
HAL Id: inria-00414941
https://hal.archives-ouvertes.fr/inria-00414941v2

Submitted on 11 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Discovery Protocol Interoperability in the
Mobile Environment

Yérom-David Bromberg, Valérie Issarny

To cite this version:
Yérom-David Bromberg, Valérie Issarny. Service Discovery Protocol Interoperability in the Mobile
Environment. 4th International Workshop, SEM 2004, Linz, Austria, September 20-21, 2004, Sep
2004, Linz, Austria. pp.64, �10.1007/b107130�. �inria-00414941v2�

https://hal.archives-ouvertes.fr/inria-00414941v2
https://hal.archives-ouvertes.fr

Service Discovery Protocol Interoperability in the
Mobile Environment1

Yérom-David Bromberg, Valérie Issarny

INRIA-Rocquencourt
Domaine de Voluceau, 78153 Le Chesnay, France

{David.Bromberg ,Valerie.Issarny}@inria.fr

Abstract. The emergence of portable computers and wireless technologies has
introduced new challenges for middleware. Mobility brings new requirements
and is becoming a key characteristic. Mobile devices may move around differ-
ent areas and have to interact with different types of networks, services and may
be exposed to new communication paradigms. Thus, mobile distributed systems
need to dynamically detect and adapt their interaction protocols to interoperate
with services available in the environment. As a result, middleware for mobile
devices must overcome two heterogeneity issues to provide interoperability in
the mobile environment, i.e, heterogeneity of discovery protocols and of inter-
action protocols between services. Whereas adaptation techniques from reflec-
tive middleware are suitable for the latter, it is more problematic for the former
if both issues are addressed concurrently. Specifically, reflective mechanisms
consume too many resources like bandwidth, memory and CPU, which are lim-
ited on the mobile devices. This paper first highlights why current solutions to
interoperability fail to realize service discovery protocol interoperability with
both high performance and low resource consumption. Second, this paper ad-
dresses this open issue by using software architecture concepts enhanced with
event-based parsing techniques to provide efficient, lightweight and flexible
mechanisms to bring full service discovery interoperability to any existing mo-
bile platform.

1 Introduction

In the mobile computing domain, middleware holds a predominant role. Communica-
tion relationships amongst application components involve the use of protocols, mak-
ing applications tightly coupled to middleware. Additionally, to overcome wireless
networks constraints, like limited bandwidth, poor network quality of service and ei-
ther voluntary or forced frequent disconnection, several communication models have
arisen. Thus, as it exists many styles of communication and consequently many styles
of middleware, we have to deal with middleware heterogeneity [1]. Significantly, an
application implemented upon a specific middleware cannot interoperate with ser-
vices developed upon another. Similarly, we cannot predict at design time the re-
quirements needed at run-time since the execution environment is not known. How-

1 In Proceedings of the International Workshop Software Engineering and Middleware (SEM).

September 2004.

ever, no matter which underlying communication protocols are present, mobile nodes
must both discover and interact with the services available in their vicinity. More pre-
cisely, service discovery protocols enable mobile nodes to find and use networked
services without any previous knowledge of their specific location. Several Service
Discovery Protocols (SDP), like Jini [4], SLP [2], UPnP [5] and Salutation [15], are
now available. And, with the advent of both mobility and wireless networking, SDPs
are taking on a major role, and are the source of a major heterogeneity issue across
middleware. Furthermore, once services are discovered, applications need to use the
same interaction protocol to allow unanticipated connections and interactions with
them. Consequently, a second heterogeneity issue appears among middleware. Sum-
marizing, middleware for mobile devices must overcome two heterogeneity issues to
provide interoperability in the mobile environment, i.e.:

• Heterogeneity of service discovery protocols, and
• Heterogeneity of interaction protocols between services.

In addition, both SDPs and interaction protocols are not protected from evolution
across time. Indeed, an application may neither interact correctly nor be compatible
with services if they use different versions of the same protocol [12]. Interoperability
is also difficult between devices made by different manufacturers as they can imple-
ment differently a standardized protocol. Protocol evolution increases communication
failure probability between two mobile devices.

As outlined above, interoperability among entities of a spontaneous ad hoc net-
work, which is formed by the random arrival of mobile devices for short periods of
time, is becoming a real issue to overcome. A portable computer must be aware of its
dynamic environment that evolves over time, and further adapt its communication
paradigms according to the environment. Thus, mobile distributed systems must pro-
vide efficient mechanisms to detect and interpret protocols currently used, which are
not known in advance. Furthermore, detection and interpretation must be achieved
without increasing consumption of resources that are limited on the mobile devices.
This paper introduces base mechanisms for achieving interoperability among hetero-
geneous SDPs, which consider the above mobility requirements. We reuse concepts
from software architecture enriched with event-based parsing techniques to drastically
improve SDP interoperability, enabling mobile applications to be efficiently aware of
their environment. The originality of our approach comes from the trade offs achieved
among efficiency, interoperability and flexibility. Our solution may further be applied
to any existing middleware platform.

In the following, we first examine how reflective middleware manages interopera-
bility among heterogeneous SDPs, highlighting the current drawbacks that need to be
addressed to provide efficient SDP interoperability (§2). This leads us to investigate a
solution grounded in the software architecture domain to overcome the limitation of
reflective middleware (§3). Then, we present the design of our proposal to bring both
efficient and flexible SDP interoperability (§4). Finally, we conclude by a summary
of our contribution (§5).

2 Reflective Middleware to Cope with Middleware Heterogeneity

New techniques must be used to both offer lightweight mobile systems and support
their adaptation according to the dynamics of the mobile environment. Classic mid-

dleware are not the most suitable for the mobile domain. Their design is based on
fixed network and resources abundance. Moreover, network topologies and band-
width are fixed over time. Hence, quality of service is predictable. Furthermore, with
fixed network in mind, the common communication paradigm is synchronous and
connections are permanent. However, many new middleware solutions, designed to
cope with mobility aspects, have been introduced, as surveyed in [6]. From this pool
of existing middleware, more or less adapted to the constraints of the mobile envi-
ronment, reflective middleware seem to be flexible enough to fulfill mobility re-
quirements, including providing interoperability among networked services.

A reflective system enables applications to reason and perform changes on their
own behavior. Specifically, reflection provides both inspection and adaptation of sys-
tems at run-time. The former enables browsing the internal structure of the system,
whereas the latter provides means to dynamically alter the system by changing the
current state or by adding new features. Thus, the middleware embeds a minimal set
of functionalities and is more adaptive to its environment by adding new behaviors
when needed. This concept, applied to both service discovery and interaction proto-
cols, allows accommodating mobility constraints. This is illustrated by the ReMMoC
middleware [1], which is, at this time, the only one to overcome simultaneously SDPs
and interaction protocols heterogeneity. The ReMMoC platform is composed of two
component frameworks [1, 16]: (i) the binding framework that is dedicated to the
management of different interaction paradigms, and (ii) the service discovery frame-
work that is specialized in the discovery of the SDPs currently used in the local envi-
ronment. The binding framework integrates as many components as interaction proto-
cols supported by the platform. The binding framework can dynamically plug on
demand, one at time or simultaneously, different components corresponding to the
different interaction paradigms (e.g., publish/subscribe, RPC...). Correspondingly, the
service discovery framework is composed of as many components as of SDPs recog-
nized. For example, SLP and UPnP can be either plugged together or separately, de-
pending of the context. Obviously, such plug in of components applies only to com-
ponents that are specifically developed for the ReMMoC platform. It is further
important to note that the client application is specific to the ReMMoC API but is in-
dependent from any protocol, the interested reader being referred to [13] for further
details on the mapping of an API call to the current binding framework.

Although ReMMoC enables mobile devices to use simultaneously different SDPs
and interaction protocols, this still requires the environment to be monitored to allow
ReMMoC to detect over time the SDPs and interaction protocols that need be sup-
ported/integrated, due to the very dynamic nature of the mobile environment. Such a
knowledge about the environment may be made available from a higher level, which
would provide the environment profile updated by context-based mechanisms that are
passed down to the system [1,3]. But, this increases the weight and the complexity of
the overall mobile system. Alternatively, the system can either periodically check or
continuously monitor the environment. However, a successful lookup depends on the
pluggable discovery components that are embedded. The more there are components,
better is the detection. But, the size of the middleware and the resources needed grow
with the amount of embedded components. That is particularly not recommended for
mobile devices. Furthermore, as long as the current SDP has not been found, the mid-
dleware has to reconfigure itself repeatedly with the available embedded components
to perform a new environmental lookup until it finds the appropriate protocol. As a
consequence, this leads both to an intensive use of the bandwidth already limited due

to the wireless context, and to a higher computational load. To save these scarce re-
sources, a plug-in component, called discoverdiscovery, dedicated to SDP detection
operations, has been added to the ReMMoC service discovery framework. In an ini-
tialization step, mini-test-plug-ins, implemented for each available SDP, are con-
nected to discoverdiscovery to perform a test by both sending out a request and listen-
ing for responses. Once the detection is achieved, a configuration step begins by
loading the corresponding complete SDP plug-ins.

The above Mini-test-plug-ins are lightweight and so consume fewer resources.
Nevertheless, they increase the number of embedded plug-ins, do not decrease the use
of the bandwidth and finally have to be specifically implemented. Last but not least,
rather than embedding as many components as possible to provide the most interoper-
able middleware, it seems to be more efficient to design an optimized lightweight
middleware, which enables loading from the ambient network new components on
demand to supplement the already embedded ones [1,14]. But, still, it is necessary to
discover, at least once, the appropriate protocols to interact with a service providing
such a capability. This is rather unlikely to happen since we do not know the execu-
tion context (i.e., all potential available resources and services at a given time).

Summarizing, solutions to interoperability based on reflective techniques do not
bring simultaneously interoperability and high performance. The SDP interoperability
issue needs to be revisited to improve efficiency of SDP detection, interpretation and
evolution. Furthermore, the ReMMoC reflective middleware does not provide a clean
separation between components and protocols. In fact, pluggable components are tied
to their respective protocols. For example, to maintain interoperability between sev-
eral versions of the same SDP, a pluggable component is needed for each version. We
need a fine-grained control over protocols. Our approach is thus to decouple compo-
nents from protocols with the use of concepts inherited from software architecture en-
hanced with event-based parsing techniques.

3 Software Architecture to Decouple Components from Protocols

Software architecture concepts, like components and connectors to decouple applica-
tions from underlying protocols, offer an elegant means for modeling and reasoning
about mobile systems [17]. Components abstract computational elements and bind
with connectors that abstract interaction protocols, through interfaces, called ports,
which correspond to communication gateways [10]. Similarly, connectors bind with
components through connector interfaces named roles (see Figure 1).

Component
A

Connector role

Component port Interaction is possible only if component
port and connector role match.

The interaction between both entities is
specified with the connector’s glue proc-
ess.

Connector
Role + glue

Fig. 1. Components decoupled from protocols

Regarding the issue of achieving protocol interoperability, this may be addressed

through reasoning about the compatibility of port and role. This may be realized us-
ing, e.g., the Wright Architecture description language [11]. Wright defines CSP-like
processes to model port and role behaviors. Then, compatibility between bound port
and role is checked against, according to the CSP refinement relationship. However,
the Wright approach does not bring enough flexibility with respect to dealing with the
adaptation of port and role behavior so as to make them match when they share an
identical aim, as, e.g., in the case of service discovery.

Fig. 2. Event based parsing system for achieving protocol interoperability

To overcome the aforementioned limitation, [12] reuses the architectural concepts
of component, connector, port and role. However, port and role behaviors are mod-
eled by handlers of unordered event streams rather than by abstract roles processes.
The challenge is then to transform protocol messages into events, and interpret them
according to a protocol specification. To achieve this, an event-based parsing system,
composed of generator, composer, unit, parser and proxy, is used (see Figure 2). A
protocol specification feeds a generator that generates a dedicated parser and com-
poser. The former takes, as input, protocol messages that are decomposed as tokens
and outputs the corresponding events. The latter does the invert process; it takes series
of events and transforms them into protocol messages. Parser and composer form a
unit, which is specific to one protocol. Generators are able to generate on the fly new
units, as needed, for different specifications. As a result, whatever is the underlying
protocol, messages from a component are always transformed into events through the

Event Based
Parsing system

Unit

Parser

Composer

Generator

Creates

 Protocol
Message

Protocol
Message

Inputs to

Inputs to

Outputs

Outputs

Protocol specification

Specifies Specifies

Inputs to

Protocol
Events

 Protocol
Events

adequate parser and conversely, events sent towards a component are always trans-
formed into protocol messages understood by this component through its adequate
composer. Furthermore, events are sent from one component to another through a
proxy whose role is to forward handled events to the composer of the remote compo-
nent (see Figure 3). The latter can either discard some events if they are unknown or
force the generator to produce a new unit more suitable to parsed events. Thus, any
connector gets represented as a universal event communication bus, which is able to
transport any event, independently of any protocol, as the protocol reconstruction
process is let to each extremity. Thereby, event streams are hidden from components
and so protocol interoperability is maintained.

Summarizing, event-based parsing is interesting in theory for its flexibility, and
opens new perspectives to overcome protocols heterogeneity. However, it is still con-
fined to theory: it has been applied only to protocol evolution issue, as it is simpler to
test protocol interoperability between two similar protocols that differ with only small
changes. Therefore, [12] addresses heterogeneity issues neither for SDPs nor for in-
teraction protocols but brings interesting concepts. In the next section, we show how
event-based parsing applied to software architecture enables efficient SDP detection
and interoperability in the mobile environment.

Fig. 3. Interaction between two components

4 Event-based Parsing for Discovery Protocol Interoperability

With the emergence of mobility and wireless technologies, SDP heterogeneity be-
comes a major issue. ReMMoC is currently the only middleware to provide a first ap-
proach to resolve this issue through the use of the pluggable component philosophy.
However, as stated earlier, this solution incurs high resource consumption (i.e., band-
width, memory and CPU). Our objective is to provide a much more powerful solu-
tion, dedicated to the ad hoc network context, which both induces low resource con-
sumption and introduces a lightweight mechanism that may be adapted easily to any
platform. To achieve this challenge, we reuse the component and connector abstrac-

Proxy

Event
Handler

Component
A

Event-Based
Parsing system

Unit

Parser

Composer

Generator

Event-Based
Parsing system

Unit

Parser

Composer

Generator

Creates
Component

B

Creates

tions, and event-based parsing techniques from software architecture. Moreover, as
our aim is to provide interoperability to the greatest number of portable devices, we
base our technology on IP. The following first briefly introduces conceptual similari-
ties among SDPs (§4.1), and then details our solution, addressing SDP detection
(§4.2) and interoperability (§4.3).

4.1 Conceptual similarities among SDPs

The majority of SDPs support the concepts of client, service and repository. In order
to find needed services, clients may perform two types of request: unicast or multi-
cast. The former implies the use of a repository, equivalent to a centralized lookup
service, which aggregates services information from services advertisements. The lat-
ter is used when either the repository's location is not known or there does not exist
any repository in the environment. Similarly, services may announce themselves with
either unicast or multicast advertisement depending on whether a repository is present
or not. From the aforementioned approaches, two SDP models are identified, irrespec-
tively of the repository's existence:

1. The passive discovery model, and
2. The active discovery model

When a repository exists in an environment, the main challenge for clients and ser-
vices is to discover the location of the repository, which acts as a mandatory interme-
diary between clients and services [2]. In this context, using the passive discovery
model, clients and services are passively listening on a multicast group address spe-
cific to the SDP used and are waiting for a repository multicast advertisements. On
the contrary, with an active discovery model, clients and services send multicast re-
quests to discover a repository that sends back a unicast response to the requester to
indicate its presence. In a “repository-less” context, a passive discovery model means
that the client is listening on a multicast group address that is specific to the SDP used
to discover services. Obviously, the latter periodically send out multicast announce-
ment of their existence to the same multicast group address. In contrast, with a reposi-
tory-less active discovery model, the roles are exchanged. Thereby, clients perform
periodically multicast requests to discover needed services and the latter are listening
to these requests. Furthermore, services reply unicast responses directly to the re-
quester only if they match the requested service. To summarize, most SDPs support
both passive and active discovery with either optional or mandatory centralization
points.

Note that although service repositories reduce both bandwidth consumption and
time for service location, they are not adequate to the dynamic nature of the mobile
domain. All the entities from an ad hoc network form spontaneously a purely peer-to-
peer architecture, which does not rely on any centralization point. Thus, SDPs, like
Jini [4], exclusively based on a lookup server, break the peer-to-peer model and
hence, conceptually, it is not advised to use it. However, we introduce a solution to
SDP interoperability that supports almost all types of SDPs. The only exception is for
the Jini SDP that is tied to the Java language and hence makes it harder to achieve in-
teroperability because it requires that all mobile devices embed a Java virtual ma-
chine. In addition, properties of other SDPs must be Java byte-code encoded to allow
interoperability with Jini clients. Addressing such an issue is part of our future work
so as to fully support SDPs interoperability.

The two next sections detail our solution to SDPs interoperability, which is com-
patible with both the passive and active discovery models. However, when the SDP
provides both models, the passive discovery model should be preferred over the active
discovery model. Indeed, with the latter, the requester's neighbors do not improve
their environment knowledge from the requester’s lookup because services, that the
requester wishes to locate, send only unicast replies directly to the requester. So, the
services’ existence is not shared by all the entities of the peer-to-peer network. Thus,
it is unfortunate to not take benefit from the bandwidth consumption caused by the
clients’ multicast lookups. In this context, services’ multicast announcements provide
a more considerable added value for the multicast group members. Secondly, in a
highly dynamic network, mobile devices are expected to be part of the network for
short periods of time. Thus, services’ repetitive multicast announcements provide a
more accurate view of their availability. Therefore, the passive discovery model saves
more the scarce bandwidth resources than the active discovery model.

4.2 SDP detection

Basically, all SDPs use a multicast group address and a UDP/TCP port that must and
have been assigned by the Internet Assigned Numbers Authority (IANA). Thus, as-
signed ports and multicast group addresses are reserved, without any ambiguity, to
only one type of use. Typically, SDPs are detected through the use of their respective
address and port. These two properties form unique pairs. The latter may be inter-
preted as a permanent SDP identification tag. Furthermore, it is important to notice
that an entity may subscribe to several multicast groups and so may be simultaneously
a member of different types of multicast groups. These only two characteristics are
sufficient to provide simple but efficient environmental SDP detection. Due to the
very dynamic nature of the ad hoc network, the environment is continuously moni-
tored to detect changes as fast as possible. Moreover, we do not need to generate addi-
tional traffic. We discover passively the environment by listening to the well-known
SDP multicast groups. In fact, we learn the SDPs that are currently used from both
services’ multicast announcements and clients’ multicast service requests. As a result,
the specific protocol of either the passive or active service discovery may be deter-
mined. To achieve this feature, a component, called monitor component, embeds two
major behaviors (see Figure 4):

1. The ability to subscribe to several SDP multicast groups, irrespectively of
their technologies; and

2. The ability to listen to all their respective ports.

Monitored Environment
Passively scanned

Monitor
Component

Multicast group

Multicast group

Service
Multicast Advertisements

Client
Multicast Requests

SDP1

SDP2

• SDP 1 detected
• SDP 2 detected

The monitor component pas-
sively scans the environment
on the SDP-IANA-registered
UDP/TCP ports.

UDP/TCP ports

1

2

Fig. 4. Detection of active and passive SDPs through the monitor component.

Figure 4 depicts the mechanism used to detect active and passive SDPs in a reposi-
tory-less context. The monitor component, located at either the client side or service
side, joins both the SDP1 and SDP2 multicast groups and listens to the corresponding
registered UDP/TCP ports. SDP1 and SDP2 are identified by their respective identifi-
cation tag. However, SDP1 is based on an active discovery model. Hence, clients per-
form multicast requests to the SDP1 multicast group to discover services in their vi-
cinity. The monitor component, as a member of the SDP1 multicast group, receives
client requests and thus is able to detect the existence of SDP1 in the environment as
data arrival on the SDP1-dedicated UDP/TCP port identifies the discovery protocol.
Still, in Figure 4, SDP2 is based on a passive discovery model. So, services advertise
themselves to the SDP2 multicast group to announce their existence to their vicinity.
Once again, similarly to SDP1, as soon as data arrives at the SDP2-dedicated
UDP/TCP port, the monitor component detects the SDP2 protocol. The monitor com-
ponent is able to determine the current SDP(s) that is(are) used in the environment
upon the arrival of the data at the monitored ports without doing any computation,
data interpretation nor data transformation. It does not matter what SDP model is used
(i.e., active or passive) as the detection is not based on the data content but on the data
existence at the specified UDP/TCP ports inside the corresponding groups.

This component is easy to implement, as both subscription and listening are solely
IP features. Hence, all the mobile middleware based on IP support the monitor com-
ponent. Obviously, the latter maintains a simple static correspondence table between
the IANA-registered permanent ports and their associated SDP. Hence, the SDP de-
tection only depends on which port raw data arrived. Therefore, the SDP detection
cost is reduced to a minimum.

Our monitor component can be either integrated into the ReMMoC middleware or
considered as one primary element from a larger software architecture that we de-
scribe in the next section. The current ReMMoC discoverdiscovery plug-in may in
particular be replaced by our monitor component, which avoids both implementing
mini-test-plug-in for each available SDP and their loading just to perform SDP detec-
tion. In this way, we save both scarce bandwidth consumption and computation re-
sources. However, once the detection is achieved, further processing is left to the ap-
propriate SDP plug-in. The ReMMoC SDP configuration step then stays unaltered.

4.3 SDP interoperability

From a software architecture viewpoint, SDP detection is just a first step towards SDP
interoperability and represents a primary component. The main issue is still unre-
solved: the incoming raw data flow, which comes to the monitor component, needs to
be correctly interpreted to deliver the services descriptions to the application compo-
nents. To support such functionality, we reuse event-based parsing concepts (see Fig-
ure 5). As a result, upon the arrival of raw data at monitored ports (step 1), the moni-
tor component detects the SDP that is used, and sends a corresponding event to the
generator (step 2), that instantiates the appropriate parser (step 3) to successfully

transform the raw data flow into a series of events (step 4). The parser extract seman-
tic concepts as events from syntactic details of the SDP detected. Then, the generated
events are delivered to a proxy (step 5). In its turn, the proxy forwards handled events
to the local components’ composers (step 6). Contrary to [12], parser and composer
are not coupled by type. As events bring the necessary abstraction from the SDP syn-
tactic details, events from a parser specific to one SDP are understood by a composer
dedicated to another SDP.

Fig. 5. SDP detection & interoperability mechanisms

The communication between the parser and the composer does not depend on any
syntactic detail of any protocol. They communicate at a semantic level through the
use of events. In fact, a fixed set of common events has been defined for all SDPs.
The set of common events is itself an event subset of a larger event set dedicated to
each SDP. For example, a subset of events generated by a UPnP parser is successfully
understood by an SLP composer whereas specific UPnP events, due to UPnP func-
tionalities that SLP does not provide, are simply discarded from the SLP composer, as
they are unknown. Event streams are totally hidden from components as they are re-
constructed through composers (see Figure 5, step7). Monitor component and local
application components are therefore virtually connected through a connector, which
acts as a universal event communication bus. Consequently, interoperability is guar-
anteed to existing applications tied to a specific SDP without being altered. Similarly,
future applications do not need to be developed with a specific middleware API to get
the SDP interoperability property. Furthermore, application components continue to
use their own native service discovery protocol without using the virtual connector,
which is unidirectional. Hence, there is no return path and the generator needs to in-
stantiate neither a dedicated parser nor a dedicated composer to translate replies from
the native SDP to the discovered SDP. This makes drastic computation resources
economies. Moreover, it is important to note that our SDP interoperability may be ap-
plied to both service provider and client application. On the former side, requests,
which are generated by clients using protocols other than the service provider’s native
SDP, are automatically detected thanks to the monitor component and transparently

Monitor
Component

Generator

SDP detection

1900

1848

Monitored
Environment Virtual connector

Unidirectional Event communication bus

SDP interoperability

Parser Proxy Composer Application
Component

1

2

3

4 5 6 7

239.255.255.250:1900 : UPnP
239.255.255.253:1848 : SLP
………………………………

Correspondence table

translated through the virtual connector into new semantically equivalent requests but
understood by the service provider. Then, the latter replies, according to its native
protocol, to the client. The virtual connector acts like a “SDP translator”. However,
this conversion process is without losses as it is based on the greatest common de-
nominator of the different SDP functionalities. For example, SLP does not manage
UPnP eventing mechanism [5] and consequently related messages are simply dis-
carded but this is not a loss as SLP does not support it anyway.
On the client side, the same mechanism occurs : received messages, generated by ser-
vices using a different discovery protocol from the one used by the client are trans-
lated to new messages semantically equivalent but syntaxically different according to
the client’s native SDP.

5 Conclusion

Service discovery protocol heterogeneity is a key challenge in the mobile computing
domain. If services are advertised with SDPs different than those supported by mobile
clients, mobile clients are unable to discover their environment and are consequently
isolated. Due to the highly dynamic nature of the mobile network, available net-
worked resources changed very often. Therefore, this requires a very efficient mecha-
nism to monitor the mobile environment without generating additional resource con-
sumption. In this context, inspection and adaptation functionalities offered by
reflective middleware are not adequate to support service discovery protocol interop-
erability, as they induce too high resource consumption. This paper has addressed this
challenge, providing an efficient solution to achieving interoperability among hetero-
geneous service discovery protocols. Our solution is specifically designed for highly
dynamic ad hoc networks, which requires both minimizing resource consumption, and
introducing lightweight mechanisms that may be adapted easily to any platform. An
implementation will soon be released to validate both its design and efficiency.

Once services are discovered, applications further need to use the same interaction
protocol to allow unanticipated connections and interactions with them. In this con-
text, the ReMMoC reflective middleware introduces a quite efficient solution to inter-
action protocol interoperability. The plug-in architecture associated with reflection
features allows mobile devices to adapt dynamically their interaction protocols (i.e.,
publish/subscribe, RPC etc.). Furthermore, [7] proposes to use ReMMoC together
with WSDL [8] for providing an abstract definition of the remote component’s func-
tionalities. Client applications may then be developed against this abstract interface
without worrying about service implementation’s details. However, the solution dis-
cussed in [7] suffers from a major constraint: service and client must agree on a
unique WSDL description. But, once again, in a dynamic mobile network, the client
does not know the execution context. Therefore, it is not guaranteed to find exactly
the expected service. Client applications have to find the most appropriate service in-
stance that matches the abstract requested service. In addition, this leads to the dy-
namic composition of services, which must account for mobility constraints and in
particular related resource limitation. This issue is addressed by the WSAMI middle-
ware [9], which introduces enhanced WSDL specification for mobile services and a
dedicated middleware to allow a service instance to be automatically selected and
composed upon a user request, according to the services that may be retrieved in the

environment. However, if WSAMI provides interoperability to Web services in the
mobile environment, it is still a SOAP based middleware, and hence does not deal
with interoperability among components using heterogeneous interaction protocols.
We are currently investigating solutions to this issue so as to complement our solution
to SDP interoperability and thus support middleware interoperability, as required by
today’s mobile environment.

Acknowledgements

This work has received the support at the European Commission through the IST pro-
gram, as part of the UBISEC project (http://www.ubisec.org). The authors would like
to thank Paul Grace for providing us with detail about ReMMoc. They are further
grateful to anonymous reviewers for useful comments.

References

1. P. Grace, G. Blair and S. Samuel. Middleware awareness in mobile computing. In Proceed-
ings of the 1st international ICDCS Workshop on Mobile Computing Middleware, May
2003.

2. C. Bettstetter and C. Renner. A comparison of service discovery protocols and implementa-
tion of the service location protocol. In proceedings of the 6th EUNICE Open European
Summer School: Innovative Internet Applications, 2000.

3. L. Capra, G. Blair, C. Mascolo, W. Emmerich, P. Grace. Exploiting reflection in mobile
computing middleware. In ACM Mobile Computing and Communications Review. May
2002.

4. Sun. Technical White Paper: Jini Architectural Overview. 1999.
5. Universal Plug and Play Forum. Universal Plug And Play Device Architecture. 2000.
6. C. Mascolo, L. Capra, W. Emmerich. Middleware for mobile computing (A survey). In Ad-

vanced Lectures in Networking. Editors E. Gregori, G. Anastasi, S. Basagni. Springer.
LNCS 2497. 2002.

7. P. Grace, G. Blair and S. Samuel. A marriage of Web services and reflective middleware to
solve the problem of mobile client interoperability. In Proceedings of Workshop on Mid-
dleware Interoperability of Enterprise Applications. September 2003.

8. W3C.”Web Services Description Language (WSDL)”, W3C Working Draft. 2003
9. V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, and A. Taloma.

Developing ambient intelligence systems: A solution based on Web services. Journal of
Automated Software Engineering, 2004. To appear.

10. D. Garlan. Formal modeling and analysis of software architecture: Components, connec-
tors, and events. In Third International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems. September 2003.

11. R. Allen, D.Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engeneering and Methodology, July 1997.

12. N. Ryan and A. Wolf. Using event-based parsing to support dynamic protocol evolution. In
Proceedings of the 26th International Conference on Software Engineering (ICSE'04).2004

13. G. Coulson, G. Blair, M. Clarke and N. Parlavantzas. The design of a configurable and re-
configurable middleware platform. In Distributed Computing. April 2002.

14. X. Fu, W. Shi, A. Akkerman, and V. Karamceti. CANS: composable, adaptive network
services infrastructure. In Proceedings of the USENIX Symposium on Internet Tecnologies
and Systems (USITS), 2001.

15. Salutation Consortium. White paper: Salutation Architecture. 1998.
16. C. Szyperski “Component Software: Beyond Object-Oriented Programming”. Addison

Wesley, 1998.
17. V. Issarny, F. Tartanoglu, J. Liu, F. Sailhan. Software Architecture for mobile distributed

computing. In Proceedings of the 4th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), Oslo, June 2004.

