels
of a candidate having a period of scan that includes the
time-stamp of the current transaction. At the end of the
scan performed by Algorithm SIM we are provided with all
the kernels for each candidate.

Algorithm UPDATE

In: c, the candidate;d, the transaction;γ, the threshold
Out: update of the kernel(s) ofc
If (c.kernel_closed)

If (c.i ⊆ d) // Start a new kernel
c.current← new_kernel;
c.kernel_closed← False;
c.current.s← d.timestamp;
c.current.e← d.timestamp;
c.current.last← d.timestamp;

End if
Else if (c.i ⊆ d)// Continue the current kernel

c.current.e← d.timestamp;
c.current.last← d.timestamp;
c.current.cov + +;

c.current.freq ← c.current.cov
|[c.current.s..c.current.e]| ;

Else// Check validity of current kernel
// i.e. (c.i 6⊆ d)⇒ must current kernel be closed?

c.current.e← d.timestamp;
c.current.freq ← c.current.cov

|[c.current.s..c.current.e]| ;
If (c.current.freq < γ)

c.current.e← c.current.last
c.kernel_closed← True;

End if
End if
End algorithm UPDATE

Algorithm SIM aims to generate candidates from size
1 to k. At each step, the set of candidates is compared to
the database thanks to Algorithm UPDATE. At the end of
the scan, the kernels obtained for each candidate temporal
itemset are merged in order to obtain the solid itemsets.

Algorithm SIM

In: γ, the minimum threshold;D the database;
I the set of all items

Out: SI the set of solid itemsets corresponding toγ onD
k ← 0;
Foreach(i ∈ I)

// Build one candidate for each item and associate
// this candidate to an empty set of kernels
C1 ← C1 + (i, [Ds..De], ∅)

End for
Do// Successive scans of the database

k + +;
SIk ← ∅;
Foreach(d ∈ D); // scan the database

Foreach(c ∈ Ck/dtime ∈ c.p)
// The timestamp ofd corresponds to the period ofc
UPDATE(c,d,γ);
End for

End for
Foreach(c ∈ Ck)

MERGEKERNELS(ci, c.kernels, γ);
Foreach(p ∈ c.kernels)

SIk ← SIk + (ci, p, frequency(ci, p));
End for
Ck+1 ←GENERATECANDIDATES(SIk)

While (Ck+1 6= ∅) // Candidate solid itemsets generated
And algorithm SIM

The generating principle of SIM is based on the follow-
ing lemma.

Lemma 2 Let γ be the minimum threshold andx be a
solid itemset then∀i ⊂ xi/|i| = |xi − 1|, ∃q/xp ⊆
q ∧ frequency(i, q) ≥ γ.

The proof is straightforward and based on the mono-

tonicity property. Actually,x is a solid itemset andxi is
frequent onxp. Then, any subset ofxi is frequent onxp.

The algorithm does not give details about the particular
case of generating candidates of size 2. This case is similar
to sizen > 2, but the generated candidates come from the
self joinSI1×SI1 filtered by the intersection of the periods
of each considered items (i.e. if two solid itemset of size 1
(a) and(b) do not share a common period, then(a b) is not
generated). The candidate generation of Algorithm GEN-
ERATECANDIDATES is based on the properties of Lemmas
1 and 2

Another special case is not detailed in this algorithm:
solid itemsets having a cover of one transaction. In fact,
any itemset supported by at least one transaction can be
considered as a solid itemset according to definition 5. To
avoid the enumeration of all such itemsets, we add a filter
on the minimum cover that has to be respected for a solid
itemset before it is added toSIk, the set of solid itemsets
of sizek in SIM .

Algorithm GENERATECANDIDATES

In: SIk the set of solid itemsets having lengthk
Out: Ck+1 the set of candidates having lengthk + 1
Ck+1 ← ∅
Foreachx, y ∈ SIk such that:

(xi1 , ..., xik−1
) = (yi1 , ..., yik−1

)
∧yik

> xik
∧ |xp ∩ yp| > 1

//the periods ofx andy have an intersection and
//their prefixes catch the generation criteria

z = (xi1 , ..., xik−1
, yk)

Ck+1 ← Ck+1 + (z, xp ∩ yp, ∅)
End for
End algorithm GENERATECANDIDATES

Theorem 1 At each step of AlgorithmSIM , SIk ⊆ Ck (i.e.
∀s ∈ SIk, ∃c ∈ Ck/sx = ci ∧ sp ⊆ cp).

Proof Based on lemma 2 we know that∀s ∈
SIk, ∃u, v ∈ SIk−1 such that:

1. ux andvx are prefixes of sizek − 1 of s.
2. ux andvx are frequent onup andvp with sp ⊆ up and

sp ⊆ vp.
3. ux is not frequent onvp − up (sinceu is a SI and is

frequent only on its periodup).
4. vx is not frequent onup − vp.

Therefore, if we extended each itemset of the solid itemsets
in SIk−1 with all possible items, and limit their period of
possible frequency at the intersections of the corresponding
(k − 1) solid itemsets, we would be provided with a super-
set of SIk. Clearly, Algorithm GENERATECANDIDATES

builds candidates on this principle and limits their periodof
possible frequency to that intersection.

Finally, based on lemma 1 detecting the kernels ofCk,
the generatedk−candidates on the corresponding intersec-
tion and merging the obtained kernels, leads to the discov-
ery of thek−solid itemsets�

5 Experiments

The goal of this section is to show the points of inter-
est of our approach since the extracted patterns associated
to their periods of frequency are the core of a new kind of
relevant knowledge and they would not be extracted with a
traditional method of itemset extraction. Our dataset comes
from the Web access log of Inria Sophia Antipolis from
March 2004 to June 2007. It represents 253 Go of rough
data. The total number of navigations after the preprocess-
ing is 36,710,616. SIM has been written in C++ on a PC
(2.1Ghz) running Linux with 2Go of main memory.

Let us first mention that a behaviour with a cover of,
say, 15 navigations within one day may be considered as
highly frequent. This is due to the fact the proxies generally
hide most navigations from the Web server (the pages are
stored in caches of the proxy and requests are most of the
time handled by the proxy rather than the server itself).
On the other hand, given the characteristics of our data,
a cover of 15 navigations would represent a threshold of
4.10−5 over three years of records. Our goal is not to
extract “frequent” navigations with a minimum threshold
γ ≈ 0%, because that would be of no interest and would
lead to a unpracticable number of behaviors (and there is
no data mining algorithm able to handle such supports). In
fact, thanks to the characteristics of the solid itemsets, we
are able to extract patterns that have such a low support
while being highly frequent on “regions of interest”. This
allows decreasing the number of patterns and consuming
less CPU. We propose to analyze some of the extracted
solid itemsets on the web log of Inria Sophia from 2004 to
2007.

Joan Miro: our first behavior involves a Web page
created in 2002. This page has been written by Christophe
Berthelot, a member of Omega team at Inria Sophia
Antipolis. Here is the corresponding solid itemset:
start: Thu Apr 20 07:05:39 2006
end:Thu Apr 20 17:21:06 2006
frequency: 0.024565
cover: 120
itemset:
with the prefix “omega/personnel/Christophe.Berthelot/”
{ css/style.css,
Omega/JoanMiro/joanmiro.html }

The interpretation of this behavior is not straightforward.
First, Christophe is not employed by Inria any more and we

have no contact with him. Second, the web page is from
2002. However, a cover of 120 navigations is exceptionally
high (given the amount percentage of requests hidden by
the caches of the proxies) and, according to our investi-
gation on that point, the explanation lies in the following
informations: 1) This Web page is dedicated to Joan Miro,
a famous artist; 2) Joan Miro was born in 1893 April 20;
and 3) Christophe’s page is ranked fifth on Google with the
keywords “Joan Miro” (at the time we write this paper).
Our conclusion is that on April 20, (i.e. Miro’s birthday)
people have searched information on the artist and found
Christophe’s page. This behavior is also discovered in
April 2004, 2005 and 2007.

MC2QMC2004 Conference: our second behavior is
related to an international conference (MC2QMC2004)
organized by Omega (a team at Inria Sophia). Here is the
extracted solid itemset:
start: Mon May 17 09:22:41 2004
end: Mon May 17 12:49:26 2004
frequency: 0.0170512
cover: 19
itemset:
{ omega/MC2QMC2004,
omega/MC2QMC2004/monday.html,
omega/MC2QMC2004/tuesday.html }

This behavior may be interpreted as follows: “during
the period which begins on Monday May 17 at 09:22:41
and ends on Monday May 17 at 12:49:26 (2004) 1,7%
of the users have requested the pages : the index of
MC2QMC2004 and the program of MC2QMC2004 for the
first day (Monday) and the second day (Tuesday).” After
a discussion with the organizers, it appears that a message
was widely sent to the community of this conference
in order to advertise the program and remind people to
register. This was immediately followed by the type of
behavior which corresponds to this exact situation.

MedINRIA: our last behavior is related to a software
that Asclepios develops and makes available for download.
start: Thu Sep 28 01:53:45 2006
end: Thu Sep 28 04:27:25 2006
support: 0.0148305
cover: 12
itemset:
{ asclepios/style.css, asclepios/software/MedINRIA,
asclepios/software/MedINRIA/download,
asclepios/software/MedINRIA/doc }

Once again, this particular behavior is explained by the
corresponding team. In fact, Asclepios has released a new
version of MedINRIA in September 2006 and sent a mes-

sage to the users on September 27 (in the evening). The
resulting behavior is a frequent download of the software
within the night.

6 Conclusion

In this paper, we have proposed a new definition of item-
sets that correspond to a high frequency on a specific period
without specifying a time granularity or a particular period.
The periods of frequency and the corresponding itemsets
have to be discovered by the algorithm based on the only
notion of minimum support. However, discovering these
itemsets is a true challenge since the periods of frequency
and the corresponding itemsets have to be discovered at the
same time. Furthermore the number of possible combina-
tions is impracticable and has to be reduced. We provided
the theoretical foundation of our approach and our algo-
rithm is based on the discovery of ’kernels’ of frequency
and their possible aggregations. Our experiments showed
that SIM is able to extract the solid itemsets from very large
datasets and provide useful and readable results.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associ-
ation rules between sets of items in large databases. InSIG-
MOD, pages 207–216, Washington, D.C., USA, 26–28 1993.

[2] J. M. Ale and G. H. Rossi. An approach to discovering
temporal association rules. InSAC ’00: Proceedings of the
2000 ACM symposium on Applied computing, pages 294–300,
2000.

[3] X. Chen and I. Petrounias. Mining temporal features in as-
sociation rules. InPKDD ’99: Proceedings of the Third Eu-
ropean Conference on Principles of Data Mining and Knowl-
edge Discovery, pages 295–300, 1999.

[4] P. S. Y. Cheong Fung, Jeffrey Xu Yu and H. Lu. Param-
eter free bursty events detection in text streams. InVLDB
’05: Proceedings of the 31st international conference on Very
large data bases, pages 181–192, 2005.

[5] Z. Chong, J. X. Yu, H. Lu, Z. Zhang, and A. Zhou. False-
Negative Frequent Items Mining from Data Streams with
Bursting. InDASFAA’05: Database Systems for Advanced
Applications, pages 422–434, 2005.

[6] Y. Li, P. Ning, X. S. Wang, and S. Jajodia. Discovering
calendar-based temporal association rules.DKE, 44(2), 2003.

[7] S.-K. C. Michail Vlachos, Kun-Lung Wu and P. S. Yu. Fast
Burst Correlation of Financial Data. InKnowledge Discovery
in Databases: PKDD 2005, pages 422–434, 2005.

[8] J. F. Roddick and M. Spiliopoulou. A survey of temporal
knowledge discovery paradigms and methods.IEEE TKDE,
14(4):750–767, 2002.

[9] Y. Zhu and D. Shasha. Efficient elastic burst detection in
data streams. InKDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 336–345, 2003.

