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Real-Time Trajectory Generation for
Car-like Vehicles Navigating Dynamic Environments

Vivien Delsart, Thierry Fraichard and Luis Martinez

Abstract— This paper presentsTiji, a trajectory generation
scheme, ie an algorithm that computes a feasible trajectory
between a start and a goal state, for a given robotic system.
Tiji is geared towards complex dynamic systems subject
to differential constraints, such as wheeled vehicles, and its
efficiency warrants it can be used in real-time. Above all,Tiji
is able to compute a trajectory that reaches the goal state at a
prescribed final time in order to avoid collision with the moving
objects of the environment. The method proposed, which relies
upon a parametric trajectory representation, is variational in
nature. The trajectory parameters are incrementally updated
in order to optimize of a cost function involving the distance
between the end of the trajectory computed and the (goal state,
final time) pair. Should the goal state be unreachable (if the
final time is ill-chosen), the method returns a trajectory that
ends as close as possible to the (goal state, final time) pair,
which can be useful in certain applications.

Index Terms— Trajectory generation; Differential con-
straints; Dynamic environments.

I. I NTRODUCTION

A. Background and Motivations

Trajectory generation for a given robotic system is the
problem of determining a feasible trajectory (that respects
the system’s dynamics) between an initial and a final state.
So far, all existing trajectory generation approaches have
been concerned with optimizing a feasible trajectory to
the goal state (see§II). In some cases, the path length
would be optimized, or the energy, or the travel time. It is
interesting to note that, in no circumstances, people have
tried to compute a trajectory reaching the goal state at a
specific time instant. Yet, when a robotic system is placed
in a dynamic environment,ie featuring moving objects,
it becomes important not only to compute the trajectory
reaching a goal state but also to reach this goal state at
a certain time in order to avoid collision with the moving
objects of the environment. This constraint, henceforth called
final time constraint, seems novel in the trajectory generation
field. Although, it is intrinsic to all navigation problems in
dynamic environments.

When dealing with dynamic environments, another con-
straint immediately arises: thedecision time constraint: dy-
namic environments impose a strict upper bound on the time
available to compute a trajectory (the robotic system can be
in danger solely by remaining passive). The decision time
constraint is determined by the nature of the moving objects,
the faster they go, the harsher the decision time is with a
shorter time to compute a trajectory.
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While the trajectory generation problem has been well
studied in the literature, it remains complex to solve espe-
cially for systems subject to differential constraints (such as
nonholonomic wheeled vehicles). The final time constraint
further increases the complexity of the trajectory generation
problem since time now becomes an additional dimension
to the problem. Local controllability properties might tell us
whether a given robotic system can or cannot reach a given
state. They do not tell us however whether it can do so at a
specified time. To answer this question (decidability issue),
one has to consider the set of reachable states embedded
in the state×time space of the system. For realistic sys-
tems, such analysis is too complex for real-time applications
(cf [1], [2]).

B. Contributions

This paper presents a trajectory generation scheme called
Tiji which integrates the final time constraint.Tiji is
geared towards complex dynamic systems subject to differ-
ential constraints, such as car-like vehicles, and its efficiency
warrants it can be used in real-time (thus meeting the
decision time constraint). The approach is similar in spirit
to that of [3] or [4] (cf Section II): a parametric trajectory
representation is assumed in order to reduce the search
space. An initial set of parameters is selected yielding a
trajectory that does not necessarily reach the goal state. The
parameter space is then searched and efficient numerical
optimization is used to optimize a cost function involving
the distance between the end of the trajectory computed
and the (goal state, final time) pair. Should the goal state
be unreachable (if the final time is ill-chosen), the method
returns a trajectory that ends as close as possible to the
(goal state, final time) pair, which can be useful in certain
applications.Tiji differs from previous works first because
it takes into account the final time constraint and also because
the control definition chosen is such that it ensures that all
trajectory constraints are met.

C. Outline of the Paper

Works related to the problem at hand are reviewed in
Section II. The approach proposed is outlined in Section III.
The case of a car-like vehicle is addressed in Section IV and
simulation results are given in Section V. Conclusions are
finally presented in Section VI.

II. RELATED WORK

Many trajectory generation methods exist but they can
roughly be classified into four categories. The first one is



the primitive combinationcategory. The trajectories com-
puted are geometric paths built with the concatenation of
fixed geometric primitives. A popular one was proposed by
Dubins [5]. It computes shortest paths for simplified car-like
vehicles moving forward only, the paths comprise straight
segments and circular arcs. Later Reeds and Shepp [6]
addressed the case of a car moving forward and backward.
More complex geometric primitives, like clothoids, have
been also later considered [7], [8]. All these approaches com-
pute geometric paths only. Path-velocity decomposition [9]
could be used to equip the path with a velocity profile and
thus attempting to solve the problem considered herein,ie
meeting the final time constraint, but the nominal geometric
path drastically reduces the solution space.

The second category of works attempts to solve a standard
two-point boundary value problem. To simplify the problem
at hand, the curve that will be used to connect the start and
goal state is restricted to a specific type of curve,eg B-
splines [10], quintic polynomials [11], or cubic spirals [12].
The main drawback with these approaches lies in the diffi-
culty to obtain a curve satisfying internal constraints (such
as an upper bound on the curvature).

The third category of works are variational approaches. An
initial trajectory connecting the start and goal state (usually
not feasible) is iteratively modified until it satisfies all the
constraints of the robotic system considered. Such methods
assume a parametric trajectory representation. The parameter
space is searched and efficient numerical optimization is used
to optimize a cost function defined over the trajectory,eg[13]
where an initial linear spline is iteratively deformed.

The fourth and final category of works is similar to the
previous one except for the fact that the initial trajectory
is now feasible but does not connect the goal state. The
initial trajectory is deformed through parameter optimization
until the goal state is reached. For instance, Gallina [3] uses
sums of harmonics to represent a trajectory and tries to reach
the goal state by modifying the harmonics parameters, while
Kelly et al. deals with simpler but faster polynomial spirals
and triangular profiles [14].

Both the third and fourth categories achieve a high degree
of generality and efficiency. However, sensitivity to the
choice of the initial trajectory and convergence can be an
issue in some cases.

III. OVERVIEW OF THE APPROACH

A. Notations and Definitions

Let A denote a robotic system operating in a workspace
W (IR2or IR3). The dynamics ofA is described by:

ṡ = f(s, ũ) (1)

wheres ∈ S is the state ofA, ṡ its time derivative andu ∈ U

a control.S and U respectively denote the the state space
and the control space ofA. Let ũ : [0, tf [−→ U denote a
control trajectory,ie a time-sequence of controls. Starting
from an initial states0 (at time 0) and under the action of a
control trajectoryũ, the state ofA at time t is denoted by
ũ(s0, t). A couple(s0, ũ) defines a state trajectory forA, ie

a curve inS × T whereT denotes the time dimension.A
is subject to a set of constraints over its control and state
parameters:

h(s, ũ) ≤ 0 (2)

B. Trajectory Generation by Constraints Optimization

Given two statess0 andsg, trajectory generation consists
in finding the control trajectorỹu to apply from states0 in
order to reach the goal statesg. A parametric representation
of the control trajectory is assumed, in other words:

ũ = ũ(p) (3)

where p = (p1, . . . , pk) is a vector of parameters. This
parametrization reduces the search space to the set of trajec-
tories defined by the parameter space considered. Although
it is only a subset of all feasible trajectories, an appropri-
ate parametrization usually suffices. Such a parametrization
allows to express the dynamics as follows:

ṡ = f(s(p), ũ(p)) = f(p) (4)

Trajectory generation by constraints optimization turns
the initial problem, optimal control, to one of constraint
optimization (also known as nonlinear programming): Let
us consider a cost functionJ(s0, ũ) and the set of inequality
constraintsh of A, constraint optimization is expressed as:

minimize : J(s0, ũ)
subject to : h(s, ũ) ≤ 0

(5)

Given an initial states0, constraint optimization for tra-
jectory generation consists in updating the current set of
parametersp in order to reduce the cost functionJ. J is set
as the distance from the goal statesg (the state we want to
reach) to the final statesf = ũ(s0, tf ), ie the state reached by
A from s0 when applying the parametrized control trajectory
ũ). The update ofp must also guarantee that the resulting
control trajectory remains feasible,ie satisfies (2).

C. Trajectory Generation Algorithm

Algorithm 1 : Tiji
Input : s0, sg, tg
Output : p, success flag

i = 0;1

p = InitialGuess(s0, sg, tg);2

repeat3

Computeũbdd andsf ;4

ComputeJ;5

Computecorp and Updatep;6

i = i + 1;7

until J ≤ ε or i = imax ;8

return (p, sf = sg?);9

Algorithm 1 describes our adaptation of a standard opti-
mization algorithm to trajectory generation. This algorithm
cycles until convergence or failure. A cycle has three main
stages: (i) computation of an admissible controlũbdd and



the resulting statesf reached from the set of parametersp,
(ii) computation of the cost functionJ (weighed distance
between sf and sg), and finally (iii) computation of a
correctioncorp to apply to the current set of parameters in
order to reduceJ. Note thattf , the duration of the control
trajectory, is set totg in order to take into account thefinal
time constraintdescribed earlier. The algorithm ends when
J is small enough or after a fixed number of iterations (in
case of convergence towards a local minima).

In order to ensure that the trajectory computed is feasible,
a novel method is used: it consists in truncating the para-
metric profiles of the control whenever necessary so that (2)
is satisfied. The following sections describe the three main
steps of Algorithm 1 and detail the truncating process.

D. Cost Function

The error between the reached statesf and the goal state
sg is:

∆s = sg − sf (6)

and the distanceJ is the following scalar function:

J
2 =

p
∑

j=1

λj(∆sj)
2 (7)

where∆sj is the j-th feature of the error defined between
the goal and final states, andλj are weighing coefficients.
The resulting valueJ is used to determine whether the final
statesf is close enough to the goal statesg to consider that
convergence is achieved.

E. Computation of an admissible parametrization of the
control

Given a parametric representatioñu(p) of this control
trajectory, a standard way to obtain the final statesf is to
integrate the equation (4):

sf = s0 +

∫ tg

t0
f(s(p), ũ(p))dt (8)

However the input parametric control may violate the in-
equality constraintsh(s, ũ) (boundary constraints over the
control and the state) of the system during the constraints
optimization process, after application of one or several
corrections on the set of parameters. Furthermore, given the
final time constraintfixing the timedt = tg − t0 between
both initial and final state, the goal state may be unreachable.
Even if no solution exists in that case, our method is aimed
to provide a feasible trajectory that ends as close as possible
to the goal state. The main idea to ensure the feasibility of
the trajectory is to truncate the parametric profiles of the
control where the bounds defined over it are overreached.
This process is then repeated at each step of the optimization
process. We use so piecewise parametric profiles to represent
the control and state profiles.

Let h(s, ũ) ≤ 0 represents the set of constraints defined
over the control and state profiles. An admissible input

control trajectoryũbdd is defined thus to take into account
the constraints defined over the system:

ũbdd(t) =

{

ũ(p, t) if h(s, ũ) ≤ 0
Uextl(t) otherwise

(9)

whereUextl(t) is the extremal applicable control at timet
such thath(s, ũ) ≤ 0, ie. the maximal or minimal control
(depending of the case), that fulfill all the constraints defined
over the system. We have then to consider two different time
interval types: time intervalsIfea =

{

I
fea
1

, . . . , Ifea
n

}

⊆

[t0; tg] on which the parametric representation of the control
trajectory fulfill the constraints defined over the systemie
st. hi(s, ũ) ≤ 0,∀i ∈ [1;n], and time intervalsIovr =
{Iovr

1
, . . . , Iovr

m } = [t0; tg] \ {I
fea} on which the parametric

representation of the control violate the constraints.
Considering the new expression of the control trajectory and
knowing the sets of intervalsIfea (resp.Iovr) over which the
parametric representation fulfill (resp. violate) the constraints
of the system, we can determine the final reached state as
follows:

sf = s0 +
n

∑

i=0

∫

I
fea
i

f(s(p), ũ(p))dt +
m

∑

j=0

∫

I
ovr
j

Uextl(t)dt

(10)

The final state reached is then obtained from the current set
of parameters by using the resulting control if its parametric
representation is included in the bounds defined over it, and
by using the maximal control applicable where its parametric
representation is out of the bounds.
Fig. 1 presents an example of the bounding process of the
forward method. Let suppose a 1D double integrator system
with velocity and acceleration bounds. Given an initial
parametric acceleration profile (Fig. 1a), we truncate it on
intervalsIovrA

1
andIovrA

2
to ensure it fulfills the acceleration

constraint of the system (Fig. 1b). After integrating it to
obtain the velocity profile (Fig. 1e), we bound this new
velocity profile (Fig. 1f) on intervalsIovrV

1
to fulfill the

velocity constraints afterwards. It implies a second change
over the acceleration profile: saturation of the velocity profile
nullify consequently the acceleration profile over intervals
IovrV
1

(Fig. 1c). The final state reached is then accordingly
modified, nevertheless it guarantees that the final acceleration
(Fig. 1c), which will define the input control, is feasible.

F. Parametrization Update

The parametrization update is the last but not least part
of the trajectory generation. We choose a steepest descent
method with variable step length to ensure it because of
its low memory and computation cost. So we linearize the
equation (4), as follows:

∆s ≃

[

∂f

∂p

]

∆p (11)

where ∆s is the state error given in (Eq. 6),∆p is the
supposed error made over the set of parameters and∂f

∂p are
the partial derivatives of the state variation wrt. parameters.



(a) Step 1: Linear acceleration profile without
any bounding process.

(b) Step 2: Linear acceleration profile with ac-
celeration bounding process.

(c) Step 3: Linear acceleration profile with ac-
celeration and velocity bounding processes.

(d) Step 1: Linear velocity profile without any
bounding process.

(e) Step 2: Linear velocity profile with acceler-
ation bounding process.

(f) Step 3: Linear velocity profile with acceler-
ation and velocity bounding processes.

Fig. 1: Different steps of the computation of the linear acceleration and velocity profile. The crosses represent the minimal
and maximal bounds over these profiles.

To reduce the distanceJ, a correction over the set of
parameters can be computed:

corp = −τ

[

∂f

∂p

]−1

∆s (12)

whereτ is the application coefficient of the correction. The
inverted matrix of the partial derivatives represents thenthe
direction of the correction applied, andτ∆s represents the
step length of the steepest descent method.

Now to illustrate the method, we present in the next section
its application to a car-like system.

IV. CASE STUDY: CAR-LIKE VEHICLE

The trajectory generation method defined in the previous
part was aimed to handle car-like vehicles. We present here
the system considered and the resulting variational trajectory
generation.

A. Model of the System

Our trajectory generation process has then been applied
to the case of a planar car-like vehicleA. The state of
A is characterized by(x, y, θ, φ, v) where (x, y) are the
coordinates of the rear wheels midpoint,θ is the heading of
A, φ is the orientation of the front wheels (steering angle),
andv is the linear velocity of the rear wheels. A control ofA
is defined by the coupleu = (a, ζ) wherea is the rear wheel
linear acceleration andζ the steering velocity. The dynamics

of A is given by:
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(13)

where L is the wheelbase ofA. It is assumed thatA is
moving forward only:

v ∈ [0, vmax], |φ| ≤ φmax, |a| ≤ amax and |ζ| ≤ ζmax (14)

B. Computation of the admissible parametrization

We choose a 2nd-order polynomial parametric representa-
tion of the control(a, ζ) as follows :

ζ(t) = α1 + 2β1t + 3γ1t
2 (15)

a(t) = α2 + 2β2t + 3γ2t
2 (16)

where p = (α1, β1, γ1, α2, β2, γ2) is a selected set of
parameters.

The computation of an admissible parameterization of the
control of A from the initial set of parametersp consists
then in the following steps:

1) Computation of the linear acceleration profile:First
the linear acceleration profile is computed thanks to its
parametric expression given in Eq. (16). Its initial polyno-
mial profile could nevertheless overreach the acceleration
bounds defined over the system. Let us noteIamin (resp.
Iamax) the set of time intervals where the minimal (resp.
maximal) acceleration bound is overreached, andIa =



(a) Linear acceleration profile (b) Linear velocity profile (c) Steering speed profile

(d) Steering angle profile (e) Heading profile (f) Path profile

Fig. 2: Different state profiles computed by the forward method to obtain a feasible trajectory from a given set of parameters.
Green and blue crosses represent the minimal and maximal bounds over each profile.

[t0; tg] \ {Iamin , Iamax} that respect them. Determination
of these intervals allows to truncate the acceleration profile
as follows:

a(t) =







α2 + 2β2t + 3γ2t
2 over Ia

−amax over Iamin

amax over Iamax

(17)

Piecewise polynomial representation is needed to express
this profile. However, it respects then the linear acceleration
constraints.

2) Computation of the linear velocity profile:This second
profile is computed by integration of the linear acceleration
one. So it can be first expressed as follows:

v(t) = v0 +
∑

i∈Ia

(α2dti + β2dti
2 + γ2dti

3)

+
∑

i∈Iamin

(−amax)dti +
∑

i∈Iamax

amaxdti (18)

As for acceleration, this profile of the linear velocity can
overreach the linear velocity bounds defined over the system.
As in the previous case, we compute the set of intervals
Ivmin (resp. Ivmax) where the minimal (resp. maximal)
linear velocity bound is overreach, andIv = [t0; tg] \
{Ivmin , Ivmax} that respect them. The final linear velocity
profile vbd (cf fig. 2b) is then given by:

vbd(t) =







(18) overIv
−vmax over Ivmin

vmax over Ivmax

(19)

If the parametric velocity has been modified, the input con-
trol acceleration profile must be modified consequently once
again. Its final profileabd is then computed by derivation of

vbd wrt. the time:

abd(t) =

8

>

<

>

:

0 over Ivmin
∪ Ivmax

−amax over Iamin
\ {Ivmin

∪ Ivmax}
amax over Iamax \ {Ivmin

∪ Ivmax}
α2 + 2β2t + 3γ2t2 over Iav

(20)

where Iav is the set of intervals where neither linear
acceleration nor linear velocity bounds are overreached.
Eq. (20) give then the final profile of the acceleration control
of the current forward method (cf fig. (2a)).

3) Computation of the steering angle and steering
speed profiles:Steering angle and steering speed profiles
are computed in a same way than the linear acceleration
and velocity, with the successive bounding processes of
their profiles wrt. the steering angle and steering speed
constraints (14). Examples of their final profilesζbd andφbd

are depicted in figures Fig.2c and Fig.2d.

From the new control defined, the remaining states pa-
rameters profiles are obtained by integration of the equation
(13). The new heading and path profiles are then computed
thanks to the bounded velocity and steering angle profiles as
follows (cf Fig. 2e,2f):

θbd(t) = θ0 +

∫ t

0

vbd(t)
tan(φbd(t))

L
dt (21)

xbd(t) = x0 +

∫ t

0

vbd(t) cos(θbd(t))dt (22)

ybd(t) = y0 +

∫ t

0

vbd(t) sin(θbd(t))dt (23)

Figures 2 illustrate an example of the resulting control and
state profiles of the car-like systemA from a given set of
parameters.



(a) Reachable goal states. (b) Unreachable goal states due to the linear
acceleration and velocity constraints.

(c) Unreachable goal states due to the steering angle
and steering speed constraints.

Fig. 3: x × y views of the trajectories computed to try to reach differentpositions (crosses) around the different system
considered. Should the final states cannot be reached, alternative trajectories are obtained nonetheless. All trajectories
computed are however guaranteed to be feasible by the systemconsidered.

Example Standard Steering Velocity
case overreached overreached

average
required steps 12.29 20.00 20.0
average time

by trajectory (ms) 3.9 7.0 7.2
average number of

traj. by sec. 255.08 146.76 139.73

TABLE I: Performances of the trajectory generation for each
case study.

V. SIMULATION RESULTS

Tiji has been implemented in C++ and tested on a
desktop computer (Core2Duo@1.8GHz, 2GB RAM, Linux
OS). It has been evaluated in different scenarios featuring
reachable and unreachable goal states. The maximum num-
ber of iterations was heuristically set to 20.

Three examples of trajectories are presented here. Fig. 3a
depicts a case where the goal states are reachable froms0. In
that case,Tiji is able to find a trajectory connecting both
initial and goal states. Figs. 3b and 3c present cases where
the goal states are unreachable. In both cases,Tiji returns
feasible trajectories ending as close as possible to the goal
states.

From a complexity point of view, the trajectory generation
algorithm depends on the number of required steps to con-
verge to the goal state. Table I sum up the average number
of required steps and the resulting computation time in the
three different cases study.

VI. CONCLUSION

The paper has presentedTiji, a new trajectory generation
scheme that can be used toefficiently compute feasible
trajectories for system with complex dynamics. Besides, it
can handle afinal time constraint, ie reaching a goal at a
prescribed time instant. Finally, when the goal is unreach-
able, it returns a trajectory ending as close as possible to
the goal.Tiji is particularly suited for autonomous navi-
gation situations featuring moving objects. As an example,

Tiji has been integrated and has proven its efficiency in a
trajectory deformation scheme calledTeddy [15].
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