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Abstract

We investigate the existence of invariant measures for self-stabilizing
diffusions. These stochastic processes represent roughly the behavior of
some Brownian particle moving in a double-well landscape and attracted
by its own law. This specific self-interaction leads to nonlinear stochastic
differential equations and permits to point out singular phenomenons like
non uniqueness of associated stationary measures. The existence of several
invariant measures is essentially based on the non convex environment and
requires generalized Laplace’s method approximations.
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1 Introduction

The aim of this paper is to present some new and surprising results concern-
ing the existence of invariant probability measures for one-dimensional self-
stabilizing diffusions. The specificity of such diffusion is the attraction of its
paths by the own law of the stochastic process. The dynamical system solved by
self-stabilizing diffusions can be characterized by three essential elements: first
the system is governed by a double-well potential V which represents roughly the
environment of the process, secondly some interaction potential F describes how
strong the attraction between the process and its own law is, and finally the sys-
tem is perturbed by some Brownian motion with small amplitude (

√
ǫBt, t ≥ 0).

1



Let us denote by uǫ
t(dx) the law of the self-stabilizing diffusion (Xǫ

t , t ≥ 0), then
the SDE satisfied by (Xǫ

t ) is given by:

Xǫ
t = X0+

√
ǫBt−

∫ t

0

V ′(Xǫ
s)ds−

∫ t

0

∫

R

F ′(Xǫ
s−x)duǫ

s(x)ds, ǫ > 0. (Eǫ,X0)

Introducing the notation of the convolution product, (Eǫ,X0) can be written as
follows:

Xǫ
t = X0 +

√
ǫBt −

∫ t

0

(V ′ + F ′ ∗ uǫ
s) (Xǫ

s) ds. (1.1)

Let us just note that the interaction part of the drift term is related to the diffu-
sion in some simple way: F ′ ∗uǫ

t(x) = E[F ′(x−Xǫ
t )]. This way of characterizing

the drift term essentially points out the structure of the attraction between the
paths of the diffusion and its law. Self-interaction corresponds obviously to
mean fields stabilization.

Self-stabilizing diffusion paths can usually be approximated by the movement
of some specific Brownian particle belonging to a huge ensemble of identical
ones. In this global system each particle is submitted to the same forces. First
it moves in the potential landscape characterized by the double-well function
V and accordingly it is attracted by positions which minimize the potential.
The second force which acts on the system is the interaction between all the
particles. More precisely each one is attracted by all the others. This attraction
can for instance be thought of as being generated by electromagnetic effects.
In this case, the solution of the global system doesn’t represent some spatial
position but some electromagnetic charge.

The huge particle system containing N elements is governed by the following
stochastic differential equation

dX i,N
t =

√
ε dW i

t ,−V ′(X i,N
t ) dt − 1

N

N
∑

j=1

F ′(X i,N
t − Xj,N

t ) dt,

X i,N
0 = x0 ∈ R, 1 ≤ i ≤ N. (1.2)

Here the W i are independent Brownian motions. In the limit, as N becomes
large, the interaction part of the drift term is approximatively the average with
respect to the law of one characteristic particle of the system (law of large

numbers framework). More precisely the empirical measures 1
N

∑N
j=1 δXj,N

t
con-

verges to some law uε
t for each fixed time and noise intensity, and each individual

particle’s motion converges in probability to the solution of the diffusion equa-
tion

dX i
t =

√
εdW i

t − V ′(X i
t) dt −

∫

R

F ′(X i
t − x) duε

t (x) dt. (1.3)

Interacting particle systems such as (1.2) have been studied from various points
of view. A survey about the general setting for interaction (under global Lips-
chitz and boundedness assumptions) may be found in [9].
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The aim of this paper is to consider both the existence and the uniqueness
of stationary measures for the self-stabilizing diffusion (Eǫ,X0). In [5] Her-
rmann, Imkeller and Peithmann proved the existence of some unique strong
solution to equation (1.1) generalizing previous results obtained by Benachour,
Roynette, Talay and Vallois [1] in the context of constant environment poten-
tial V (V ′(x) = 0 for all x ∈ R). We choose their work as basis for developing
our study. Nevertheless there exist several different papers dealing with the
existence problem for self-stabilizing diffusion, each of them concerning other
families of interaction functions. Let us cite McKean who studied in some
earlier work a class of Markov processes that contains the solution of the lim-
iting equation under restrictive global Lipschitz assumptions for the interac-
tion [6], Stroock and Varadhan who considered some local form of interaction
[8], Oelschläger who studied the particular case where interaction is represented
by the derivative of the Dirac measure at zero [7] and finally Funaki who ad-
dressed existence and uniqueness for the martingale problem associated with
self-stabilizing diffusions [3].

Let us now focus our attention to the stationary measures. In [1] the authors
emphasize that the invariant measure, corresponding to some given average, is
unique in this particular constant potential V situation. This feature is essential
for further developments. The natural convergence question between the law of
the process and the invariant measure, as time elapses, can then be analyzed,
see [2]. This kind of convergence was also considered by Tamura under different
assumptions on the structure of the interaction, see [11] and [10].

The presence of some potential gradient which describes the environment of
the self-stabilizing diffusion is essential for the question of existence and unique-
ness of invariant measures. In particular, if the landscape is represented by some
symmetric double-well potential then surprising effects appear due to the lack
of convexity: we shall prove that, under suitable conditions, there exist at least
three invariant measures of which one is symmetric (Theorem 4.5) and two are
asymmetric or so-called outlying (Theorem 4.6). In the particular linear inter-
action case (F ′(x) = αx with α > 0), these three measures constitute the whole
set of invariant measures (Theorem 3.2) provided that V ′′ is a convex function.

The material of this paper is organized as follows: first we list several as-
sumptions concerning both the interaction function F and the environment po-
tential V which permit in particular to assure the existence of the self-stabilizing
diffusion (Eǫ,X0). In Section 2 preliminary results concerning the structure of
the invariant measure (if it exists !) are developed. These results are essential
for the construction of such measures. The question of existence starts to be
addressed in Section 3 in the particular linear interaction context. After point-
ing out some symmetric and asymmetric invariant measures, we point out some
nice context for which the whole set of stationary measures can be described.
This study is finally extended to the general interaction case in the last section.
We postpone different tools concerning asymptotic analysis based on Laplace’s
method to the Appendix.
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1.1 Main assumptions

In order to study invariant measures for self-stabilizing diffusions, we especially
need that (1.1) admits some unique strong solution. For this reason, we assume
that both the potential landscape V and the interaction function F satisfy
some growth conditions and some regularity properties. Moreover we add some
technical assumptions which permit to simplify the statements.
We assume the following properties for the function V :

(V-1) Regularity: V ∈ C∞(R, R). C∞ denotes
the Banach space of infinitely bounded con-
tinuously differentiable function.

(V-2) Symmetry: V is an even function.

(V-3) V is a double-well potential. The equation
V ′(x) = 0 admits exactly three solutions :
a, −a and 0 with a > 0; V ′′(a) > 0 and
V ′′(0) < 0. The bottoms of the wells are
reached for x = a and x = −a.

(V-4) There exist two constants C4, C2 > 0 such
that ∀x ∈ R, V (x) ≥ C4x

4 − C2x
2.

V

−a a

Figure 1: Potential V

(V-5) lim
x→±∞

V ′′(x) = +∞ and ∀x ≥ a, V ′′(x) > 0.

(V-6) The growth of the potential V is at most polynomial: there exist q ∈ N∗

and Cq > 0 such that |V ′(x)| ≤ Cq

(

1 + x2q
)

.

(V-7) Initialization: V (0) = 0.

Typically, V is a double-well polynomial function. But our results can be applied
to more general functions: regular functions with polynomial growth as |x|
becomes large. We introduce the parameter ϑ which plays some important role
in the following:

ϑ = sup
x∈R

−V ′′(x). (1.4)

Let us note that the simplest example (most famous in the literature) is V (x) =
x4

4 − x2

2 which bottoms are localized in −1 and 1 and with parameter ϑ = 1.
Let us now present the assumptions concerning the attraction function F .

(F-1) F is an even polynomial function. Indeed we consider some classical
situation: the attraction between two points x and y only depends on the
distance F (x − y) = F (y − x).

(F-2) F is a convex function.

(F-3) F ′ is a convex function on R+ therefore for any x ≥ 0 and y ≥ 0 such
that x ≥ y we get F ′(x) − F ′(y) ≥ F ′′(0)(x − y).
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(F-4) The polynomial growth of the attraction function F is related to the
growth condition (V-6): |F ′(x)−F ′(y)| ≤ Cq|x− y|(1+ |x|2q−2 + |y|2q−2).

Let us define the parameter α ≥ 0 which shall play some essential role in fol-
lowing:

F ′(x) = αx + F ′
0(x) with α = F ′′(0) ≥ 0. (1.5)

In [5], Herrmann, Imkeller and Peithmann present sufficient conditions for the

SDE (1.1) to admit a unique strong solution. In particular, if E[X8q2

0 ] < +∞,
with q defined in (V-6), and if all the main assumptions just defined are satisfied,
the existence and uniqueness of the solutions are proved. In the following we
will always assume that the (8q2)-th moment of the initial value X0 is finite.
This permits to study further the self-stabilizing diffusions and exhibit invariant
measures.

2 General structure of the invariant measures

This section deals with different preliminary results describing the main struc-
ture of the invariant measures of

(

Eǫ,X0
)

. First of all, there is some classical
link between the stochastic differential equation and the associated parabolic
partial differential equation which permits to characterize stationary measures.

Lemma 2.1. Let uǫ
t(x) denote the density of (Xǫ

t ; t ≥ 0) with respect to the
Lebesgue measure. Then uǫ is solution of the following PDE:

∂

∂t
uǫ

t(x) =
ǫ

2

∂2

∂x2
uǫ

t(x) +
∂

∂x

[

uǫ
t(x)

(

V ′(x) + (F ′ ∗ uǫ) (t, x)
)]

(2.1)

for all t > 0, x ∈ R and uǫ
0(dx) = P (X0 ∈ dx).

We recall that
∫

R
x8q2

uǫ
0(dx) < ∞.

Proof. Let f ∈ C2(R, R) such that

lim
x−→±∞

f(x) = lim
x−→±∞

f ′(x) = 0. (2.2)

By Itô’s formula, we obtain

E [f(Xǫ
t )] = E [f(Xǫ

0)] + E

[
∫ t

0

f ′(Xǫ
s)
√

ǫdBs

]

− E

[
∫ t

0

f ′(Xǫ
s)
(

V ′(Xǫ
s) + F ′ ∗ uǫ

s(X
ǫ
s)
)

ds +
ǫ

2

∫ t

0

f ′′(Xǫ
s)ds

]

.

Taking the time derivative, we get

d

dt
E [f(Xǫ

t )] = −E

[

f ′(Xǫ
t )
(

V ′(Xǫ
t ) + F ′ ∗ uǫ

t(X
ǫ
t )
)

+
ǫ

2
f ′′(Xǫ

t )
]

= −
∫

R

f ′(x)
(

V ′(x) + F ′ ∗ uǫ
t(x)

)

uǫ
t(x)dx −

∫

R

ǫ

2
f ′′(x)uǫ

t(x)dx.
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Since f is a C2 function, integration by parts leads to

d

dt
E [f(Xǫ

t )] =

∫

R

f(x)

{

∂

∂x

[

(V ′(x) + F ′ ∗ uǫ
t(x)) uǫ

t(x)
]

+
ǫ

2

∂2

∂x2
uǫ

t(x)

}

dx.

Using the equality:

d

dt

∫

R

f(x)uǫ
t(x)dx =

∫

R

f(x)
∂

∂t
uǫ

t(x)dx,

we deduce for all C2-functions satisfying (2.2):

∫

R

f(x)
∂uǫ

t(x)

∂t
dx =

∫

R

f(x)

{

∂

∂x

[

(V ′(x) + F ′ ∗ uǫ
t(x)) uǫ

t(x)
]

+
ǫ

2

∂2uǫ
t(x)

∂x2

}

dx

We obtain (2.1) by identification.

The density of (Xǫ
t , t ≥ 0) with respect to the Lebesgue measure is solu-

tion to the parabolic PDE (2.1) (non-linear Kolmogorov equation): this implies
in particular that any stationary measure (if it exists !) satisfies some elliptic
differential equation. This link between non-linear differential equations and
self-stabilizing diffusions permits to express the invariant measure in some ex-
ponential form.

Lemma 2.2. If there exists an invariant measure uǫ to (Eǫ,X0) whose (8q2)-
moment is finite, then:

uǫ(x) =
1

λ(uǫ)
exp

[

−2

ǫ

(
∫ x

0

F ′ ∗ uǫ(y)dy + V (x)

)]

(2.3)

=
1

λ(uǫ)
exp

[

−2

ǫ

(

F ∗ uǫ(x) − F ∗ uǫ(0) + V (x)
)

]

,

where λ(uǫ) denotes the normalization factor:
∫

R
uǫ(x)dx = 1.

Proof. By (2.1), any stationary measure uǫ satisfies

ǫ

2
u′′

ǫ (x) +
(

uǫ(x) (V ′(x) + F ′ ∗ uǫ(x))
)′

= 0, for all x ∈ R.

By integrating the previous equality, we obtain the existence of some constant
Cǫ ∈ R such that

ǫ

2
u′

ǫ(x) + uǫ(x)(V ′(x) + F ′ ∗ uǫ(x)) = Cǫ, for all x ∈ R.

Using the method of variation of parameters, the solution uǫ takes the following
form

uǫ(x) = Λǫ(x) exp

[

−2

ǫ

(
∫ x

0

F ′ ∗ uǫ(y)dy + V (x)

)]

,

with

Λ′
ǫ(x) =

2

ǫ
Cǫ exp

[

2

ǫ

(
∫ x

0

F ′ ∗ uǫ(y)dy + V (x)

)]

.
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Hence

uǫ(x) = Λǫ(0) exp

[

−2

ǫ

(
∫ x

0

F ′ ∗ uǫ(y)dy + V (x)

)]

+
2

ǫ
Cǫ

∫ x

0

exp

[

2

ǫ

(
∫ y

0

F ′ ∗ uǫ(z)dz + V (y)

)]

dy

× exp

[

−2

ǫ

(
∫ x

0

F ′ ∗ uǫ(y)dy + V (x)

)]

.

Let us assume that Cǫ 6= 0. Applying Lemma A.1 to the function U(x) =
∫ x

0
F ′ ∗ uǫ(y)dy + V (x), whose second derivative is positive for |x| large enough

(using hypotheses (V-5) and (F-2)), permits to exhibit the equivalent of Λǫ(x):

Λǫ(x) ≈ 2

ǫ
Cǫ

exp
[

2
ǫ

(∫ x

0
F ′ ∗ uǫ(y)dy + V (x)

)]

2
ǫ

(

V ′(x) + F ′ ∗ uǫ(x)
) as x → ±∞.

Hence

uǫ(x) ≈ Cǫ

V ′(x) + F ′ ∗ uǫ(x)
.

Due to the conditions (V-6) and (F-4), there exists some constant K > 0 such
that

|V ′(x) + F ′ ∗ uǫ(x)| ≤ K(1 + |x|4q−1), for all x ∈ R.

We deduce that x → x8q2

can’t be integrated with respect to uǫ: that contradicts
the essential assumption of the statement. We deduce that Cǫ = 0 and obtain
(2.3) after normalization.

Lemma 2.2 presents the essential structure of any invariant measure. The
global exponential form will play a crucial role in next sections: to prove the
existence of some stationary measure, it is necessary and sufficient to solve
equation (2.3).

3 The linear interaction case

First we shall analyze the existence problem for stationary measures in the
simple linear case. In this case F ′(x) = αx with α > 0, the interaction gradient
function is quadratic: F (x) = α

2 x2 and the stochastic differential equation takes
an interesting simple form. The non-linearity of the drift term is limited to the
average of the density uǫ

t(x):

Xǫ
t = X0 +

√
ǫBt −

∫ t

0

V ′(Xǫ
s)ds − α

∫ t

0

(

Xǫ
s −

∫

R

xduǫ
s(x)

)

ds, ǫ > 0.

The study of this particular case emphases the existence of several invariant
measures. The interesting problem is then to determine in which situations the
number of such measures is perfectly known.
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3.1 Existence of invariant measures

The existence question is really simplified in the linear interaction case, it is
just reduced in fine to the following parametrization problem. Let us denote
the first moment of an invariant measure uǫ by

m1(ǫ) =

∫

R

xuǫ(x)dx, (3.1)

then (2.3) becomes

uǫ(x) =
exp

[

− 2
ǫ

(

V (x) + αx2

2 − αm1(ǫ)x
)]

∫

R
exp

[

− 2
ǫ

(

V (y) + αy2

2 − αm1(ǫ)y
)]

dy
. (3.2)

We now come to the essential equivalence: uǫ is an invariant measure if and
only if (3.1) and (3.2) are satisfied. It suffices then to point out the convenient
parameters m1(ǫ) since there is a one to one correspondence between these
parameters and the invariant measures. In other words, we shall find the solution
of the equation

m = Ψǫ(m) with Ψǫ(m) =

∫

R
x exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
∫

R
exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
. (3.3)

Obviously, m0
1(ǫ) = 0 is a candidate. The corresponding measure u0

ǫ is invariant
and symmetric:

u0
ǫ(x) = exp

[

−2

ǫ

(

V (x) + α
x2

2

)](
∫

R

exp

[

−2

ǫ

(

V (y) + α
y2

2

)]

dy

)−1

.

In fact u0
ǫ is the unique symmetric stationary measure.

Of course the natural question concerns the existence of others reals m1(ǫ) solu-
tions of (3.2). In fact the basic dynamical system associated to self-stabilizing
diffusions is symmetric since F and V are assumed to be even functions. The
consequence is immediate: if the initial law of the diffusion (Xǫ

t , t ≥ 0) is
symmetric so will be the law of Xǫ

t for all t > 0. In [1], the authors consider
self-stabilizing diffusions without the environment potential V . They proved
the existence of some unique symmetric invariant measure and describe the be-
havior of the diffusion: for any initial law satisfying the moment condition of
order 8q2 the law of Xt − E[X0] converges to the invariant symmetric law as
time elapses.
Adding some double-well potential V in the main structure of the stochastic
differential equation changes drastically the situation. In particular we prove
the existence of several invariant measures, one of them being symmetric.

Proposition 3.1. Let a be the unique positive real which minimizes V (see (V-
3)). For all δ ∈]0, 1[, there exists ǫ0 > 0 such that for all ǫ ≤ ǫ0, the equation
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(3.3) admits a solution satisfying the estimates:

a − (1 + δ)V (3)(a)

4V ′′(a) (α + V ′′(a))
ǫ ≤ m1(ǫ) ≤ a − (1 − δ)V (3)(a)

4V ′′(a) (α + V ′′(a))
ǫ. (3.4)

Moreover −m1(ǫ) satisfies (3.3) too.

Let us note that, for ǫ small enough, the preceding proposition implies the
existence of at least three invariant measures corresponding to the averages: 0,
m1(ǫ) and −m1(ǫ).

Proof. Set τ > 0. Let’s proceed to the first order asymptotic development of
the expression Ψǫ(a − τǫ).

Ψǫ(a − τǫ) =

∫

R
x exp

[

− 2
ǫ

(

V (x) + αx2

2 − α(a − τǫ)x
)]

dx
∫

R
exp

[

− 2
ǫ

(

V (x) + αx2

2 − α(a − τǫ)x
)]

dx

=

∫

R
xe−2ατx exp

[

− 2
ǫ

(

V (x) + αx2

2 − αax
)]

dx
∫

R
e−2ατx exp

[

− 2
ǫ

(

V (x) + αx2

2 − αax
)]

dx
.

By Lemma A.5 applied to the context: f(x) = −2ατx, n = 1, U(x) = V (x) +
α
2 x2 − αx and µ = 0, we get:

Ψǫ(a − τǫ) = a − 1

4a (α + V ′′(a))
2

[

aV (3)(a) + 4aατ (α + V ′′(a))
]

ǫ + o(ǫ)

= a − τǫ +
V ′′(a)

α + V ′′(a)

[

τ − V (3)(a)

4V ′′(a) (α + V ′′(a))

]

ǫ + o(ǫ).

Set τ0 = V (3)(a)
4V ′′(a)(α+V ′′(a)) . Then a − τ0ǫ is the first order approximation of the

fixed point. Indeed for δ ∈]0; 1[ we can define

d± := Ψǫ

(

a − τ0(1 ± δ)ǫ
)

−
(

a − τ0(1 ± δ)ǫ
)

= ±δ
V ′′(a)

α + V ′′(a)
τ0ǫ + o(ǫ).

For ǫ small enough, d+ > 0 and d− < 0. Since the function Ψǫ is C0 continuous,
there exists m1(ǫ) ∈ [a− τ0(1 + δ)ǫ; a− τ0(1− δ)ǫ] which satisfies Ψǫ(m1(ǫ)) =
m1(ǫ). Finally, by the change of variable x := −x in the integral expression
(3.3), we obtain Ψǫ(−m1(ǫ)) = −Ψǫ(m1(ǫ)) = −m1(ǫ).

3.2 Description of the set of invariant measures

According to Proposition 3.1, we know there are at least three invariants mea-
sures. One of them is symmetric corresponding to the average 0 and two others
will be called outlying measures, one wrapped around a and the other one around
−a. The aim of this section is to study if there are exactly three invariants mea-
sures or more.
For this purpose, we study the asymptotic behavior of the function Ψǫ defined
by (3.3) in the small noise limit.

9



Theorem 3.2. If V ′′ is a convex function then, in the small noise limit, there
exist exactly three stationary measures.

Proof. Let m > 0. Let us recall that the interaction function is linear: F ′(x) =
αx with α > 0. In order to study the invariant measures, we have to consider
the fixed points of the application Ψǫ(m) defined by (3.3). We introduce the
following potential function:

Wm(x) = V (x) +
α

2
x2 − αmx.

Since V ′(0) = 0, we have W ′
m(0) < 0. Moreover limx→+∞ W ′

m(x) = +∞.
So we denote by xm the positive real for which the potential Wm admits its
global minimum. It is uniquely determined since V ′′ is a convex function. In
particular, xm satisfies V ′(xm) + α(xm − m) = 0 and V ′′(xm) + α ≥ 0. Fur-
thermore V ′′(xm) + α > 0. Indeed, since xm is a global minimum, the equality
V ′′(xm) + α = 0 implies that V (3)(xm) = 0 that is xm = 0 which contradicts
the assumption concerning the positivity of xm.
We define

χǫ(m) = Ψǫ(m) − m and χ0(m) = xm − m.

We obtain the expression:

χǫ(m) = xm − m +

∫

R
(x − xm) exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
∫

R
exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
. (3.5)

It suffices to prove that χǫ has just one zero in R
∗
+.

Step 1: For all ǫ > 0 and m > 0, we observe that χǫ(m) ≤ χ0(m) = xm − m.
We apply the change of variable x := y +xm to the integrals in (3.5) and obtain

χǫ(m) = χ0(m) +

∫

R
y exp

[

− 2
ǫ

(

V (y + xm) + αy2

2 + α (xm − m) y
)]

dy

∫

R
exp

[

− 2
ǫ

(

V (y + xm) + αy2

2 + α (xm − m) y
)]

dy

= χ0(m) +

∫∞
0 y exp

[

−α
ǫ y2
]

Ωǫ,m(y)dy
∫

R
exp

[

− 2
ǫ

(

V (y + xm) + αy2

2 + α (xm − m) y
)]

dy
,

with

Ωǫ,m(y) = exp

[

−2

ǫ

(

V (y + xm) + α (xm − m) y
)

]

− exp

[

−2

ǫ

(

V (y − xm) − α (xm − m) y
)

]

.

We introduce the function

Λm(y) = V (y + xm) − V (y − xm) + 2α (xm − m) y

10



Since V is an even function, Λm(0) = 0 and Λ′′
m(0) = 0. According to the

definition of xm, Λ′
m(0) = 0. V ′′ is a convex function therefore V (3) is increasing.

So Λ
(3)
m (y) = V (3)(y + xm) − V (3)(y − xm) ≥ 0 for all y. We deduce that Λ′′

m is
increasing. Hence Λ′′

m is nonnegative on R∗
+ so does Λm(y) for y > 0. Finally we

get Ωǫ,m(y) ≤ 0 for all y > 0. We obtain the announced result: χǫ(m) ≤ χ0(m)
for m > 0.
Step 2. χ0 has a unique zero on R

∗
+.

Let us compute χ0(a) with a defined in (V-3). We know that a is solution of
V ′(x) + α (x − a) = 0 with V ′′(x) + α > 0. Hence χ0(a) = 0.
Let us focus our attention to the variations of the function χ0 on the interval
]0, a]. Since V ′(xm)+αxm = αm, and α+V ′′(xm) > 0 we deduce that m → xm

is derivable; we obtain

χ′
0(m) =

d

dm
xm − 1.

and

d

dm
xm =

α

α + V ′′(xm)
> 0 which implies χ′

0(m) = − V ′′(xm)

α + V ′′(xm)
. (3.6)

The denominator is positive due to the definition of xm. According to (V - 5),
V ′′(x) > 0 for all x > a. Hence χ′

0(m) < 0 for all m > a. Since χ0(a) = 0 we
deduce that, for all m > a, χ0(m) is strictly negative and therefore the function
χ0 has no zero on ]a; +∞[.
It remains to study χ0 on the interval ]0, a]. Since V ′′ is a convex function, we
deduce that the derivative of χ0 is non positive for xm ≥ c with c > 0 satisfying
V ′′(c) = 0. We know that c > 0 is unique since V ′′(0) < 0 and V ′′ is a convex
function. Moreover c < a. Since the function m → xm is increasing for m > 0,

we deduce that χ′
0 is negative for x ∈] max(0, mc), a] where mc = c + V ′(c)

α . By
construction, if mc > 0 then the equality xmc

= c holds.
We observe then two different cases:

• If mc ≤ 0 i.e. α <
|V ′(c)|

c : χ0 is decreasing on R
∗
+ with χ0(a) = 0. The

unique zero of χ0 on R
∗
+ is a.

• If mc > 0 then χ0, which is a continuous function on R
∗
+, is increasing on

]0, mc[ and decreasing on ]mc, +∞[ with χ0(a) = 0. It suffices to prove
that limm→0+ χ0(m) ≥ 0 in order to conclude that a is the unique zero
of χ0 on R

∗
+. Due to the definition of xm we get: limm→0+ χ0(m) =

limm→0+ xm ≥ 0. Indeed m → xm is continuous from ]0, +∞[ to ]0, +∞[
so the extension to m = 0 is non negative.

In these two cases, there is a unique zero of χ0 on R
∗
+.

Step 3. The family of functions (χǫ)ǫ (respectively (χ′
ǫ)ǫ) converges uniformly

towards χ0 (resp. χ′
0) on each compact subset of R

∗
+.

First we prove the convergence of χǫ(m) for m > 0. Recall that

χǫ(m) =

∫

R
x exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
∫

R
exp

[

− 2
ǫ

(

V (x) + αx2

2 − αmx
)]

dx
.

11



By Lemma A.5 with U(x) = V (x)+ αx2

2 , n = 1, µ = m and G = −αx we obtain
the announced convergence result:

χǫ(m) − χ0(m) = χǫ(m) − xm + m = − V (3)(xm)

4 (α + V ′′(xm))
2 ǫ + o(ǫ).

Moreover this convergence is uniform with respect to the variable m on compact
subsets of R

∗
+.

We estimate now the asymptotics of χ′
ǫ(m) as ǫ becomes small. Taking the

derivative of Ψǫ, we obtain

Ψ′
ǫ(m) =

2α

ǫ







∫

R
x2 exp

[

− 2
ǫ Wm(x)

]

dx
∫

R
exp

[

− 2
ǫ Wm(x)

]

dx
−
(

∫

R
x exp

[

− 2
ǫ Wm(x)

]

dx
∫

R
exp

[

− 2
ǫ Wm(x)

]

dx

)2






.

We recognize the variance of the measure u
(m)
ǫ which is the measure associated

to the average m by (3.2). Hence

χ′
ǫ(m) =

2α

ǫ
Var(u(m)

ǫ ) − 1. (3.7)

Applying again Lemma A.5 with U = V (x)+ αx2

2 , G = −αx, µ = m and n = 2,
we obtain
∫

R
x2 exp

[

− 2
ǫ Wm(x)

]

dx
∫

R
exp

[

− 2
ǫ Wm(x)

]

dx
= x2

m −
(

xmV (3)(xm) − (α + V ′′(xm))
)

2 (α + V ′′(xm))
2 ǫ + o(ǫ).

Applying the same lemma with n = 1 permits to compute the first moment:

∫

R
x exp

[

− 2
ǫ Wm(x)

]

dx
∫

R
exp

[

− 2
ǫ Wm(x)

]

dx
= xm − xmV (3)(xm)

4xm (α + V ′′(xm))2
ǫ + o(ǫ).

By (3.7) and the computations of the two first moments, we get

χ′
ǫ(m) =

−V ′′(xm)

α + V ′′(xm)
+ o(1) = χ′

0(m) + o(1). (3.8)

Furthermore this convergence is uniform with respect to the variable m on com-
pact subsets of R

∗
+.

Step 4. For any δ > 0 small enough, there exists ǫ0 > 0 such that χǫ has a
unique zero on [δ,∞[ for all ǫ ≤ ǫ0.
Since there is no zero of χǫ on the interval ]a, +∞[ (Step 1 and 2), we focus
our attention to the interval ]0, a]. On each compact subset of this interval, χǫ

converges uniformly towards the limit function χ0 (Step 3). Hence the zeros
of χǫ are in a small neighborhood of the unique zero of χ0 namely a (Step 2).
Let us study the derivative of χǫ in a neighborhood of a. Since χ′

ǫ converges
uniformly towards χ′

0 (Step 3) and χ′
0(m) < 0 in a neighborhood of a (Step 2),

we obtain that χ′
ǫ(m) < 0 in a neighborhood of a for ǫ small enough. Finally

12



we proved that, as soon as ǫ is small enough, the function χǫ can’t admit two
zeros or more on R∗

+.
Step 5. There exists δ > 0 and ǫ0 > 0 such that χǫ doesn’t vanish on ]0, δ] for
all ǫ ≤ ǫ0.
In this last step, we have to distinguish three different cases depending on the
values ϑ and α defined by (1.4) and (1.5).
Step 5.1. We assume α < ϑ. In this particular case W0(x) = V (x) + αx2/2
reaches a unique global minimum on R+ for x = x0 > 0.
Let us fix some small δ > 0 (depending on x0: we shall precise it in the follow-
ing). We prove that, for ǫ small enough, χǫ(m) = Ψǫ(m) − m > 0 on ]0, δ]. By
the definition of Ψǫ, see (3.3), it suffices to prove that Nǫ(m) > 0 for m ∈]0, δ]
where

Nǫ(m) =

∫

R

x exp
[

− 2

ǫ
Wm(x)

]

dx − m

∫

R

exp
[

− 2

ǫ
Wm(x)

]

dx. (3.9)

Obviously Nǫ(0) = 0. Let us prove that Nǫ is non decreasing. Taking the
derivative, we get

N ′
ǫ(m) =

2α

ǫ

∫

R

(

x2 − mx − ǫ

2α

)

exp
[

− 2

ǫ
Wm(x)

]

dx.

This expression is in fact non negative. Indeed, using the symmetry property
of W0(x) and the upper bound m ≤ δ, we obtain

N ′
ǫ(m) =

2α

ǫ

∫ ∞

0

{

(

x2 − ǫ

2α

)

cosh
(2αmx

ǫ

)

− mx sinh
(2αmx

ǫ

)

}

e−
2
ǫ

W0(x)dx

≥ α

ǫ

∫ ∞

0

Pδ(x)e
2αmx

ǫ e−
2
ǫ

W0(x)dx with Pδ(x) = x2 − δx − ǫ

α
.

We split the preceding integral into two parts: the first integral I0 concerns the
support [0, 2δ] and the second integral I2δ the complementary support [2δ,∞[.
We get N ′

ǫ(m) ≥ α
ǫ (I0 + I2δ).

Since the roots of the polynomial function Pδ satisfy

x± =
1

2

(

δ ±
√

δ2 +
4ǫ

α

)

< 2δ,

the polynomial is positive on the interval [2δ,∞[ and can be lower bounded by
Pδ(2δ) = 2δ2 − ǫ/α. Lemma A.3 implies the existence of some constant C > 0
leading to the following estimate as ǫ → 0:

I2δ ≥ (2δ2 − ǫ/α)

∫ x0+1

2δ

e−
2
ǫ

W0(x)dx ≥ Cδ2
√

ǫ e−
2
ǫ
(V (x0)+αx2

0/2) (3.10)

provided that x0 > 2δ (it suffices then to chose δ small enough).
Let us finally focus our attention to the lower bound of the integral term I0.
Since the minimum value of Pδ is −(δ2/4 + ǫ/α) and since W ′′(0) < 0, we have

I0 ≥ −
(δ2

4
+

ǫ

α

)

∫ 2δ

0

e
2αmx

ǫ e−
2
ǫ

W0(x)dx ≥ −2δ
(δ2

4
+

ǫ

α

)

e−
V (2δ)

ǫ . (3.11)
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For δ > 0 small enough, V (2δ) > V (x0) + αx2
0/2 (since the minimum of V (x) +

αx2/2 is only reached for x = x0). Consequently the negative lower bound of I0

(3.11) is negligible with respect to the positive lower bound of I2δ as ǫ becomes
small. We deduce that there exists ǫ0 such that N ′

ǫ(m) > 0 for all m ∈ [0, δ]
and ǫ ≤ ǫ0. Since Nǫ(0) = 0 we conclude that Nǫ(m) > 0 on ]0, δ] and so is χǫ.
Step 5.2. We assume α > ϑ. In this case W0(x) admits a unique minimum
reached for x = 0 and xm converges continuously to 0 as m → 0. Using similar
arguments as those presented in Step 3, we claim that χǫ (resp. χ′

ǫ) converges
towards χ0 (resp. χ′

0) uniformly on [0, a] as ǫ → 0. Due to the regularity of χ0

and by the inequality χ′
0(0) = − V ′′(0)

α+V ′′(0) > 0 we obtain the existence of δ > 0

and ǫ0 > 0 such that χ′
ǫ(m) > 0 for m ∈ [0, δ] and ǫ ≤ ǫ0. χǫ starts in 0 and is

strictly increasing on [0, δ] which implies the announced result.
Step 5.3. We assume that α = ϑ. It suffices then to note that χǫ depends
continuously on the parameter α. The following results can be directly deduced
from the preceding case (Step 5.2) by continuity: χ′

ǫ(0) > 0 and χ′
ǫ(m) ≥ 0 for

m ∈ [0, δ] and ǫ ≤ ǫ0. In fact χǫ vanishes for x = 0 and is increasing on [0, δ].
The inequality χǫ(m) > 0 for all m ∈]0, δ] and ǫ ≤ ǫ0 is an obvious consequence.
Conclusion: Step 4 and 5 lead to the existence of ǫ0 > 0 such that for all ǫ < ǫ0,
χǫ has exactly three zeros: 0 and two other reals, one in the neighborhood of a,
the other one near −a. To each of these averages corresponds a unique invariant
measure obtained by (3.2).

Example: In Theorem 3.2, for all α > 0, as soon as ǫ is small enough, there
exist exactly three invariant measures. There is a one to one correspondence
between these measures and their average through (3.2). It suffices to determine
the averages which are in fact solutions to the equation

χα
ǫ (m) := Ψǫ(m) − m = 0.

These solutions are really close to the solutions of χα
0 (m) = xα

m − m = 0 in the
small noise limit. We recall that xα

m is the global minimum of

Wα
m(x) := V (x) +

α

2
x2 − αmx on R

∗
+.

Let us observe these averages in the particular case: V (x) = x4

4 − x2

2 and
F (x) = α

2 x2. In this case, we compute the parameter c > 0 which vanishes V ′′

and the corresponding parameter mc = c + V ′(c)
α . We obtain:

c =
1√
3

and mc =
3α − 2

3
√

3α
. (3.12)

We shall for this example present graphs of the functions χα
0 (dotted line) and

χα
ǫ for different values of α. We choose ǫ = 1/4. Even if it seems to be not very

small, this value suffices in this example to observe three invariant measures for
each interaction parameter value considered.
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First of all we have to determine the value of xα
m which is solution of the

system (Eα,m):

X3 + (α − 1)X − αm = 0 and 3X2 + (α − 1) ≥ 0.

Its discriminant is equal to

∆α(m) =
α2m2

4
+

(α − 1)3

27
.

We distinguish different cases:

• α = 0: the solution is evident, we get xα
m = 1 and χ0

0(m) = 1 − m for
m > 0 and by symmetry χ0

0(m) = −1 − m for all m < 0. Moreover
χ0

0(0) = 0.

• α > 1 (Figure 2): for all m ∈ R, we get ∆α(m) > 0. Hence

χα
0 (m) = 3

√

αm

2
+
√

∆α(m) + 3

√

αm

2
−
√

∆α(m) − m.

The function χα
0 is C∞-continuous and odd. We observe also that χα

0 (0) =
χα

0 (1) = 0 and χα
0
′(mc) = 0 with mc defined by (3.12). Hence χα

0 is
increasing on ]0, mc[ and decreasing on ]mc,∞[.

• α = 1 (Figure 3) then χα
0 (m) = m

1
3 − m. The limit function is odd,

continuous on R and C∞ on R
∗. Moreover the path is increasing for

m ∈]0, mc[, decreasing for m ∈]mc,∞[ with mc = 1
3
√

3
.

• 2
3 < α < 1 (Figure 4): the discriminant can be negative. Therefore let us
define m0(α) such that ∆α(m0(α)) = 0. Then for all m between 0 and
m0(α), the discriminant is negative and for all m larger than m0(α) it is

positive. We get m0(α) = 2(1 − α)
3
2 /(3α

√
3). We obtain the following

function: χα
0 (0) = 0 and

χα
0 (m) =

{

ϕ
(α)
1 (m) ∀m ∈ [−m0(α); 0[

⋃

]0; m0(α)]

ϕ
(α)
2 (m) ∀m ∈] −∞;−m0(α)]

⋃

[m0(α); +∞[

with

ϕ
(α)
1 (m) = 2

√

1 − α

3
cos

[

1

3
arccos

(

αm

2

√

27

(1 − α)3

)]

− m

ϕ
(α)
2 (m) = 3

√

αm

2
+
√

∆α(m) + 3

√

αm

2
−
√

∆α(m) − m.

Let us note that χα
0 (0+) =

√
1 − α 6= 0 and χα

0 (0−) = −
√

1 − α 6= 0. The
function is C∞-continuous on ]0; m0(α)[∪]m0(α); +∞[ and continuous in
m0(α).
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Moreover the function is increasing on the interval ]0, mc[ and decreasing
for m > mc. The maximum is therefore reached for m = mc. We observe
that mc ≤ mα

0 for α ∈ [2/3, 3/4] and mc ≥ mα
0 for α ∈ [3/4, 1]. We remark

also that the increasing part is smaller and the decreasing part is longer
for smaller values of α.
Furthermore, the part where χα is equal to ϕ

(α)
1 is longer.

• α ≤ 2
3 (Figure 5): the function χα

0 is defined in the same way as in the
preceding case. The important difference is that the function is decreasing
on R

∗
+ since mc defined by (3.12) is non positive.

alpha=1.5
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Figure 2: χα
0 (dotted line) and χα

ǫ

for α > 1
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Figure 3: χα
0 (dotted line) and χα

ǫ

for α = 1
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Figure 4: 2/3 < α < 1
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Figure 5: α < 2/3

4 The general interaction case

We assumed for this study that the self-attraction phenomenon is represented
by a polynomial function F ′, see (F-1). In previous section, we analyzed the
particular linear situation: F ′(x) = αx and proved under suitable conditions
that there exist exactly three invariant measures in the small noise limit. In this
section we shall focus our attention to the general case: the polynomial function
F is of degree n ≥ 2. First we shall present results concerning the symmetric
invariant measure and secondly we discuss the presence of asymmetric measures.
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4.1 Symmetric invariant measures

In the linear case we proved the existence of a unique symmetric invariant
measure. The result is obvious since it suffices to solve the equation (3.3) with
m1(ǫ) = 0. In the general case in order to find the symmetric measure we have
to solve some equation like (3.2) but depending on much more parameters than
just the mean m1(ǫ). The total number of parameters depends in fact on the
degree of F . Instead of trying to solve such system, we choose some other kind
of proof based on a fixed point theorem which permits to prove the existence
of symmetric invariant measures in even more general cases: the interaction
function does not need to be polynomial. In [1], Benachour, Roynette, Talay
and Vallois introduced this method of proof for a self-stabilizing diffusion in
the constant environment case (V ′(x) = 0). This proof can be adapted to our
situation and is based on the following Schauder’s theorem (see for instance [4]
Corollary 11.2 p. 280):

Proposition 4.1. Let B a Banach space, C a closed convex subset and A a
continuous application C → C such that A(C) is compact. Then A admits a
fixed point in C.

In order to use this proposition we introduce some definitions and notations:

1. Let us choose p > 4q where q is defined in (V-6).

2. D =
{

v : R −→ R
+ | v is symmetric and supx∈R+ (1 + |x|p) v(x) < ∞

}

.

3. B = {f : R −→ R ; supx∈R (1 + |x|p) |f(x)| < ∞}. Let us note that D ⊂ B.
B is equipped with the norm | · |∞ where |f |∞ = supx∈R (1 + |x|p) |f(x)|.

4. For all M > 0 we define the function space CM as the subset of all non
negative and even function belonging to B which satisfy:

∫

R

f(x) dx = 1 and sup
x∈R

(1 + |x|p) f(x) ≤ M.

5. For any function f ∈ D we define the operator:

A
ǫ(f)(x) =

exp
[

− 2
ǫ

(

V (x) +
∫ x

0 (F ′ ∗ f) (y)dy
)]

∫

z∈R
exp

[

− 2
ǫ

(

V (z) +
∫ z

0
(F ′ ∗ f) (y)dy

)] (4.1)

=
1

λǫ(f)
exp

[

−2

ǫ

(

V (x) +

∫ x

0

(F ′ ∗ f) (y)dy

)]

,

where λǫ(f) is the normalization factor.

6. For any function u ∈ D, we define the moments γk(u) =
∫

R
|x|ku(x)dx

with 0 ≤ k ≤ p − 2.

Let us just point out that CM is a closed and convex subset of B. Moreover
we have CM ⊂ D ⊂ B. The aim of this section will consist in proving that
the application Aǫ is C0(CM , CM )-continuous and that Aǫ(CM ) is compact.
Therefore Schauder’s theorem implies the existence of a fixed point and as the
matter of fact the existence of an invariant measure in the function space D.
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Lemma 4.2. For all u ∈ CM , we have:

1. γk(u) ≤ MC1 where C1 = 1+ max
0≤r≤p−2

∫

R

|x|r
1 + |x|p dx for all 0 ≤ k ≤ p−2.

2. there exists a constant C2 > 0 independent of M such that

α

2
x2 ≤

∫ x

0

(F ′ ∗ u)(y)dy ≤ C2Mx2(1 + x2q) for all x. (4.2)

Proof. 1. Let u ∈ CM then the function x → |x|k
1+|x|p is integrable on R since

k ≤ p − 2. Moreover the definition of CM implies that (1 + |x|p) u(x) ≤ M for
all x ∈ R. Therefore

γk(u) =

∫

R

|x|k
1 + |x|p (1 + |x|p)u(x)dx ≤ M

∫

R

|x|k
1 + |x|p dx ≤ MC1.

2. Let x ≥ 0. Since u ∈ CM , u is an even function. By (1.5) we have
F ′(x) = αx + F ′

0(x) and (F-3) implies that F ′ and F ′
0 are non negative odd

functions so is F ′
0∗u. Using the inequality developed in the statement of Lemma

4.3 in [1] and the assumption (F-3), we have

F ′
0(x) ≤ 1

2

(

F ′
0(x − y) + F ′

0(x + y)
)

for y ∈ R, x ≥ 0.

Therefore, for x ≥ 0:

∫ x

0

(F ′
0 ∗ u) (y)dy =

∫ x

0

∫ ∞

0

(F ′
0(y − z) + F ′

0(y + z))u(z)dzdy

≥
∫ x

0

∫ ∞

0

2F ′
0(y)u(z)dzdy ≥ 0

From the preceding inequality we deduce

∫ x

0

(F ′ ∗ u) (y)dy =

∫ x

0

(F ′
0 ∗ u) (y)dy +

α

2
x2 ≥ α

2
x2 for all x ≥ 0.

Since
∫ x

0 (F ′ ∗ u)(y)dy is an even function, we get the inequality for all x ∈ R.
3. Due to the symmetry of F ′ ∗ u we restrict our study to x ≥ 0.

∫ x

0

(F ′ ∗ u) (y)dy =
1

2

∫ x

0

∫ ∞

0

(

F ′(y − z) + F ′(y + z)
)

u(z)dzdy.

According to the assumptions (F-1) and (F-4), F is an even polynomial function
of degree smaller than 2q with q ≥ 1. We can therefore write F ′ as follows

F ′(x) =

q−1
∑

k=0

αkx2k+1.
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Therefore defining F(y, z) = F ′(y − z) + F ′(y + z) we get

F(y, z) = y

q−1
∑

k=0

αk

k
∑

j=0

C2j+1
2k+1y

2jz2k−2j

≤ y max
0≤k≤q−1

|αk|22q max
0≤j≤q

k
∑

j=0

y2jz2k−2j ≤ Cy
(

1 + y2q
) (

1 + z2q
)

.

Finally since p > 4q, there exists some constant C′ > 0 such that:
∫ ∞

0

F(y, z)u(z)dz ≤ Cy
(

1 + y2q
)

∫ ∞

0

(

1 + z2q
)

u(z)dz

≤ Cy
(

1 + y2q
)

∫ ∞

0

1 + z2q

1 + zp

(

(1 + zp)u(z)
)

dz

≤ C′yM
(

1 + y2q
)

.

By integration we obtain

∫ x

0

(F ′∗u)(y)dy ≤ C2Mx2(1+x2q) for all x ∈ R+.

Lemma 4.3. There exists M0 > 0 such that for any M ≥ M0, Aǫ(CM ) ⊂ CM .

Proof. By construction Aǫu is a non negative even function which satisfies
∫

R
Aǫu(x)dx = 1. It suffices then to prove that:

sup
x∈R

(1 + |x|p) A
ǫu(x) ≤ M.

By (4.1) and according to Lemma 4.2 we obtain some lower bound for the
normalization factor:

λǫ(u) =

∫ +∞

−∞
exp

[

−2

ǫ

(

V (x) +

∫ x

0

(F ′ ∗ u)(y)dy

)]

dx

≥
∫ +∞

−∞
exp

[

−2

ǫ

(

V (x) + C2Mx2
(

1 + x2q
))

]

dx.

According to both (V-3) and (V-7), we know that V (x) ≤ 0 for all x ∈ [−a; a].
Hence

λǫ(u) ≥
∫ +a

−a

exp

[

−2

ǫ
C2Mx2(1 + a2q)

]

dx.

Let us define ξ(M) = ǫ1/2(2C2M(1 + a2q))−1/2 then limM→∞ ξ(M) = 0. By
the change of variable x := ξ(M)y and Lemma A.1, the following development
holds

∫ +a

−a

exp

[

−2

ǫ
C2Mx2(1 + a2q)

]

dx = 2ξ(M)

∫ a/ξ(M)

0

e−x2

dx

= ξ(M)

{√
π

2
− ξ(M)

a
exp

[

− a2

ξ(M)2

]

+ o

(

ξ(M)

a
exp

[

− a2

ξ(M)2

])}

.

19



As soon as M is large enough, we have λǫ(u) ≥ √
πξ(M)1

4 =
√

πǫ
32C2(1+a2q)

1√
M

.

Therefore 1
λǫ(u) ≤ C(ǫ)

√
M where C(ǫ) is a positive constant determined by

parameters of the global system and ǫ. By (4.1) and the preceding upper bound,
we prove that

(1 + |x|p)Aǫu(x) ≤ C(ǫ)
√

M(1 + |x|p)e− 2
ǫ
V (x) ≤ C′(ǫ)

√
M,

where C′(ǫ) is a positive constant similar to C(ǫ). In order to conclude, it is
sufficient to choose M ≥ C′(ǫ)2: we get immediately Aǫu ∈ CM .

Lemma 4.4. Aǫ is a continuous operator on CM with respect to the uniform
norm.

Proof. We shall find some upper bound for the following expression |Aǫu−Aǫv|.
Step 1. Let u, v ∈ CM . We define:

Λǫ(x) = e−
2
ǫ
V (x)

{

exp

[

−2

ǫ

∫ x

0

(F ′ ∗ u)(y)dy

]

− exp

[

−2

ǫ

∫ x

0

(F ′ ∗ v)(y)dy

]}

= e−
2
ǫ
V (x)−α

ǫ
x2

{

exp

[

−2

ǫ

∫ x

0

(F ′
0 ∗ u)(y)dy

]

− exp

[

−2

ǫ

∫ x

0

(F ′
0 ∗ v)(y)dy

]}

.

It is well known that |e−a − e−b| ≤ |a − b| for a, b ≥ 0. In order to apply
this inequality we have to prove that

∫ x

0
(F ′

0 ∗ v)(y)dy and
∫ x

0
(F ′

0 ∗ u)(y)dy are
non negative. By Lemma 4.2, for each function f ∈ CM the convolution term
∫ x

0 (F ′ ∗ f) (y)dy is lower bounded by α
2 x2. So

∫ x

0 (F ′
0 ∗ f) (y)dy is non negative

due to the relation: F ′(y) = F ′
0(y) + αy. Hence

|Λǫ(x)| ≤ 2

ǫ
e−

2
ǫ
V (x)−α

ǫ
x2

Λǫ
0(x), (4.3)

with Λǫ
0 defined by

∣

∣

∣

∣

∫ x

0

(F ′
0 ∗ u)(y)dy −

∫ x

0

(F ′
0 ∗ v)(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

∫

R

F ′
0(y − z)(u(z)− v(z))dzdy

∣

∣

∣

∣

.

Since u and v are elements of CM , they are even functions and the integral with
respect to the variable z becomes

Λǫ
0 =

∣

∣

∣

∣

∫ x

0

∫ ∞

0

(F ′
0(z + y) − F ′

0(z − y)) (u(z) − v(z)) dzdy

∣

∣

∣

∣

≤
∫ x

0

∫ ∞

0

|F ′
0(z + y) − F ′

0(z − y)| |u(z) − v(z)| dzdy. (4.4)

The assumption (F-4) gives informations about the increments of the interaction
function: there exist two positive constants Cq and C such that

|F ′
0(z + y) − F ′

0(z − y)| ≤ 2|y|Cq

(

1 + |z + y|2q−2 + |z − y|2q−2
)

≤ 2|y|Cq

(

1 + 22q−1|z|2q−2 + 22q−1|y|2q−2
)

≤ C|y|
(

1 + |y|2q−1 + |z|2q−1
)

≤ C|y|
(

1 + |y|2q−1
) (

1 + |z|2q−1
)

. (4.5)
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We shall now find some upper bound for |u(z)− v(z)| in (4.4). Since u, v ∈ CM

then u(z)(1 + |z|p) ≤ M and v(z)(1 + |z|p) ≤ M , ∀z ∈ R. The obvious upper

bound |u(z)−v(z)|(1+ |z|p) ≤ 2M permits to obtain
√

|u(z) − v(z)| ≤
√

2M
1+|z|p .

Consequently, for all z of R, |u(z) − v(z)| ≤
√

||u − v||∞
√

2M
1+|z|p where ‖ · ‖∞

denotes the uniform norm. Using this inequality, (4.5) and (4.4) in order to
estimate Λǫ

0, we get

|Λǫ
0(x)| ≤ C

√

||u − v||∞
∫ x

0

|y|
(

1 + |y|2q−1
)

dy

∫ ∞

0

√

2M

1 + |z|p
(

1 + z2q−1
)

dz.

Since p > 4q the integral with respect to the variable z is finite and can be
considered like a constant term. By (4.3) and using the positivity of αx2, we
obtain directly the existence of some positive constant C > 0 such that

|Λǫ(x)| ≤ C

√

M

ǫ

√

||u − v||∞x2
(

1 + |x|2q−1
)

e−
2
ǫ
V (x).

According to (V-2), the expression x2
(

1 + |x|2q−1
)

e−
2
ǫ
V (x) can be bounded by

some constant independent of ǫ. Therefore

||Λǫ||∞ ≤ C(M, ǫ)
√

||u − v||∞.

Two results can be deduced: firstly ||Λǫ||∞ is finite and secondly ||Λǫ||∞ becomes
small as ||u − v||∞ decreases towards 0.
Step 2. For any x ∈ R, we introduce:

Ωǫ(x) =
1

λǫ(u)λǫ(v)
exp

[

−2

ǫ

(
∫ x

0

(F ′ ∗ v)(y)dy + V (x)

)]

. (4.6)

Then the difference Aǫu(x) − Aǫv(x) can be decomposed as follows:

A
ǫu(x) − A

ǫv(x) =
1

λǫ(u)
Λǫ(x) + (λǫ(v) − λǫ(u))Ωǫ(x). (4.7)

Taking the uniform norm, we get

||Aǫu − A
ǫv||∞ ≤ 1

λǫ(u)
||Λǫ||∞ + |λǫ(v) − λǫ(u)| ||Ωǫ||∞ . (4.8)

We have shown in the proof of Lemma 4.3 that 1
λǫ(u) ≤ C(ǫ)

√
M and moreover

||Λǫ||∞ ≤ C(M, ǫ)
√

||u − v||∞. We deduce that

1

λǫ(u)
||Λǫ||∞ ≤ C′(M, ǫ)

√

||u − v||∞.

It is then sufficient to find a similar inequality for the term |λǫ(v) − λǫ(u)| ||Ωǫ||∞
in order to conclude the proof.

|λǫ(v) − λǫ(u)| =

∣

∣

∣

∣

∫

R

Λǫ(x)dx

∣

∣

∣

∣

≤ C

√

M

ǫ

√

||u − v||∞
∫ +∞

−∞
x2
(

1 + |x|2q−1
)

e−
2
ǫ
V (x)dx.
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According to (V-4), the integral with respect to the variable x is finite and does
not depend on M . We have immediately

|λǫ(v) − λǫ(u)| ≤ C(M, ǫ)
√

||u − v||∞.

It remains to estimate Ωǫ(x). By (V-4) and (4.2), we have

∫ x

0

(F ′ ∗ v) (y)dy + V (x) ≥ C4x
4 +

(α

2
− C2

)

x2

for all x positive. Furthermore the symmetry property of V and F permits to
extend the bound to all x ∈ R. The function exp

[

− 2
ǫ

(∫ x

0
(F ′ ∗ v)(y)dy + V (x)

)]

is then bounded by a constant depending on ǫ. Moreover we have already proved
that 1

λǫ(f) ≤ C(ǫ)
√

M for all elements f of the function space CM . This bound

can therefore be applied to u and v. Finally we obtain the existence of some
constant C(ǫ) > 0 such that, for all real value x, |Ωǫ(x)| ≤ C(ǫ)M .
By (4.7), we have

||Aǫu − A
ǫv||∞ ≤ C′(M, ǫ)

√

||u − v||∞ + C(M, ǫ)
√

||u − v||∞C(ǫ)M.

In other words,
||Aǫu − A

ǫv||∞ ≤ C′′(M, ǫ)
√

||u − v||∞
what finishes the proof. Here C, C′ and C′′ are positive constants.

We have now all the keys for proving the existence of some symmetric invari-
ant measure. Indeed we have just presented some continuous mapping which
stabilizes a convex subset of the Banach space B.

Theorem 4.5. There exists a symmetric invariant measure for (1.1).

Proof. Let M0 defined by Lemma 4.3. Taking M ≥ M0, let us prove that
Aǫ(CM ) is a compact set. For this reason we shall estimate the following deriva-
tive:

(Aǫu)′ (x) = −2

ǫ

(F ′ ∗ u)(x) + V ′(x)

λǫ(u)
exp

[

−2

ǫ

(
∫ x

0

(F ′ ∗ u)(y)dy + V (x)

)]

.

Let us analyze the different elements of this derivative. We have already seen
in the proof of Lemma 4.3 that for any u ∈ CM the normalization factor λǫ(u)
satisfies

1

λǫ(u)
≤ C(ǫ)

√
M. (4.9)

By (4.2), we obtain the bound: 0 ≤
∫ x

0
(F ′ ∗ u) (y)dy ≤ C2Mx2

(

1 + x2q
)

.
Furthermore by (V-4) and (V-7), we get some estimation of V and its derivative:

V (x) ≥ C4x
4 − C2x

2 and |V ′(x)| ≤ Cq

(

1 + |x|2q
)

for all x ∈ R. (4.10)
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It remains to find some upper bound for the convolution term: |(F ′ ∗ u) (x)|
with x ∈ R+. By (F-4) and since u is an even function,

|(F ′ ∗ u) (x)| =

∣

∣

∣

∣

∫

R

F ′(x − z)u(z)dz

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣
F ′(x + z) + F ′(x − z)

∣

∣

∣
u(z)dz

≤ Cq

∫ ∞

0

{

|x + z|
(

1 + |x + z|2q−2
)

+ |x − z|
(

1 + |x − z|2q−2
)

}

u(z)dz.

Therefore:

|(F ′ ∗ u) (x)| ≤
∫

R+

Cq2
2q−1

{

|x|2q−1 + |z||x|2q−2

+|x|
(

1 + |z|2q−2
)

+ |z|
(

1 + |z|2q−2
)

}

u(z)dz.

By definition of CM , we have u(z) ≤ M
1+|z|p for p > 4q. Hence the moments of

order 1, 2q − 2 and 2q − 1 are bounded: there exist some constants C and C′,
independent of the different parameters appearing in the system, such that

|(F ′ ∗ u) (x)| ≤ C
(

1 + |x| + |x|2q−2 + |x|2q−1
)

≤ C′ (1 + |x|2q+1
)

. (4.11)

To sum up: using (4.9), (4.10) and (4.11) we obtain

∣

∣(Aǫu)′ (x)
∣

∣ ≤ 2

ǫ
C(ǫ)

√
M(1 + |x|2q+1) exp

[

−2

ǫ

(

C4x
4 − C2x

2
)

]

.

Finally we deduce that there exists some constant Cǫ such that
∣

∣(Aǫu)
′
(x)
∣

∣ ≤ Cǫ

for all x ∈ R.
Let us prove now that AǫCM is compact. To this end, we take some sequence
of functions (un)n∈N

in CM and focus our attention to the sequence (Aǫun)n∈N
.

According to the definition of Aǫ, for all x real the set {Aǫun(x), n ∈ N} is
compact. Furthermore the bound of

∣

∣(Aǫu)
′
(x)
∣

∣ is independent of the variables
x and u ∈ CM : the equicontinuity condition for the application of Ascoli’s
theorem is satisfied. Hence, we deduce that there exists some subsequence of
Aǫun which converges to a limit function v belonging to AǫCM .
By Lemma 4.3 and Lemma 4.4 we can apply Schauder’s theorem (Proposition
4.1) for the operator Aǫ on the function space CM with M ≥ M0. We deduce the
existence of some fixed point which is, by construction, a symmetric stationary
measure for the diffusion (1.1).

4.2 Example: F (x) = β

4
x

4 + α

2
x

2

We have just shown the existence of a symmetric invariant measure for general
self-stabilizing diffusions using fixed point arguments. Now let us study some
particular case by a completely different way: the procedure shall be close to
that developed in section 3.2. Let V be a potential satisfying (V-1)-(V-7).
Let uǫ be a symmetric invariant measure (Theorem 4.5). We denote by m2(ǫ)
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its second moment. The couple (m2(ǫ), uǫ) is solution to some system like (3.1)-
(3.2). Indeed

F ∗ uǫ(x) =

∫

R

F (x − z)uǫ(z)dz

=
α

2
x2 +

β

4
x4 +

3βm2(ǫ)

2
x2 +

(

α

2
m2(ǫ) +

β

4

∫

R

z4uǫ(z)dz

)

,

with β ≥ 0 since F ′ is a convex function on R+.
The expression delimited by the brackets is just a constant so we obtain the
following system of equations for m2(ǫ) and uǫ: m2(ǫ) =

∫

R
x2ν(m2(ǫ), x)dx

and uǫ(x) = ν(m2(ǫ), x) where

ν(m, x) =
exp

[

− 2
ǫ

(

V (x) + F (x) + 3βm
2 x2

)]

∫∞
0 exp

[

− 2
ǫ

(

V (z) + F (z) + 3βm
2 z2

)]

dz
.

Therefore we introduce the function χǫ(m) =
∫∞
0 x2ν(m, x)dx−m. By Theorem

4.5, we know that χǫ admits at least one zero on R+. Computing the derivative
of χǫ, we prove that the considered function is decreasing:

χ′
ǫ(m) = −3β

2

{

∫ ∞

0

x4ν(m, x)dx −
(
∫ ∞

0

x2ν(m, x)dx

)2
}

− 1 < 0.

The conclusion is immediate: there is a unique symmetric invariant measure.
Obviously this result and the kind of method used to prove it are particular to
our simple example. If the degree of the interaction function is strictly larger
than 4 then it isn’t enough to know the second moment in order to define the
invariant measure: we need more moments and the proof of the uniqueness
becomes awkward.

4.3 Outlying invariant measures

This section is essentially motivated by the uniqueness question for invariant
measures. The existence of some symmetric measure was just proved in Sec-
tion 4.1. It suffices now to point out asymmetric stationary measures for self-
stabilizing diffusions. In the general setting, the interaction function is polyno-

mial: set F (x) =
∑n

k=1
F (2k)(0)

(2k)! x2k.

Let u be the density of some probability measure with respect to the Lebesgue
measure and µ1, · · · , µ2n−1 denote its moments of orders 1 to 2n−1 respectively.
We assume they are finite. Then the difference D(x) := F ∗ u(x) − F ∗ u(0)
satisfies

D(x) = F (x − a) − F (−a) +

2n−1
∑

p=1

(−1)p

p!
(µp − ap)

n
∑

j≥ 1+p
2

F (2j)(0)

(2j − p)!
x2j−p

= F (x − a) − F (a) +

2n−1
∑

p=1

(−1)p

p!
(µp − ap)

(

F (p)(x) − F (p)(0)
)

.
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Hence D(x) = Zm(x) − Zm(0) where

Zm(x) = F (x − a) +

2n−1
∑

p=1

(−1)p

p!
(mp − ap)F (p)(x). (4.12)

Since the convolution product can be expressed as a polynomial function which
coefficients just depend on the moments of u, then the exponential expres-
sion of invariant measure (2.3) can be specified. Indeed equation (2.3) can be
transformed into some system of equations whose unknown factors are the mo-
ments of the measure. In order to introduce this system, let us define, for all
k ∈ [1; 2n− 1], the function

ϕ
(ǫ)
k (m1, · · · , m2n−1) =

∫

R
xk exp

[

− 2
ǫ (V (x) + Zm(x) − Zm(0))

]

dx
∫

R
exp

[

− 2
ǫ (V (x) + Zm(x) − Zm(0))

]

dx

=

∫

R
xk exp

[

− 2
ǫ Wm(x)

]

dx
∫

R
exp

[

− 2
ǫ Wm(x)

]

dx
(4.13)

with the potential Wm(x) = V (x) + Zm(x). We construct the mapping:

Φ(ǫ) = (ϕ
(ǫ)
1 , . . . , ϕ

(ǫ)
k , . . . , ϕ

(ǫ)
2n−1). (4.14)

The measure associated to the density function u is invariant if and only if its
moments vector (µ1, · · · , µ2n−1) is a fixed point of the map Φ(ǫ).
We are going to show the existence of an asymmetric invariant measure defined
by 2n − 1 parameters close to a, · · · , a2n−1 respectively, in other words the
outlying measure is close to the Dirac mass in the point a. More precisely, we
shall prove that there exists a parallelepiped stable by Φ(ǫ), which converges
to the point (a, a2, · · · , a2n−1) as ǫ tends to 0. As in the linear case, we shall
proceed by applying the mean value theorem in order to obtain asymptotic
developments in the small noise limit.

Theorem 4.6. Let (ηǫ)ǫ some sequence satisfying lim
ǫ→0

ηǫ = 0 and lim
ǫ→0

ǫ/ηǫ = 0.

Under the condition

2n−2
∑

p=0

∣

∣F (p+2)(a)
∣

∣

p!
ap < α + V ′′(a), (4.15)

for any ρ > 0, there are at least two outlying measures u+
ǫ and u−

ǫ satisfying,
for ǫ small enough

∣

∣

∣

∣

∫

R

xku±
ǫ (x)dx − (±a)k

∣

∣

∣

∣

≤ ρ ηǫ. (4.16)

Proof. Let λ > 0. Let us define the parallelepiped

C(ǫ) =

2n−1
∏

p=1

[ap − pap−1ληǫ, a
p + pap−1ληǫ].
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Let m be an element of C(ǫ) then there exist some coordinates (rp)1≤p≤2n−1

which determine m through the equations mp = ap+rp ηǫ. By (4.12) and (4.13),
we get

ϕ
(ǫ)
k (m) =

∫

R
xke−

2
ǫ
(V (x)+F (x−a)) exp

[

− 2ηǫ

ǫ

∑2n−1
p=1

(−1)prp

p! F (p)(x)
]

dx

∫

R
e−

2
ǫ
(V (x)+F (x−a)) exp

[

− 2ηǫ

ǫ

∑2n−1
p=1

(−1)prp

p! F (p)(x)
]

dx
.

We apply Lemma A.7 and Remark A.8 to the functions U(x) = V (x)+F (x−a),

f(x) = xk, µp = rp and Gp(x) = (−1)p

p! F (p)(x). We obtain:

ϕ
(ǫ)
k (m) = ak − ηǫ

kak−1

α + V ′′(a)

2n−1
∑

p=1

(−1)prp

p!
F (p+1)(a) + o(ηǫ),

uniformly with respect to the coordinates (rp)p. By definition of the paral-
lelepiped C(ǫ) the coordinates satisfy |rp| ≤ pap−1λ. Therefore, under condition
(4.15),

∣

∣

∣
ϕ

(ǫ)
k (m) − ak

∣

∣

∣
≤ ηǫλ

kak−1

α + V ′′(a)

2n−1
∑

p=1

∣

∣F (p+1)(a)
∣

∣

p!
pap−1 + o(ηǫ)

< ηǫkak−1λ + o(ηǫ).

Since this estimate is uniform with respect to the coordinates, as soon as ǫ is

small enough, we have |ϕ(ǫ)
k (m) − ak| < kak−1ληǫ, that means that Φ(ǫ)(m) ∈

C(ǫ).
Let us note that C(ǫ) is a convex, closed and bounded subset of R

2n−1. Since
the space dimension is finite, the continuity of Φ(ǫ) implies that the closure of
the parallelepiped’s image is a compact set.
We can apply Schauder’s Theorem (Proposition 4.1) and obtain that there exists
some fixed point in the compact. In other words there exists m ∈ C(ǫ) such
that the measure associated to the density

uǫ,m(x) =
exp

[

− 2
ǫ Wm(x)

]

∫

R
exp

[

− 2
ǫ Wm(z)

]

dz
(4.17)

is invariant. In a similar way, the measure defined by m− is also invariant; here
m−(k) = (−1)kmk. To conclude: we have at least two outlying measures, one
around a and the second one around −a.

We can not prove at this stage the uniqueness of the couple of outlying in-
variant measures (this question shall be explored in a subsequent work). We can
effectively imagine that other outlying measures could exist around a, around −a
or even around other areas. Nevertheless we can develop a sharper description
of one particular outlying measure: the measure close to δa where δ represents
the Dirac measure. To do this it suffices to estimate its different moments, that
requires the following preliminary result.

26



Lemma 4.7. There exists a unique solution (τ0
1 , · · · , τ0

2n−1) to the following
Cramer’s system

2n−1
∑

p=1

(−1)p

p!
F (p+1)(a)τp +

α + V ′′(a)

kak−1
τk =

V (3)(a)

4(α + V ′′(a))
− k − 1

4a
, (4.18)

for 1 ≤ k ≤ 2n − 1. This solution is given by

τ0
k = kak−1 aV (3)(a) − (k − 1)V ′′(a)

4aV ′′(a) (α + V ′′(a))
, 1 ≤ k ≤ 2n − 1. (4.19)

Proof. Let us denote by I2n−1 the unit matrix of dimension 2n − 1 and for
A ∈ R

2n−1, AT represents the transpose of the vector A. Moreover we adopt
the following notation (xk)1≤k≤2n−1 = (x1, . . . , x2n−1). The system (4.18) can
be written in this way: we define T = (τk)T1≤k≤2n−1 then

[

(α + V ′′(a))I2n−1 + C1C
T

2

]

T =
(

kak−1
( V (3)(a)

4α + 4V ′′(a))
− k − 1

4a

))T

1≤k≤2n−1

with the vectors CT

1 = (kak−1)1≤k≤2n−1 and CT

2 =
(

(−1)k

k! F (k+1)(a)
)

1≤k≤2n−1
.

We define therefore

A = (α + V ′′(a))I2n−1 + C1C
T

2 . (4.20)

Let us note that C1C
T

2 C1C
T

2 = (CT

2 C1)C1C
T

2 and

CT

2 C1 =

2n−1
∑

p=1

(−1)p

p!
F (p+1)(a)pap−1 = −

2n−2
∑

p=0

(−1)p

p!
F (p+2)(a)ap = −F ′′(0).

Since F ′′(0) = α, we obtain

A2 = (α + V ′′(a))2I2n−1 +
(

2(α + V ′′(a)) + CT

2 C1

)

C1C
T

2

= (α + V ′′(a))2I2n−1 +
(

2(α + V ′′(a)) − F ′′(0)
)

C1C
T

2

= (α + V ′′(a))2I2n−1 +
(

α + 2V ′′(a)
)

C1C
T

2

= (α + 2V ′′(a))A − V ′′(a) (α + V ′′(a)) I2n−1,

We deduce that A is invertible, that is (4.18) is a Cramer’s system, and using
(4.20) we get explicitly the inverse:

A−1 =
1

V ′′(a)(α + V ′′(a))

(

(α + 2V ′′(a))I2n−1 − A
)

=
1

V ′′(a)(α + V ′′(a))

(

V ′′(a)I2n−1 − C1C
T

2

)

.
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Therefore the Cramer’s system (4.18) admits a unique solution given by

τ0
k =

1

V ′′(a)(α + V ′′(a))

{

V ′′(a)kak−1 aV (3)(a) − (k − 1)(α + V ′′(a))

4a (α + V ′′(a))

− kak−1
2n−1
∑

p=1

(−1)p

p!
F (p+1)(a)pap−1 aV (3)(a) − (p − 1)(α + V ′′(a))

4a (α + V ′′(a))

}

=
kak−1

4aV ′′(a)(α + V ′′(a))2

{

aV (3)(a)

[

V ′′(a) −
2n−1
∑

p=1

(−1)pap−1

(p − 1)!
F (p+1)(a)

]

− (α + V ′′(a))

[

(k − 1)V ′′(a) −
2n−1
∑

p=2

(−1)p

(p − 2)!
F (p+1)(a)ap−1

]}

= kak−1 aV (3)(a) − (k − 1)V ′′(a)

4aV ′′(a)(α + V ′′(a))
.

Indeed, we use

2n−1
∑

p=1

(−1)p

(p − 1)!
F (p+1)(a)ap−1 = −F ′′(0) = −α,

and
2n−1
∑

p=2

(−1)p

(p − 2)!
F (p+1)(a)ap−1 = aF (3)(0) = 0.

Theorem 4.6 points out the existence of two outlying measures, one con-
centrated around a and an other around −a. According to Lemma 4.7 we get
some sharper upper bound for the distance between δa and some asymmetric
invariant measure.

Theorem 4.8. Under the condition (4.15), for any δ > 0, there exists ǫ0 such
that Φ(ǫ) admits two fixed points m± with

∣

∣

∣
m±

k (ǫ) −
(

(±1)kak − (±1)kτ0
k ǫ
)∣

∣

∣
≤ δ

∣

∣τ0
k

∣

∣ ǫ, 1 ≤ k ≤ 2n − 1, ǫ ≤ ǫ0. (4.21)

Proof. It is similar to the proof of Theorem 4.6.
Let δ > 0 and C(ǫ) =

∏2n−1
p=1 [ap − (τ0

p + pap−1δ)ǫ, ap − (τ0
p − pap−1δ)ǫ]. We

choose an element m in the parallelepiped C(ǫ). For all 1 ≤ p ≤ 2n − 1, there
exists a coordinate δp ∈ [−δ; δ] such that mp = ap − (τ0

p + pap−1δp)ǫ. By (4.12)
and (4.13), we obtain

ϕ
(ǫ)
k (m) =

∫

R
xk exp

[

2
∑2n−1

p=1
(−1)p

p! (τ0
p + pap−1δp)F

(p)(x)
]

e−
2
ǫ
(V (x)+F (x−a))dx

∫

R
exp

[

2
∑2n−1

p=1
(−1)p

p! (τ0
p + pap−1δp)F (p)(x)

]

e−
2
ǫ
(V (x)+F (x−a))dx
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We apply Lemma A.5 and Remark A.8 with the following functions: U(x) =

V (x) + F (x − a), µp = τ0
p + pap−1δp, G = 0 and fp(x) = 2 (−1)p

p! F (p)(x). Hence

ϕ
(ǫ)
k (m) = ak − kak−2

4(α + V ′′(a))2

[

aV (3)(a) − (α + V ′′(a))
(

(k − 1)

+ 4a

2n−1
∑

p=1

(−1)p

p!
(τ0

p + pap−1δp)F
(p+1)(a)

)]

ǫ + o(ǫ)

= ak − 1

α + V ′′(a)

[kak−1V (3)(a)

4(α + V ′′(a))
− kak−1

2n−1
∑

p=1

(−1)pτ0
p

p!
F (p+1)(a)

− k(k − 1)ak−2

4
− kak−1

2n−1
∑

p=1

(−1)pδpa
p−1

(p − 1)!
F (p+1)(a)

]

ǫ + o(ǫ).

This estimate is uniform with respect to the variables (δp)p.

We denote by dǫ
k the difference |ϕ(ǫ)

k (m)−ak+τ0
k ǫ|. We compute this expression:

dǫ
k ≤

∣

∣

∣

∣

∣

kak−1V (3)(a)

4(α + V ′′(a))2
− kak−1

α + V ′′(a)

2n−1
∑

p=1

(−1)p

p!
τ0
p F (p+1)(a)

− k(k − 1)ak−2

4(α + V ′′(a))
− τ0

k − kak−1

α + V ′′(a)

2n−1
∑

p=1

(−1)p

(p − 1)!
δpF

(p+1)(a)ap−1

∣

∣

∣

∣

∣

ǫ + o(ǫ).

According to the Lemma 4.7 and using the condition (4.15), we obtain, for ǫ
small enough,

∣

∣

∣
ϕ

(ǫ)
k (m) − ak + τ0

k ǫ
∣

∣

∣
≤ kak−1

α + V ′′(a)

2n−1
∑

p=1

ap−1

(p − 1)!
|δp||F (p+1)(a)|ǫ + o(ǫ)

≤ δ
kak−1

α + V ′′(a)

2n−2
∑

p=0

1

p!
|F (p+2)(a)|apǫ + o(ǫ) < kak−1δǫ.

In other words, Φ(ǫ)(m) ∈ C(ǫ) in the small noise limit. The application of
Schauder’s Theorem (Proposition 4.1) permits to prove the existence of some
fixed point in the compact. Therefore there exists m ∈ C(ǫ) such that the
associated measure uǫ,m(x) defined by (4.17) is invariant. In the same way,
the measure defined by m− is invariant with m−(k) = (−1)kmk. Finally the
continuous map Φ(ǫ) admits two fixed points m±(ǫ) satisfying (4.21).

Remark 4.9. 1. In the particular case: F (p)(a) ≥ 0 for all p ∈ N, the condition
for the existence of outlying measures becomes V ′′(a) > F ′′

0 (2a) where F0 is
defined by F (x) = α

2 x2 + F0(x).
2. In the linear interaction case: F (x) = α

2 x2, (4.15) is equivalent to the simple
condition V ′′(a) > 0 which is in fact always satisfied according to (V-3). In
other words we obtain the existence result presented in the linear interaction
case.
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A Annexe

We shall present here some useful asymptotic results which are close to the
classical Laplace’s method.

Lemma A.1. Let M > 0. Let us assume that U is C2([M,∞[)-continuous,

U(x) 6= 0 and U ′′(x) > 0 for all x ∈ [M,∞[ and limx→∞
U ′′(x)

(U ′(x))2 = 0. If

x → e−U(x) is integrable on R then for any m ∈ R:

∫ +∞

x

e−U(t)dt ≈ e−U(x)

U ′(x)
and

∫ x

m

eU(t)dt ≈ eU(x)

U ′(x)
as x → ∞. (A.1)

Proof. Since x → e−U(x) is integrable and since these properties are satisfied:
U(x) 6= 0 and U ′′(x) > 0 for x ≥ M , we know that limx→∞ U(x) = +∞.
Furthermore there exists some M0 > M such that U ′(x) > 0 for x ≥ M0. Hence
for t ≥ M0 we obtain

e−U(t) =

(

−e−U(t)

U ′(t)

)′

− U ′′(t)

(U ′(t))2
e−U(t).

Therefore

I :=

∫ ∞

x

e−U(t)dt =
e−U(x)

U ′(x)
−
∫ ∞

x

U ′′(t)

(U ′(t))2
e−U(t)dt, x ≥ M0.

Using the assumptions of the statement we have
∫∞

x
U ′′(t)

(U ′(t))2 e−U(t)dt ≥ 0. Hence

I ≤ e−U(x)U ′(x)−1. Moreover limx−→±∞
U ′′(x)

(U ′(x))2 = 0. As a consequence for any

δ > 0, there exists M1(δ) > M0 such that (1 + δ)I ≥ e−U(x)

U ′(x) . The estimation

of I can be deduced easily. The second equivalence can be obtained by similar
arguments.

Lemma A.2. Set ǫ > 0. Let U and G two C∞(R)-continuous functions. We
define Uµ = U + µG for µ belonging to some compact interval I of R. Let us
introduce some interval [a, b] satisfying: U ′

µ(a) 6= 0, U ′
µ(b) 6= 0 and Uµ(x) admits

some unique global minimum on the interval [a, b] reached at xµ ∈]a, b[ for all
µ ∈ I. We assume that there exists some exponent k0 independent of µ ∈ I
such that 2k0 = minr∈N∗

{

U
(r)
µ (xµ) 6= 0

}

. Then taking the limit ǫ → 0 we get

I0 :=

∫ b

a

e−
Uµ(t)

ǫ dt =
1

k0

(

ǫ(2k0)!

U2k0
µ (xµ)

)
1

2k0

Γ

(

1

2k0

)

e−
Uµ(xµ)

ǫ (1 + oI(1)), (A.2)

where Γ represents the Euler function and oI(1) converges towards 0 uniformly
with respect to µ ∈ I.
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Proof. We define ηµ =
U(2k0)

µ (xµ)

(2k0)! . Let us note that ηµ depends continuously on

µ. Since Uµ is regular and admits some unique global minimum for x = xµ, there
exists τ0 > 0 independent of the parameter µ such that τ0 < min {xµ − a; b − xµ}
for all µ ∈ I and such that the minimum on the interval [a; xµ − τ ]

⋃

[xµ + τ ; b]
denoted by Uµ(τ) is reached on the boundary {xµ − τ ; xµ + τ} for all τ < τ0.
Consequently

∫ xµ−τ

a

exp

[

−Uµ(t)

ǫ

]

dt +

∫ b

xµ+τ

exp

[

−Uµ(t)

ǫ

]

dt ≤ (b − a) exp

[

−
Uµ(τ)

ǫ

]

.

Defining Iτ =
∫ xµ+τ

xµ−τ
exp

[

−Uµ(t)
ǫ

]

dt, we obtain the following bound:

|I0 − Iτ | ≤ (b − a) exp

[

−
Uµ(τ)

ǫ

]

. (A.3)

Let us first estimate Iτ . By the mean value theorem, there exists some constant
C > 0 independent of µ ∈ I such that, in a neighborhood of xµ, the following
bound is satisfied:

∣

∣Uµ(t) − Uµ(xµ) − ηµ(t − xµ)2k0
∣

∣ ≤ C|t − xµ|2k0+1. Hence

J1 exp
[

− Cτ2k0+1

ǫ

]

≤ Iτ

2
exp

Uµ(xµ)

ǫ
≤ J1 exp

[Cτ2k0+1

ǫ

]

, (A.4)

where

Jτ =

∫ τ

0

exp

[

1

ǫ
ηµt2k0

]

dt =

(

ǫ

ηµ

)
1

2k0 1

2k0

∫ τ2k0
ηµ
ǫ

0

t
1

2k0
−1e−tdt,

by the change of variable t :=
(

ǫ
ηµ

)
1

2k0
(t′)

1
2k0 . A simple integration leads to

−τ1−2k0

(ηµ

ǫ

)
1

2k0
−1

e−τ2k0
ηµ
ǫ ≤

∫ τ2k0
ηµ
ǫ

0

t
1

2k0
−1e−tdt − Γ

(

1

2k0

)

≤ 0. (A.5)

In order to conclude we choose a particular value for the variable τ namely

τ = exp
[

log(ǫ)

2k0+ 1
2

]

. Then we get: for C ∈ R, l > 0,

lim
ǫ→0

eC τ2k0+1

ǫ = 1, lim
ǫ→0

e−ηµ
τ2k0

ǫ
τ1−2k0

ǫ
1

2k0
−1

= lim
ǫ→0

ǫ−le
Uµ(xµ)−Uµ(τ)

ǫ = 0.

These convergences are uniform with respect to the parameter µ. Applying these
asymptotic results to (A.3), (A.4) and (A.5) permits to prove the statement of
the lemma.

Lemma A.3. Let U and G be two C∞([a, b])-functions. We define Uµ = U +µG
for µ belonging to some compact interval I of R. We assume that Uµ admits a
unique global minimum on the interval ]a; b[ reached at x = xµ, with U ′′

µ (xµ) > 0.
Let fm be a C3-continuous function for any parameter value m belonging to
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some compact set M. We assume that there exists some constant λ such that

|f (i)
m (x)| ≤ λ for all m ∈ M, x ∈ [a, b] and 0 ≤ i ≤ 3. Then the following

asymptotic result holds:

∫ b

a

fm(t)e
−2Uµ(t)

ǫ dt =

√

πǫ

U2
e−

2Uµ(xµ)

ǫ

{

fm(xµ) + γ0(µ)ǫ + oIM(ǫ)
}

(A.6)

with

γ0(µ) = fm(xµ)

(

5 U2
3

48 U3
2

− U4

16 U2
2

)

− f ′
m(xµ)

U3

4 U2
2

+
f ′′

m(xµ)

4 U2
. (A.7)

Here Uk = U
(k)
µ (xµ) and oIM(ǫ)/ǫ converges to 0 as ǫ becomes small uniformly

with respect to the parameters m and µ.

Proof. First we split the integral into two parts:

I =

∫ xµ+ρ

xµ−ρ

fm(t)e
−2Uµ(t)

ǫ dt +

∫

[xµ−ρ;xµ+ρ]c
T

[a;b]

fm(t)e
−2Uµ(t)

ǫ dt = I1 + I2

with some arbitrary ρ > 0 which should be specified in the following.

Step 1. We shall prove that the second integral is negligible as ρ2

ǫ → ∞ that

means that I2 = oIM{ǫ3/2e−
2U(xµ)

ǫ }. We get

I2 ≤ (b − a) sup
z∈[a,b]

|fm(z)| exp

[

−2
infz∈[xµ−ρ;xµ+ρ]c Uµ(z)

ǫ

]

(A.8)

Since the global minimum of Uµ is unique and due to the regularity of Uµ with
respect to the parameter µ, we deduce that the minimum of the function on the
interval [xµ − ρ; xµ + ρ]c

⋂

[a; b] is reached on the boundary provided that ρ is
small enough. The development Uµ(xµ ± ρ) = Uµ(xµ) + 1

2U ′′
µ (xµ)ρ2 + oI(ρ2)

implies, as already claimed that I2 = oIM
{

ǫ3/2e−
2U(xµ)

ǫ

}

as ρ2/ǫ → ∞.

Step 2. Let us focus our attention to the integral on the domain [xµ−ρ; xµ+ρ].
The function fm can be developed in the neighborhood of xµ:

fm(x) = fm(xµ)+f ′
m(xµ)(x−xµ)+

1

2
f ′′

m(xµ)(x−xµ)2+
1

6
f (3)

m (wm,µ(x))(x−xµ)3

with the value wm,µ(x) between xµ and x. Taking into account these different

terms, the integral I1 can be split into 4 different integrals respectively Ĩ0,...,Ĩ3.
For each integral we shall analyze the asymptotic behavior.
Step 2.1. Asymptotic behavior of Ĩ3. By definition wm,µ(t) ∈ [xµ − ρ; xµ + ρ]

when t ∈ [xµ − ρ; xµ + ρ]. Moreover, by assumption |f (3)
m (wm,µ(t))| is upper

bounded by some constant λ > 0 independent of m and µ. By Lemma A.2
applied to 2Uµ , for ρ < 1 and ǫ small, we obtain the existence of some constant
C > 0, independent of the parameters m and µ, such that

|Ĩ3| ≤
λ

6
ρ3

∫ (xµ+1)∧b

(xµ−1)∨a

e−
2Uµ(t)

ǫ dt ≤ C
√

πρ3
√

ǫ

U ′′
µ (xµ)

e−
2Uµ(xµ)

ǫ .
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Hence, if ρ3 = o(ǫ) then the following asymptotic result holds

Ĩ3 = oIM
{

ǫ
3
2 e−

2U(x0)
ǫ

}

. (A.9)

Step 2.2. Asymptotic behavior of Ĩ2. Using the C3-regularity of Uµ that is

Uµ(t) = Uµ(xµ)+ 1
2U ′′

µ (xµ)(t−xµ)2+ 1
6U

(3)
µ (yµ(t))(t−xµ)3 with yµ(t) belonging

to [xµ − ρ; xµ + ρ], we get

Ĩ2 =
f ′′

m(xµ)

2
e−

2Uµ(xµ)

ǫ

∫ xµ+ρ

xµ−ρ

(t − xµ)2e−
U′′

µ (xµ)

ǫ
(t−xµ)2−U

(3)
µ (yµ(t))

3ǫ
(t−xµ)3dt.

Since yµ(t) belongs to some compact set, the third derivative U
(3)
µ (yµ(t)) is

bounded by some constant independent of µ. Applying the following change of
variable u = (t − xµ)2U ′′

µ (xµ)/ǫ yields

J2e
−C ρ3

ǫ

(

ǫ

U ′′
µ (xµ)

)
3
2

≤ 2Ĩ2 e
2Uµ(xµ)

ε

f ′′
m(xµ)

≤ J2e
C ρ3

ǫ

(

ǫ

U ′′
µ (xµ)

)
3
2

,

with J2 =
∫ U ′′

µ (xµ) ρ2

ǫ

0

√
ue−udu. If ρ3

ǫ → 0 and ρ2

ǫ → ∞ then

Ĩ2 =
√

π
f ′′

m(xµ)

4
e−

2Uµ(xµ)

ǫ

(

ǫ

U ′′
µ (xµ)

)
3
2

(1 + oI(1)). (A.10)

Step 2.3. Asymptotic behavior of Ĩ1. Let us develop the function Uµ in

the neighborhood of xµ: Uµ(t + xµ) = Uµ(x0) + 1
2U ′′

µ (xµ)t2 + 1
6U

(3)
µ (xµ)t3 +

1
24U

(4)
µ (yµ(t))t4 where yµ(t) ∈ [xµ − ρ, xµ + ρ]. The regularity of Uµ(x) with re-

spect to both x and µ implies the existence of some constant C > 0 independent
of µ which bounds the forth derivative of Uµ on the integral support. Therefore
we have

f ′
m(xµ)e−C ρ4

ǫ Jρ ≤ e
2Uµ(xµ)

ǫ Ĩ1 ≤ f ′
m(xµ)eC ρ4

ǫ Jρ,

with Jρ =
∫ ρ

−ρ ze−
U2
ǫ

z2−U3
3ǫ

z3

dz and Uk = U
(k)
µ (xµ). Since |e−x − 1 + x − x2

2 | ≤
|x|3e|x|, we deduce that, for any z ∈ [−ρ; ρ]:

∣

∣

∣

∣

e−
U3
3ǫ

z3 − 1 +
U3z

3

3ǫ
− U2

3 z6

18ǫ2

∣

∣

∣

∣

≤
∣

∣

∣

∣

U3

3

∣

∣

∣

∣

3
ρ9

ǫ3
e

|U3|ρ3

3ǫ .

We define mρ(l) =
∫ ρ

−ρ zle−
U2
ǫ

z2

dz and nρ(l) =
∫ ρ

0 |z|le−U2
ǫ

z2

dz. Some estima-
tion of the integral Jρ points out directly:

∣

∣

∣

∣

Jρ − mρ(1) +
U3

3ǫ
mρ(4) − U2

3

18ǫ2
mρ(7)

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

U3

3

∣

∣

∣

∣

3
ρ9

ǫ3
e

|U3|ρ3

3ǫ nρ(1).
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Symmetry arguments permit easily to deduce that mρ(1) = mρ(7) = 0. Finally
it suffices to compute mρ(4) and nρ(1). To this end we introduce the change of
variable u := U2

ǫ z2 and let ρ2/ǫ tend to infinity:

mρ(4) =
3
√

π

4

(

1

U ′′
µ (xµ)

)
5
2

ǫ
5
2 (1 + oI(1)) and nρ(1) =

ǫ

2U ′′
µ (xµ)

(1 + oI(1)).

To sum up: if ρ18

ǫ7 → 0 (that is ρ9

ǫ2 = o{ǫ 3
2 }) then

Ĩ1 = −
√

πf ′
m(xµ)

U
(3)
µ (xµ)

4

(

1

U ′′
µ (xµ)

)
5
2

ǫ
3
2 e−

2Uµ(xµ)

ǫ (1 + oI(1)). (A.11)

Step 2.4. Asymptotic behavior of Ĩ0. Let us first study the following integral

I ′0 =

∫ ρ

−ρ

exp

[

−
U ′′

µ (xµ)

ǫ
z2 − U

(3)
µ (xµ)

3ǫ
z3 − U

(4)
µ (xµ)

12ǫ
z4

]

dz

We recall the usual notations Uk = U
(k)
µ (xµ). The arguments are similar to

those used in Step 2.3. Since
∣

∣

∣
e−u − 1 + u − u2

2

∣

∣

∣
≤ |u|3e|u|, for any z ∈ [−ρ; ρ]

we get

∣

∣

∣

∣

∣

e−
U3
3ǫ

z3− U4
12ǫ

z4 − 1 +
U3

3ǫ
z3 +

U4

12ǫ
z4 − 1

2

(U3

3ǫ
z3 +

U4

12ǫ
z4

)2
∣

∣

∣

∣

∣

≤ Cρ3.

Adopting the same notations as in Step 2.3 and using symmetry properties, the
following bound (uniform with respect to the parameter µ) yields

∣

∣

∣

∣

∣

I ′0 − mρ(0) +
U4

12ǫ
mρ(4) − 1

2

(U3

3ǫ

)2

mρ(6) − 1

2

( U4

12ǫ

)2

mρ(8)

∣

∣

∣

∣

∣

≤ Cρ3mρ(0).

By the usual change of variable u :=
U ′′

µ (xµ)

ǫ z2 we emphasize some asymptotic
estimation of I ′0 as ρ2/ǫ → ∞ and ρ3/ǫ → 0:

I ′0 =

√

πǫ

U ′′
µ (xµ)

{

1 − U
(4)
µ (xµ)

16U ′′
µ(xµ)2

ǫ +
5U

(3)
µ (xµ)2

48U ′′
µ(xµ)3

ǫ + oI(ǫ)

}

We apply the mean value theorem to the function Uµ:

Uµ(xµ + z) = Uµ(xµ) +
U2

2
z2 +

U3

6
z3 +

U4

24
z4 +

1

120
U (5)(yµ(t))z5,

with yµ(t) ∈ [xµ − ρ, xµ + ρ] and |z| ≤ ρ. From this equality we deduce an

estimation of the distance between the integrals Ĩ0 and I ′0.
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We denote by D = e
2Uµ(xµ)

ǫ Ĩ0 − fm(xµ)I ′0 this distance. Then there exists some
constant C > 0 independent of µ and m such that

|D| ≤ |fm(xµ)|
∫ ρ

−ρ

e−
U2
ǫ

z2−U3
3ǫ

z3− U4
12ǫ

z4
∣

∣

∣
1 − e−

1
60ǫ

U(5)(yµ(z+xµ)z5
∣

∣

∣
dz

≤ |fm(xµ)|Cλ

60ǫ
ρ5

∫ ρ

−ρ

e−
U2
ǫ

z2−U3
3ǫ

z3− U4
12ǫ

z4+ 1
60ǫ |U(5)(yµ(z+xµ))z5|dz.

If both conditions ρ2/ǫ → ∞ and ρ3/ǫ → 0 are satisfied then the integral term

in the preceding inequality is obviously equivalent to
√

πǫ
U ′′

µ (xµ) . The following

equivalence holds for the initial integral Ĩ0: under the assumption that ρ5

√
ǫ

=

o
(

ǫ
3
2

)

, we get |D| = oIM
(

ǫ
3
2

)

and consequently

Ĩ0 = e−
2U(xµ)

ǫ

√

πǫ

U2

{

1 − U4

16 U2
2

ǫ +
5 U2

3

48 U3
2

ǫ + oIM(ǫ)

}

. (A.12)

Step 3. To sum up: in Step 1, we proved that it suffices to estimate the
integral I1 which can be split into 4 terms. Each of them has been estimated
in equations (A.9), (A.10), (A.11) and (A.12). The whole integral has the
asymptotic equivalence (A.6) as soon as ρ3/ǫ → 0, ρ18/ǫ7 → 0 and ρ5/ǫ2 → 0.

The particular choice ρ = ǫ
9
20 fulfills all these conditions.

We can extend the statement of the preceding lemma to integrals with un-
bounded supports.

Lemma A.4. Let U and G be two C∞(R)-continuous functions. We define
Uµ = U + µG for the parameter µ belonging to some compact interval I of R

We assume that Uµ(t) ≥ t2 for |t| larger than some R independent of µ and
that Uµ admits a unique global minimum at xµ with U ′′

µ (xµ) > 0. Let fm be
a C3-continuous function depending on some parameter m which belongs to a
compact set M. Furthermore we assume that there exists some constant λ > 0

such that |fm(t)| ≤ exp [λ|Uµ(t)|] for all t ≥ R, µ ∈ I, m ∈ M and |f (i)
m | is

locally bounded uniformly with respect to the parameter m ∈ M for 0 ≤ i ≤ 3.
Then the following asymptotic result holds as ǫ tends to 0:

∫

R

fm(t)e
−2Uµ(t)

ǫ dt = e−
2Uµ(xµ)

ǫ

√

πǫ

U2

{

fm(xµ) + γ0(µ)ǫ + oIM(ǫ)
}

, (A.13)

where γ0(µ) is defined by (A.7) and oIM(ǫ)/ǫ converges to 0 as ǫ → 0 uniformly
with respect to the parameters m and µ.

Proof. Let R > 0 such that Uµ(t) ≥ t2 for t ≥ R. The initial integral can
be split into two integrals: the first one denoted by I1 concerns the compact
support [−R, R] and the other one I2 concerns the complementary support. For
I1 it suffices to apply Lemma A.3 in order to get the asymptotic development.
It remains then to prove that I2 is negligible with respect to I1 that is I2 =
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oIM
{

ǫ
3
2 e−

2Uµ(xµ)

ǫ

}

. Using the change of variable t :=
(

2
ǫ − λ

)− 1
2 s the following

bound holds:

|I2| ≤ 2

∫ +∞

R

exp

[

t2
(

λ − 2

ǫ

)]

dt ≤ 2

√

ǫ

2 − λǫ

∫ +∞

R
√

2−λǫ
ǫ

exp
[

−s2
]

ds.

Lemma A.1 permits to prove as claimed that I2 can be neglected.

Lemma A.4 can be applied to particular functions fm.

Lemma A.5. Let U and G be two C∞(R)-continuous functions. We define
Uµ = U + µG with µ belonging to some compact interval I of R. We as-
sume that Uµ(t) ≥ t2 for |t| larger than some R independent of µ and that
Uµ admits a unique global minimum at xµ with U ′′

µ (xµ) > 0. Let fm be a C3-
continuous function depending on some parameter m which belongs to a compact
set M. Furthermore we assume that there exists some constant λ > 0 such that
|fm(t)| ≤ λ|Uµ(t)| for all t ≥ R, µ ∈ I, m ∈ M and that |f (i)

m | is locally
bounded uniformly with respect to m ∈ M for 0 ≤ i ≤ 3. Then, for any n ≥ 1
and asymptotically as ǫ → 0 we obtain the estimate

∫

R
tnefm(t)e

−2Uµ(t)

ǫ dt
∫

R
efm(t)e

−2Uµ(t)

ǫ dt
= xn

µ −
nxn−2

µ

4U2

[

xµ
U3

U2
− n + 1 − 2xµf ′

m(xµ)

]

ǫ + oIM(ǫ),

where Ui = U
(i)
µ (xµ) and oIM(ǫ)/ǫ converges to 0 as ǫ → 0 uniformly with

respect to the parameters m and µ.

Proof. We just apply two times Lemma A.4: the first time to the denominator
Dǫ that is for the function t → efm(t) and the second time to the numerator N ǫ

for the function t → tnefm(t). The following asymptotic result holds

Dǫ = e−
2Uµ(xµ)

ǫ

√

πǫ

U2
efm(xµ)

{

1 + γ̂dǫ + oIM(ǫ)
}

(A.14)

where

γ̂d =

(

5U2
3

48U3
2

− U4

16U2
2

)

− f ′
m(xµ)

U3

4U2
2

+
(

f ′′
m(xµ) + f ′

m(xµ)2
) 1

4U2
.

The numerator normalized by xn
µ i.e. N ǫ/xn

µ satisfies some similar identity as
Dǫ, namely (A.14) with γ̂d replaced by γ̂n:

γ̂n =

(

5U2
3

48U3
2

− U4

16U2
2

)

−
(

n

xµ
+ f ′

m(xµ)

) U3

4U2
2

+

(

n(n − 1)

x2
µ

+ 2
n

xµ
f ′

m(xµ) + f ′′
m(xµ) + f ′

m(xµ)2
)

1

4U2
.

The estimation of the ratio is then a classical exercise of asymptotic analysis.
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The next lemmas are generalizations of Lemma A.4 and Lemma A.5 to
functions G depending on the small parameter ǫ.

Lemma A.6. Let U and G be two C∞(R)-continuous functions such that U(t) ≥
t2 for |t| large enough and |G(t)| ≤ λ|U(t)| + C for some constants λ > 0
and C > 0. Moreover we assume that U admits some unique global minimum
reached at x0 with U ′′(x0) > 0. For any sequence (ηǫ)ǫ satisfying limǫ→0 ηǫ = 0
and limǫ→0 ǫ/ηǫ = 0 we define Uǫ,µ = U + ηǫµG depending on the parameter µ
which belongs to some compact interval I of R. Let f a C3-continuous function

such that |f(t)| ≤ eλ|U(t)| for all |t| large enough and such that |f (i)
m | is locally

bounded uniformly with respect to m ∈ M for 0 ≤ i ≤ 3. Then, there exists
ǫ0 > 0 such that the potential Uǫ,µ admits a unique global minimum reached at
xǫ,µ for all ǫ ≤ ǫ0. Furthermore the following asymptotic results hold

xǫ,µ = x0 − µ
G′(x0)

U ′′(x0)
ηǫ + oI(ηǫ) (A.15)

∫

R

f(t)e−
2Uǫ,µ(t)

ǫ dt =

√

πǫ

U ′′(x0)
e−

2Uǫ,µ(xǫ,µ)

ǫ

(

f(x0) + γµηǫ + oI(ηǫ)
)

, (A.16)

where

γµ =
µ

2U ′′(x0)

(

− 2f ′(x0)G
′(x0) − f(x0)G

′′(x0) + f(x0)
U (3)(x0)G

′(x0)

U ′′(x0)

)

,

and oI(ηǫ)/ηǫ tends to 0 as ǫ → 0 uniformly with respect to the parameter µ.

Proof. Let us first prove that the potential Uǫ,µ(x) admits a unique minimum
for x = xǫ,µ with limǫ→0 xǫ,µ = x0. By the definitions of (ηǫ)ǫ and Uǫ,µ, the
following convergence holds

lim
ǫ→0

Uǫ,µ(x0) = U(x0). (A.17)

Since x0 is the unique global minimum of U , for any small R > 0 there exists
ρR > 0 such that infx∈[x0−R,x0+R]c U(x) > U(x0)+ρR. We deduce the existence
of two small constants ρ′R and ǫ0 such that

Uǫ,µ(x) ≥ (1 − µληǫ)U(x) − ηǫµC ≥ U(x0) + ρ′R, (A.18)

for all ǫ ≤ ǫ0 and x ∈ [x0 − R, x0 + R]c. By (A.17) and (A.18) we obtain: for
any R > 0 the global minimum of the parametrized potential Uǫ,µ is reached in
the interval x ∈ [x0−R, x0 +R] provided that ǫ is small enough (uniformly with
respect to µ). Moreover this global mimimum is unique. Indeed U ′′(x0) > 0 and
the regularity of U implies that U ′′(x) > 0 for all x in some small neighborhood
of x0. Since U ′′

ǫ,µ converges towards U ′′ as ǫ → 0 uniformly on each compact
subset of R, we obtain that U ′′

ǫ,µ(x) > 0 for all x ∈ [x0 − R, x0 + R] provided
that R and ǫ are small enough. The minimum is actually unique, we denote its
localization xǫ,µ and point out that, for ǫ small, U ′′

ǫ,µ(xǫ,µ) > 0 uniformly with
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respect to µ.
Let us determine xǫ,µ. By applying the mean value theorem to Uǫ,µ, we get

0 = U ′
ǫ,µ(xǫ,µ) = U ′(x0) + µηǫG

′(x0) + U ′′
ǫ,µ(x̃)(xǫ,µ − x0),

where x̃ is in between x0 and xǫ,µ. Since the second derivative is continuous,
U ′′

ǫ,µ(x̃) is uniformly bounded. Moreover U ′(x0) = 0. Consequently xǫ,µ − x0 =
OI(ηǫ). Using the same argument for the second order asymptotic development
of U ′

ǫ,µ(xǫ,µ), that is

0 = U ′(x0)+µηǫG
′(x0)+

(

U ′′(x0)+µηǫG
′′(x0)

)

(xǫ,µ−x0)+
U

(3)
ǫ,µ(x̃)

2
(xǫ,µ−x0)

2,

we obtain the announced estimate (A.15). Finally let us prove the estimate
(A.16). The statement of Lemma A.4 can be applied to Uǫ,µ since the asymptotic
result (A.13) is uniform with respect to the parameter µ. So it suffices to
consider the case when µ is replaced by µηǫ. We immediately obtain

∫

R

f(t)e−
Uǫ,µ(t)

ǫ dt =

√

πǫ

U ′′
ǫ,µ(xǫ,µ)

f(xǫ,µ)e−
Uǫ,µ(xǫ,µ)

ǫ

(

1 + oI(ηǫ)
)

. (A.19)

It remains to approximate f(xǫ,µ) and U ′′
ǫ,µ(xǫ,µ) using (A.15). Due to the

regularity of both f and U , the following developments hold

f(xǫ,µ) = f(x0) − µηǫf
′(x0)

G′(x0)

U ′′(x0)
+ oI(ηǫ),

U ′′
ǫ,µ(xǫ,µ) = U ′′(x0) + µηǫ

(

G′′(x0) − U (3)(x0)
G′(x0)

U ′′(x0)

)

+ oI(ηǫ).

The statement of Lemma A.6 is obtained just by combination of the two pre-
ceding asymptotics and (A.19).

We are now able to present a statement similar to Lemma A.5 for some
potential Uµ depending on the small parameter ǫ. It suffices to consider a ratio
of two integral terms. Then an immediate application of Lemma A.6 leads to
the following result.

Lemma A.7. Let U and G be two C∞(R)-continuous functions such that U(t) ≥
t2 for |t| large enough and |G(t)| ≤ λ|U(t)| + C for some constants λ > 0
and C > 0. Moreover we assume that U admits some unique global minimum
reached at x0 with U ′′(x0) > 0. For any sequence (ηǫ)ǫ satisfying limǫ→0 ηǫ = 0
and limǫ→0 ǫ/ηǫ = 0 we define Uǫ,µ = U + ηǫµG depending on the parameter µ
which belongs to some compact interval I of R. Let f a C3-continuous function

such that |f(t)| ≤ eλ|U(t)| for all |t| large enough and such that |f (i)
m | is locally

bounded uniformly with respect to m ∈ M for 0 ≤ i ≤ 3. Then as ǫ → 0, we
obtain the following estimate

∫

R
f(t)e−

2Uǫ,µ(t)

ǫ dt
∫

R
e−

2Uǫ,µ(t)

ǫ dt
= f(x0) −

f ′(x0)G
′(x0)

U ′′(x0)
ηǫ + oI(ηǫ) (A.20)

where oI(ηǫ)/ηǫ tends to 0 as ǫ → 0 uniformly with respect to the parameter µ.
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Remark A.8. The statements of Lemmas A.2-A.7 can be easely generalized,
replacing the parametrized function Uµ = U +µG by Uµ = U +

∑k
i=1 µiGi where

µ = (µ1, . . . , µk) ∈ I1 × . . .×Ik. The convergence results are then uniform with
respect to all parameters.
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