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Microlocal normal forms for regular fully nonlinear

two-dimensional control systems

Ulysse Serres ∗

Abstract

In the present paper we deal with fully nonlinear two-dimensional smooth con-
trol systems with scalar input q̇ = f(q, u), q ∈ M , u ∈ U , where M and U are
differentiable smooth manifolds of respective dimensions two and one. For such
systems, we provide two microlocal normal forms, i.e., local in the state-input
space, using the fundamental necessary condition of optimality for optimal control
problems: the Pontryagin Maximum Principle. One of these normal forms will be
constructed around a regular extremal and the other one will be constructed around
an abnormal extremal. These normal forms, which in both cases are parametrized
only by one scalar function of three variables, lead to a nice expression for the
control curvature of the system. This expression shows that the control curvature,
a priori defined for normal extremals, can be smoothly extended to abnormals.

Keywords: Control system, control curvature, feedback-equivalence, Pontryagin
Maximum Principle.
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1 Introduction

In the present paper smooth objects are supposed to be of class C∞.
State-feedback classification of control systems has been studied by numerous au-

thors for the last 40 years. Antecedents of this theory can be traced to the work of
Kronecker ([9, 1890]) in the classification of the singular pencils of matrices (see [5] for
details on the subject). Eighty years after Kronecker, Brunovsky ([4]) used this classifi-
cation to obtain normal forms of linear controllable systems, which now bare his name.
Then, the feedback classification problem for control-affine systems with scalar input
was heavily studied in [2, 6, 7, 8, 10, 11, 12] where the authors also gave list of normal
forms. Finally, in [1], A. A. Agrachev and I. Zelenko completely solved the problem
of the local classification generic control-affine systems on a n-dimensional manifold
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with scalar input for any n > 4 and with two inputs for n = 4 and n = 5 by giving a
complete set of invariants for these equivalence problems.

The present paper deals with the feedback classification of fully nonlinear two-
dimensional control systems with scalar input. More precisely, we aim to find some
microlocal forms for nonlinear smooth control systems of the type

q̇ = f(q, u), q ∈M, u ∈ U, (1.1)

where M and U are connected smooth manifolds of respective dimension two and one
under the regularity assumption of strong convexity

∂f(q, u)

∂u
∧
∂2f(q, u)

∂u2
6= 0, ∀ (q, u) ∈M × U. (1.2)

In Section 3 we present our main results in Theorem 3.1 and Theorem 3.3. Theorem
3.1 gives the first microlocal normal for system (1.1. This normal form is given around
a normal extremal. Theorem 3.3 gives the second microlocal normal which is given
around an abnormal extremal. Those two microlocal normal forms enable us to obtain
a nice expression of the control curvature of system (1.1) in a neighborhood of the
extremal along which the normalization has been made. Moreover, in the abnormal
case, this expression shows that the control curvature which is a priori only defined for
normal extremals, can be smoothly extended to abnormals.

2 Preliminaries

2.1 Counting the principal invariants

Systems of the form (1.1) are considered up to state-feedback equivalence, i.e., up to
transformations of the form (q, u) → (φ(q), ψ(q, u)), where φ is a diffeomorphism of
M which plays the role of a change of coordinates and ψ is a reparametrization of the
set U of controls in a way depending on the state variable q ∈ M . First of all, let us
roughly estimate the number of parameters (invariants) in this equivalence problem.
If the coordinates on the manifold are fixed, a (germ of) control system of type (1.1)
is parametrized by two functions of three variables, and the group of state-feedback
transformations is parametrized by two functions of two variables and one function
of three variables. Therefore, we can a priori normalize only one function among the
two functions defining control system (1.1). Thus, we expect to have only 2 − 1 = 1
function of three variables and a certain number of feedback-invariant functions of less
than three variables, in the normal forms.

2.2 Pontryagin Maximum Principle with boundary conditions

In this section we present a version of the Pontryagin Maximum Principle with bound-
ary conditions (PMP in the sequel) which will be our main tool in order to obtain
microlocal normal forms for system (1.1). Denote by π : T ∗M → M is the projec-
tion of the cotangent bundle to M and by s the canonical Liouville one-form on T ∗M ,
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sλ = λ ◦ π∗, λ ∈ T ∗M . A time-optimal control problem with general boundary condi-
tions takes the form

q̇ = f(q, u), q ∈M, u ∈ U (2.1)

q(0) ∈ N0, q(t1) ∈ N1, (2.2)

t1 → min (or max), (2.3)

where N0 and N1 are given immersed submanifolds of the state space M . Let hu(λ) =
〈λ,f(q, u)〉, λ ∈ T ∗

q M , be the control dependent Hamiltonian function associated to

the control system (2.1) and denote by ~hu the corresponding Hamiltonian vector field
on T ∗M (defined by the rule i~hu

ds = −dhu). Suppose now that we want to solve the
time-optimal problem (2.1)−(2.3), then the following holds.

Theorem 2.1 (PMP). Let an admissible control u∗(t) be time-optimal. Then, there
exists a Lipschitzian curve λt ∈ T ∗M \ {0} such that the following conditions hold for
almost all t ∈ [0, t1]:

λ̇t = ~hu∗(t)(λt), (2.4)

hu∗(t)(λt) = max
u∈U

hu(λt) = ν, ν ∈ R, (2.5)

λ0 ⊥ Tπ(λ0)N0, λt1 ⊥ Tπ(λt1
)N1. (2.6)

Remark 2.2. Condition (2.4) of PMP says that the solutions of the optimal control
problem (2.1)−(2.3) on M are projections of the solutions of the Hamiltonian system
λ̇ = ~hu∗(λ) on T ∗M . Moreover, notice that there are two distinct possibilities for
condition (2.5) of PMP. If ν 6= 0, then the curve λt is called a normal extremal. In this
case, one can normalize λt so that ν = 1 (resp. −1) in the case of a minimum (resp.
maximum) time problem. If ν = 0, then the curve λt is called an abnormal extremal.

2.3 Curvature of two-dimensional smooth control systems

In this section, we briefly recall some basic facts concerning the curvature of smooth
control systems in dimension two. ¿From now, we suppose that M and U are connected
smooth manifolds of respective dimension two and one. Let us fix some notations. We
denote by [X ,Y ] the Lie bracket (or commutator) X ◦ Y − Y ◦ X of vector fields
X, Y ∈ ~M . It is again a vector field and in local coordinates on M the Lie bracket
reads [X,Y ](q) = ∂Y

∂q
X(q)− ∂X

∂q
Y (q). If X is a smooth vector field on a manifold, we

denote by LX the Lie derivative along X.
Denote by h = maxu∈U 〈λ,f(q, u)〉, the Hamiltonian function resulting from the

PMP by Hν the level set h−1(ν) ⊂ T ∗M , and by ~h
ν

the Hamiltonian field associ-
ated with the restriction of hν to Hν . Under the regularity assumption (1.2) and the
additional assumption

f(q, u) ∧
∂f(q, u)

∂u
6= 0, ∀ (q, u) ∈M × U, (2.7)
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the Hamiltonian function h has constant sign ǫ = ±1 and the curve Hǫ
q = Hǫ ∩ T ∗

q M

admits, up to sign and translation, a natural parameter providing us with a vector
field vǫ

q on Hǫ
q and by consequence with a vertical vector field vǫ on Hǫ (see e.g. [3]

for details). The vector field vǫ is characterized by the fact that it is, up to sign, the
unique vector field on Hǫ that satisfies

L2
vǫ
s|Hǫ = −ǫs|Hǫ + bLvǫ

s|Hǫ , (2.8)

where b is a smooth function on the level Hǫ. The vector fields ~hǫ and vǫ which are,
by definition, feedback-invariant satisfy the nontrivial commutator relation

[

~hǫ,
[

vǫ,~hǫ

]]

= κvǫ, (2.9)

where the coefficient κ is defined to be the control curvature or simply the curvature of
system (1.1).

Remark 2.3. The control curvature is by definition a feedback-invariant of the control
system and a function on Hǫ (and not on M as the Gaussian one). Moreover, κ is the
Gaussian curvature (lifted on Hǫ) if the control system defines a Riemannian geodesic
problem.

3 Microlocal normal forms

In this section we present two microlocal (i.e. local in the cotangent bundle over
the manifold) normal forms for control systems of type (1.1) under the regularity as-
sumption (1.2). Since the feedback-invariants of such a system are functions on a
three-dimensional bundle over the manifold M , the microlocalization of the problem is
clearly reasonable. Actually, under the considered genericity assumption we may not
expect better normal forms. These two normal forms will enable us to get a nice ex-
pression for the curvature in restriction to the extremal along which the normalization
is done.

3.1 Normal case

Let π : T ∗M → M denote the canonical projection. Fix a pair (q0, u0) ∈ M × U and
assume that both relations (1.2) and (2.7) are satisfied at (q0, u0). Let λ0 ∈ T ∗

q0
M ∩Hǫ

be a covector satisfying 〈λ0,f(q0, u0)〉 = 0. For τ small enough, define the curve

λ⋔ : τ 7→ eτ
[

vǫ,~hǫ

]

(λ0) ∈ Hǫ,

where eτ
[

vǫ,~hǫ

]

denotes the flow of the commutator of the fields vǫ and ~hǫ which are
defined according to Section 2.3. The image N0 of π ◦ λ⋔ is canonically defined on the
manifold M and according to (2.7) is transverse to projections onto M of the integral
curves of ~hǫ. We will use the curve N0 in order to define the horizontal axis (with
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origin at q0) of our system of microlocal coordinates on M . Then, vertical lines will
be defined as the time-optimal paths that connect points in M to N0. In other words,
vertical lines are the projection onto M of the extremals of the following time-optimal
control problem:

q̇ = f(q, u), q ∈M, u ∈ U,

q(0) ∈ N0, q(t1) = q1 fixed,

t1 → min .

Let λx1
∈ T ∗

π◦λ⋔(x1)
M ∩Hǫ be such that 〈λx1

, d
dx1

(π ◦λ⋔)〉 = 0. For x1, x2 small, define

the map φ by

φ(x1, x2) = π ◦ ex2
~h (λx1

) . (3.1)

It follows from (2.7) that the differential D(0,0)φ is bijective which implies that φ defines
a system of local coordinates in a neighborhood of q0. Denote by O0 the preimage of
this neighborhood by φ. In the local coordinates system (x1, x2) defined by φ control
system (1.1) reads:

ẋ1 = f1(x1, x2, u)

ẋ2 = f2(x1, x2, u), (x1, x2) ∈ O0,

where, according to (3.1), f1, f2 satisfy

f1(x1, x2, u0) = 0,
∂f1

∂u
(0, 0, u0) = 1, f2(x1, x2, u0) = 1,

∂f2

∂u
(0, 0, u0) = 0. (3.2)

Since ∂f1

∂u
(0, 0, u0) 6= 0, the feedback transformation (x1, x2, u) 7→ ũ = f1(x1, x2, u) is

well-defined in a neighborhood of (0, 0, u0) and it brings the system to

ẋ1 = ũ

ẋ2 = f̃2 (x1, x2, ũ) .
(3.3)

According to the third equality in (3.2), f̃2 satisfies f̃2(0, 0, 0) = 1, which shows that
the function f̃2 can be written in the form

f̃2(x1, x2, u) = 1 − ψ(x1, x2, u)u. (3.4)

Let (p, x) = (p1, p2, x1, x2) be a canonical coordinates on T ∗
R

2. Taking into account
(3.4), the control dependent Hamiltonian function for the control system (3.3) reads

hu(p, x) = p1u+ p2(1 − ψ(x, u)u).

We now prove that the function ψ(x, u) satisfies ψ(x, 0) = 0. By construction, solutions
of the time-optimal control problem

ẋ1 = u

ẋ2 = 1 − ψ(x1, x2, u)u,

x(0) ∈ R × {0}, x(t1) ∈ R × {t1},

t1 → min,
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is the set of all segment lines included in O0. Applying Theorem 2.1 to the above
time-optimal problem implies that, along the extremal corresponding to the optimal
control u = 0, the covector p(t) is solution to

ṗ1 = −
∂hu=0

∂q1
= 0

ṗ2 = −
∂hu=0

∂q2
= 0,

p(0) ∈ {0} × R, p(t1) ∈ {0} × R. (3.5)

Taking into account that the covector p(t) never vanishes and because t1 is arbitrary,
one infers from (3.5) that the covector corresponding to the optimal control u = 0 is

p(t) = (0, p2(t)) , p2(t) 6= 0 ∀ t. (3.6)

Equation (3.6) implies in particular that the maximality condition ∂hu

∂u
|u=0 = 0 is

equivalent to ψ(x, 0) = 0, forall x ∈ O0, from which it follows immediately that the
function ψ can be written ψ(x, u) = ϕ(x, u)u. We now prove that the function ϕ(x, u)
never vanishes. ¿From the regularity assumption (2.7), it follows that f has to satisfy

∂2f

∂u2
= −ǫαf − β

∂f

∂u
, (3.7)

where α = α(x, u) is positive. Equation (3.7) implies in particular that det(∂2φ∗f
∂u2 , ∂φ∗f

∂u
)|u=0 =

−ǫα det(φ∗f ,
∂φ∗f
∂u

)|u=0, or equivalently, that 2ϕ(x, 0) = ǫα(x, 0), which proves that the
function ϕ(x, u) never vanishes (at least in a small enough neighborhood O0 × U0 of
zero). We can thus set ϕ = e2a, with a ∈ C∞(O0 × U0). Summing up, we have proved
the following theorem.

Theorem 3.1. Under the regularity assumptions (1.2) and (2.7) control system (1.1)
can be put into the microlocal normal form

q̇1 = u

q̇2 = 1 − ǫe2a(q1,q2,u)u2,

where ǫ = 1 (resp. ǫ = −1) if the curves of admissible velocities of system (1.1) are
convex (resp. concave).

The curvature of the control system in the normal form (3.1) is also easily computed
according to formula (2.9) which leads to

κ(q1, q2, u) = −
∂2a

∂q22
(q, 0) −

(

∂a

∂q2
(q, 0)

)2

+O(u).

Example 3.2. Consider the control system

q̇1 = u

q̇2 = 1 − ea(q1,q2)u2, u ∈ R.
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This system is just the particular case of the normal form (3.1) when the function a

only depends on the base point q ∈M . The curvature of this system is

κ(q1, q2, u) = −
∂2a

∂q22
−

(

∂a

∂q2

)2

− 3e2a ∂
2a

∂q22
u2 − e2a ∂2a

∂q1∂q2
u3. (3.8)

It turns out that, if we ask the curvature to be constant then, this system is feedback-
equivalent to the normal form

q̇1 = u

q̇2 = 1 − e2q2

√
−κ+g(q1)u2, u ∈ R, κ 6 0,

which is easily obtained asking for the vanishing of non zero degree coefficients in
polynomial (3.8).

3.2 Abnormal case

The construction of the microlocal normal form around a regular extremal can easily
be adapted in order to get a micro local form around an abnormal extremal, that is,
around an extremal along which the Hamiltonian function of PMP vanishes identically.
Set TMab = {f(q, u) | f(q, u) ∧ ∂f

∂u
(q, u) = 0}. To insure the existence of an abnormal

trajectory, we assume that TMab defines a codimension one submanifold of TM . We
do not repeat the detailed construction but only cite the following theorem.

Theorem 3.3. Suppose that the regularity assumption (1.2) holds in a neighborhood
of (q0, u0) for which f(q0, u0) ∈ TMab. Then, control system (1.1) can be put into the
microlocal normal form

q̇1 = u

q̇2 = e2a(q1,q2,u)(1 − u)2.
(3.9)

The curvature of the control system in the normal form (3.9) is also easily computed
according to formula (2.9) which leads to

κ(q1, q2, u) = −
∂2a

∂q21
(q, 1) −

(

∂a

∂q1
(q, 1)

)2

+O(u− 1),

which shows in particular that the value κ(q, 1) is well defined so that the curvature
can be smoothly extended along the abnormal trajectory.
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