
HAL Id: inria-00370235
https://hal.inria.fr/inria-00370235

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Mesh Model and Well-Posed Continuous
Interpolation Error Estimation

Adrien Loseille, Frédéric Alauzet

To cite this version:
Adrien Loseille, Frédéric Alauzet. Continuous Mesh Model and Well-Posed Continuous Interpolation
Error Estimation. [Research Report] RR-6846, INRIA. 2009, 54 p. �inria-00370235�

https://hal.inria.fr/inria-00370235
https://hal.archives-ouvertes.fr


appor t  




de  r ech er ch e


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
8

4
6

--
F

R
+

E
N

G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Continuous Mesh Model and Well-Posed Continuous

Interpolation Error Estimation

Adrien Loseille — Frédéric Alauzet

N° 6846

March 23, 2009





Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Continuous Mesh Model and Well-Posed Continuous

Interpolation Error Estimation

Adrien Loseille∗ , Frédéric Alauzet†

Thème NUM — Systèmes numériques
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Abstract: In the context of mesh adaptation, Riemannian metric spaces have been used
to prescribe orientation, density and stretching of anisotropic meshes. Such structures are
used to compute lengths in adaptive mesh generators. In this report, a Riemannian metric
space is shown to be more than a way to compute a distance. It is proven to be a reliable
continuous mesh model. In particular, we demonstrate that the linear interpolation error
can be derived continuously for a continuous mesh.

In its tangent space, a Riemannian metric space reduces to a constant metric tensor so
that it simply spans a metric space. Metric tensors are then used to continuously model
discrete elements. On this basis, geometric invariants have been extracted. They connect
a metric tensor to the set of all the discrete elements which can be represented by this
metric. As the behavior of a Riemannian metric space is obtained by patching together the
behavior of each of its tangent spaces, the global mesh model arises from gathering together
continuous element models. We complete the continuous-discrete analogy by providing a
continuous interpolation error estimate and a well-posed definition of the continuous linear
interpolate. The later is based on an exact relation connecting the discrete error to the
continuous one.

From one hand, this new continuous framework freed the analysis of the topological mesh
constraints. On the other hand, powerful mathematical tools are available and well defined
on the space of continuous meshes: calculus of variations, differentiation, optimization, . . . ,
whereas these tools are not defined on the space of discrete meshes.
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tion error, linear interpolate.
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Modèle continu de maillage et erreur d’interpolation

continue bien posée

Résumé : Les espaces métriques riemanniens sont classiquement utilisés en adaptation
de maillage dans le but de prescrire l’orientation, les étirements et la densité des maillages
anisotropes. Ils définissent alors le calcul des distances dans les mailleurs adaptatifs. Dans
ce rapport, on montre, au-delà de la simple définition du calcul des distances, qu’un espace
métrique riemannien est un modèle continu de maillage. On montre que ce modèle est bien
posé sur le plan théorique. En particulier, on démontre qu’il est possible de dériver de façon
continue l’erreur d’interpolation linéaire.

Localement, ces espaces se comportent dans leurs plans tangents comme des espaces
métriques euclidiens. On utilise ces derniers pour modéliser les éléments discrets. À partir
de cette modélisation, on montre qu’il existe un ensemble d’invariants géométriques qui lient
la métrique aux éléments discrets qu’elle représente. Tout comme le comportement global
d’un espace riemannien est obtenu en recollant les comportements locaux de ses espaces
tangents, un maillage va être modélisé par le recollement des modèles d’éléments continus.
Enfin, on complète l’analogie entre la vision continue et la vision discrète en proposant une
estimation de l’erreur d’interpolation continue et une définition bien posée de l’opérateur
d’interpolation linéaire continu. La définition de cet interpolé repose sur une propriété
d’exactitude locale aboutissant à une relation d’équivalence entre l’erreur d’interpolation
discrète et l’erreur d’interpolation continue.

D’une part, ce nouveau cadre théorique permet de se libérer des contraintes liées à la
topologie des maillages discrets. D’autre part, on dispose naturellement sur l’espace des
maillages continus d’outils d’analyse puissants et bien posés qui ne sont pas définis sur
l’espace des maillages discrets: calcul des variations, différentiation, optimisation, . . .

Mots-clés : Maillage non structuré, maillage continu, espaces métriques riemanniens,
erreur d’interpolation, interpolé linéaire.
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Introduction

In this article, a continuous mesh concept is introduced using the notion of Riemannian
metric space of the differential geometry. The notion of continuous mesh aims at modeling
unstructured discrete computational meshes classically used in numerical simulations solved
by the finite element, the finite volume, the discontinuous Galerkin,... numerical methods.
The final purpose of this model is twice. From a theoretical point of view, it enables us to
prove the consistency of classical metric-based mesh adaptation. To this end, it provides
exact relations between the linear interpolation error and the mesh prescription. From a
practical point of view, the objective is to derive a continuous interpolation error estimate
that can be used to automatically perform anisotropic mesh adaptation. The proposed
continuous formalism permits a complete abstraction of the notion of mesh. In particular
the geometric data (e.g. the vertex coordinates) and the topology description (e.g. the mesh
entities) do not exist anymore. As regards interpolation error estimates in the continuous
mesh framework, they are free of any a priori hypothesis on the mesh such as alignment
or density requirements. As a consequence, this report aims at proving that Riemannian
metric space is more than a way to define distance computation within anisotropic mesh
generators. It is a reliable mesh model that is well suited for metric-based mesh adaptation.

Fundamentals of anisotropic mesh adaptation. When dealing with mesh adaptation,
the prescription and the generation of adapted meshes are crucial issues. There exists a large
class of methods to prescribe and to generate adapted meshes depending on the problem
at hand along with the mesh specificity: uniform, isotropic, anisotropic, . . . The simplest
algorithms consist in refining or coarsening the current mesh according to patterns. However,
such strategies encounter several bottlenecks. In particular, mesh coarsening can only be
applied to regions already refined by patterns, i.e., only added patterns can be removed,
and they do not allow anisotropic meshes to be generated. Moreover, the quality of the
sequence of refined meshes is strongly related to the quality of the initial mesh and this
quality can only decrease during the refinement process. A generic and elegant way to
generate anisotropic meshes is to use the notion of metric and Riemannian metric space.
An adapted anisotropic mesh in this framework is simply the image in the Euclidean space
of a uniform mesh in a Riemannian metric space.

To this end, the distance in the adaptive mesh generator is computed in the Riemannian
metric space instead of the Euclidean one. This technique generalizes the case of uniform
meshes where distances are computed in the classical Euclidean space. Then, the main
idea to generate an anisotropic adapted mesh is to complete a unit mesh in the given
Riemannian metric space. It consists in generating a mesh where the edges length are equal
to one with respect to the prescribed Riemannian metric space. This approach was initiated
by Hecht, see developments in [21] and in Vallet’s thesis [35]. This method is commonly
called metric-based mesh adaptation. There are actually a lot of available codes that are
based on the metric concept. Let us mention Bamg [20] and BL2D [23] in 2D, Yams [16] for
discrete surface mesh adaptation and Forge3d [10], Fun3d [22], Gamic [18], MeshAdap [24],
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4 A. Loseille and F. Alauzet

Mmg3d [12], Mom3d [34], Tango [5] and [29] in 3D. It is worth mentioning that all these
codes have arisen from different mesh generation methods. The method in [18, 20] is based
on a global constrained Delaunay kernel. In [23], the Delaunay method and the frontal
approaches are coupled. [16] is based on local mesh modifications. And, [10] is based on
the minimal volume principle. Another benefit is that this mesh prescription approach is
naturally derived from anisotropic interpolation error estimate. Indeed, interpolation error
involved a Hessian matrix from which a metric is easily derived. If the use of a Hessian matrix
to defined a metric tensor is now classical for generating anisotropic meshes, it remains to
evaluate the impact of the practical algorithm used to generate the mesh. In other words,
is it a relevant choice to use metric fields for the control of the interpolation error ? A lot
of numerical examples for real life problems [5, 13, 14, 17, 26, 29, 30, 34] tend to answer
affirmatively to this question. In this work, this question is theoretically studied by using a
continuous mesh model.

The proposed continuous framework. In this paper, a fully continuous mesh model
is introduced based on the notion of Riemannian metric space. The continuous mesh is
a function that prescribes at each point a density, anisotropic quotients and orientations.
This model is completely generic and geometric. Several geometric relations connect the
continuous mesh to the set of its discrete representatives. The main pro of this approach is
to be independent of the mesh generation algorithm used to generate adapted meshes.

This model is then used to study the interpolation error. Some mathematical develop-
ments lead to a single relation that connects an infinite set of discrete elements to a unique
continuous estimate. From this estimate, the interpolation error for a given continuous
mesh can be accurately predicted whatever the considered smooth function. Contrary to
classical approaches inherited from [7], there are optimal conditions leading to alignment
requirements between the mesh and the Hessian function. The derivation of a general in-
terpolation error estimate has already been studied for a single element in the case of a
quadratic function [6]. These studies enable the best shaped element for a given norm to
be derived. However, it is, from a practical point of view, impossible to generate a mesh
only composed of optimal elements. Moreover, the variation of the function needs to be
taken into account when the function is no more quadratic. In this work, estimates are
derived locally both for the continuous mesh and the functions thanks to Taylor expansion.
If the Taylor expansion of a function is common, the Taylor expansion of a continuous mesh
consists in working in the tangent space of the Riemannian metric space where the metric
tensor is constant. Then both the variations of the mesh and the function are integrated
on the whole computational domain. As a consequence, estimates are still very accurate for
non quadratic functions and non uniform continuous meshes. This point is demonstrated in
the numerical examples. Theoretically, the use of a discrete support is no more mandatory
to compute the interpolation error. Several fully continuous and analytical examples are
given to exemplify this feature. More practically, only a background mesh that supports a
discrete representation of the continuous mesh is needed when dealing with real-life appli-
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Continuous mesh model 5

cations. There is no need to generate a discrete mesh that corresponds to the continuous
one.

Overview. In a first section, we recall the differential geometry notions that are recur-
rently used in the continuous approach. Next, the continuous element and mesh models
are introduced. Geometrical invariants, that connect continuous elements and discrete el-
ements, are proved. In a third section, these results are used to exactly predict the linear
interpolation error for discrete and continuous elements. Then, the notion of continuous lin-
ear interpolation is well established and exactly estimated. Finally, numerical experiments
emphasize the possibility to compute, for a given function and a given continuous mesh,
the continuous interpolation error without any discrete supports. The correlation between
continuous and discrete estimations of the interpolation error is finally shown.

1 Metric notion for mesh adaptation

In order to be self-contained, we recall the differential geometry notions that are used in the
sequel. It mainly concerns the computation of lengths for different kinds of metric spaces:
Euclidean, Euclidean metric space and Riemannian metric space. A complete review and
the mathematical study of these spaces are available in [2, 3, 11].

Notations. Bolded symbols, as a,b,u,v,x, . . ., denote vectors or points of R
n. Vector

coordinates are denoted by x = (x1, . . . , xn). And, the natural dot product between two
vectors u and v of R

n is:

〈u, v〉 =

n∑

i=1

ui vi.

1.1 Euclidean metric space

An Euclidean metric space (Rn,M) of dimension n is a finite vector space where the dot
product is defined by means of a symmetric definite positive form M :

〈u,v〉M = 〈u,Mv〉 = tuMv , for (u,v) ∈ R
n × R

n .

The form M is usually written as a n × n matrix that is:

(i) (symmetric) ∀(u,v) ∈ R
n × R

n , 〈u,Mv〉 = 〈v,Mu〉

(ii) (positive) ∀u ∈ R
n , 〈u,Mu〉 ≥ 0

(iii) (definite) 〈u,Mu〉 = 0 =⇒ u = 0.

These properties ensure that M defines a dot-product. In the following, the matrix M is
simply called a metric tensor or a metric. The simplest example of an Euclidean metric
space is given by the identity matrix In which spans the canonical Euclidean space R

n.

RR n° 6846



6 A. Loseille and F. Alauzet

The dot product defined by M spans a normed vector space (Rn, ‖.‖M) and a metric
vector space (Rn, dM(., .)) supplied by the following norm and distance definition:

• ∀u ∈ R
n , ‖u‖M =

√
〈u,Mu〉

• ∀(u,v) ∈ R
n × R

n , dM(u,v) = ‖u − v‖M.

In these spaces, the length ℓM of a segment ab = [a,b] is given by the distance between its
extremities:

ℓM(ab) = dM(a,b).

Note that this property is generally wrong for a general Riemannian metric space defined
hereafter.

In an Euclidean metric space, angles and volumes are still well posed. These features
are of main interest when dealing with mesh generation. These quantities are generally
introduced to define quality functions. Given a bounded subset K of R

n, the volume of K
computed with respect to metric tensor M is:

|K|M =

∫

K

√
detMdK =

√
detM|K|In

. (1)

The angle between two non-zero vectors u and v is defined by the unique real-value θ ∈ [0, π]
verifying:

cos(θ) =
〈u,v〉M

‖u‖M‖v‖M
.

Geometric interpretation. We will often refer to the geometric interpretation of a metric
tensor. This geometric view plays an important role in the continuous mesh model. In the
vicinity V(a) of a point a, the set of points, that are at a distance ε of a, is given by:

ΦM(ε) =
{
x ∈ V(a) | t(x − a)M (x − a) ≤ ε2

}
.

We note that it is sufficient to describe ΦM(1) as ΦM(ε) can be deduced from ΦM(1) for
all ε by homogeneity:

ΦM(ε) =
{
ε−1 x ∈ V(a) | x ∈ ΦM(1)

}
.

To describe ΦM(1), the spectral decomposition M = RΛ tR is used. R is an orthonormal
matrix verifying tRR = RtR = In. It is composed of the eigenvectors of M. Λ is a diagonal
matrix composed of the eigenvalues of M. Eigenvalues (λi)i=1,n are strictly positive. In the
eigenvectors frame, the initial quadratic form t(x − a)M (x − a) becomes t(x̃ − ã) Λ (x̃ − ã).
Consequently, ΦM(1) can be rewritten in this basis:

ΦM(1) =

{
x̃ ∈ V(ã) |

n∑

i=1

λi (x̃i − ãi)
2 ≤ 1

}

=

{
x̃ ∈ V(ã) |

n∑

i=1

(
x̃i − ãi

hi

)2

≤ 1

}
.

INRIA



Continuous mesh model 7

The last relation defines an ellipsoid centered at a with its axes aligned with the principal

directions of M. Sizes along these directions are given by hi = λ
− 1

2

i . We denote by EM
this ellipsoid. Figure 1 depicts EM. In the sequel, the set ΦM(1) is called the unit ball of
metric M and it is denoted by BM.

v1

v2

v3

Figure 1: Left, geometric interpretation of BM = ΦM(1). vi are the eigenvectors of M and
h−2

i are the eigenvalues of M. Right, geometric visualization of a Riemannian metric space
(M(x))x∈[0,1]×[0,1]. At each point x of the domain, the unit ball of metric M(x) is drawn.

Natural metric mapping. The last information handled by a metric tensor M is the
definition of an application that maps the unit ball BIn

of identity metric In onto the unit

ball BM of metric M. This mapping is given by the application M− 1

2 : R
n 7→ R

n. M− 1

2 is
defined by the spectral decomposition M− 1

2 = RΛ− 1

2
tR, where Λ− 1

2 is the diagonal matrix
composed of the inverse of the square root of the eigenvalues of M. This mapping provides
another description of the ellipsoid EM:

EM =
{
M− 1

2 x | ‖x‖2
2 = 1

}
.

1.2 Riemannian metric space

When a metric tensor field is varying smoothly in the whole domain Ω, a Riemannian

metric space is defined. We denote this space by M = (M(x))x∈Ω. The continuous mesh
model is based on such a space. To give a practical visualization of a Riemannian metric
space, the unit ball of the metric at some points of the domain has been drawn, see Figure 1
(right).

The main operation performed in this space is the computation of edges lengths. It is
important to note that, in a Riemannian metric space, computing the length of a segment
(i.e., an edge) differs from evaluating the distance between the extremities of this segment.
Indeed, the straight line is no more the shortest path between two points which is given by

RR n° 6846



8 A. Loseille and F. Alauzet

a geodesic. To take into account the variation of the metric along the edge, the edge length
is evaluated with an integral formula:

Definition 1 (Edge length computation). In a Riemannian metric space M = (M(x))x∈Ω,
the length of edge ab is computed using the straight line parameterization γ(t) = a + tab,
where t ∈ [0, 1]:

ℓM(ab) =

∫ 1

0

‖γ′(t)‖M dt =

∫ 1

0

√
tab M(a + tab) ab dt. (2)

Figure 2 depicts iso-values of segment length from the origin for different Riemannian metric
spaces. The plotted function is f(x) = ℓM(ox) where o is the origin of the plane. The iso-
values are isotropic for the Euclidean space. They are anisotropic in the case of an Euclidean
metric space defined by M. The two principal directions of M clearly appear. In the case
of a Riemannian metric space M, all previous symmetries are lost.

!2 !645 !6 !745 7 745 6 645 2 !2 !867 !8 !967 9 967 8 867 2 !1 !0.5 0 0.5 1

I2 M M

Figure 2: Iso-values of the function f(x) = ℓM(ox) where o is the origin, i.e., segment length
issued from the origin, for different Riemannian metric spaces. Left, in the canonical Eu-
clidean space ([−1, 1]×[−1, 1], I2), middle, in an Euclidean metric space ([−1, 1]×[−1, 1],M)
with M constant and, right, in a Riemannian metric space (M(x))x∈[−1,1]2 with a varying
metric tensor field.

2 Continuous mesh model

In this section, the definition of a continuous element is first introduced. It is defined locally
by considering a constant metric tensor. Then, a continuous mesh model is defined based
on the notion of Riemannian metric space. In both cases, we give the set of all discrete
elements or all discrete meshes that are well represented by these continuous models. These
classes of equivalence are based on the notion of unit element and of unit mesh.

INRIA



Continuous mesh model 9

2.1 Continuous element and class of unit elements

In the continuous framework, a metric tensor M is a continuous element.

Remark 1. A continuous element M is a metric tensor and it also defines an Euclidean
metric space (Rn,M). In the sequel, we may use one these equivalent definitions of a
continuous element.

The class of all discrete elements, that are represented by this continuous model, is given
by the following definition:

Definition 2 (Unit element). An element K is unit with respect to a continuous element
M if the length of all its edges is unit in the metric M. If K is given by its list of edges
(ei)i=1..n(n+1)/2, then :

∀i = 1, ...,
n(n + 1)

2
, ℓM(ei) = 1 .

The volume of K is given by:

|K|M =

√
n + 1

2n/2 n!
and |K|In

=

√
n + 1

2n/2 n!

√
det(M).

Volume and length values are deduced from the Euclidean space example where the metric
M is the identity matrix In. In this case, the element is the regular n-simplex. It is composed

of n + 1 vertices connected by n(n+1)
2 edges of unit length. We can prove by induction that

the volume Vn of the regular n-simplex is given by:

Vn =

√
n + 1

2n/2 n!
.

To this end, we use the following induction formulas:

t2n + R2
n−1 = 1 and Vn = 1

nVn−1tn,

where tn is the length from one vertex to the center of the opposite face. The formulas are
initialized by the 2D area or the 3D volume of the regular triangle or tetrahedron:

V2 =

√
3

4
, t2 =

√
3

2
, V3 =

√
2

12
and t3 =

√
2

3
.

Figure 3 gives two examples of unit elements for two different metric tensors. More generally,
the relationships between unit discrete elements and a continuous element are stated in the
following proposition:

Proposition 1 (Equivalence classes). Let M be a continuous element, there exists a non-
empty infinite set of unit elements with respect to M. Conversely, given an element K =
(ei)i=1..n(n+1)/2 such that |K|In

6= 0, then there is a unique continuous element M for which
element K is unit with respect to M.
The relation unit with respect to M defines a class of equivalence among the set of all
discrete elements.

RR n° 6846



10 A. Loseille and F. Alauzet

Figure 3: 3D examples of a unit element with respect to the identity metric (left) and to an
anisotropic metric tensor (right). In each case, the unit ball of the metric is drawn at each
vertex of the unit element.

Proof. We first examine the uniform case where M = I3. The general case is deduced from
it by using the mapping M− 1

2 . Let K0 be a regular tetrahedron, thereby K0 is unit with
respect to I3. Whatever the rotation matrix R verifying tRR = RtR = I3, the tetrahedron
RK0 is still unit for I3. Consequently, the class of all unit elements for the continuous
element I3 is:

K = {K | ∀R ∈ O3 : K = RK0} with O3 =
{
R| tRR = RtR = I3

}
.

The equivalence class of the unit elements with respect to M is then given by the set:
{
M− 1

2 K
∣∣∣ ∀K ∈ K

}
.

Conversely, given a non-degenerated discrete element K = (ei)i=1..n(n+1)/2, such that
|K|I3

6= 0, let us demonstrate that there exists a unique metric for which K is unit. It is
sufficient to solve the following linear system:

(S)






ℓ2M(e1) = 1
...
ℓ2M(en(n+1)/2) = 1 .

The determinant of (S) is equal to |K|I3
6= 0. Consequently, (S) admits a unique solution.

Figure 4 depicts some unit elements with respect to a continuous element.

INRIA



Continuous mesh model 11

2.2 Geometric invariants

So far, only Definition 2 has established relationships between unit elements and continuous
elements. Other properties exist. They connect the geometric properties of unit elements
to the linear algebra properties of metric tensors. The following proposition gives geometric
invariants that hold for all unit elements with respect to a continuous element.

Proposition 2 (Geometric invariants). Let M be a continuous element and K be a unit
element with respect to M. We denote by (ei)i its edges list, see conventions in Figure 5,
and by |K| its Euclidean volume. Then, the following invariants hold:

• standard invariants:

∀ (ei, ej),

{
tei M ei = 1,

2 tei M ej + 1 = 0 if i 6= j.
(3)

Figure 4: Several unit elements with respect to a continuous element in 2D and 3D.

1

2

3

4
e1

e2

e3

e4

e5

e6

1

2

3

4

n1

n2

n3

n4

1
2

3

e1

e2 e3

Figure 5: Conventions used to enumerate the edges and the faces of a triangle and of a
tetrahedron.
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12 A. Loseille and F. Alauzet

• invariant related to the Euclidean volume |K|:

|K| =

√
3

4
det(M− 1

2 ) in 2D and |K| =

√
2

12
det(M− 1

2 ) in 3D. (4)

• invariant related to the square length of the edges for all symmetric matrix H:

3∑

i=1

tei Hei =
3

2
trace(M− 1

2 HM− 1

2 ) in 2D,

6∑

i=1

tei Hei = 2 trace(M− 1

2 HM− 1

2 ) in 3D.

(5)

Proof. The first invariant of Relation (3) comes from the definition of a unit element.
The second invariant of Relation (3) states that the angle between two edges of a unit

element face is constant in the metric. Let (ei, ej) be a couple of edges of element K,
this couple defines a face. We denote by ek the third edge of this face. According to the
conventions depicted in Figure 5, these edges verify: ei + ej − ek = 0. Expanding the
following relation

t(ei + ej + ek)M (ei + ej − ek) = 0,

leads to the second invariant of Relation (3).
Invariant (4) is proved by a direct integration. Given a unit element K for M, there

exists a unique regular tetrahedron K0, which is unit with respect to the identity matrix I3,
such that K = M− 1

2 K0. The volume of K is then given by:

|K| =

∫

K

1 dx =

∫

K0

det(M− 1

2 ) dx = det(M− 1

2 ) |K0|,

where |K0| =
√

2
12 . The same proof applies in 2D.

Invariant (5) is first proved in the simpler case where H = I3 and M = I3. The
general case will be deduced from this proof. Let us consider the regular tetrahedron K0 =
(v1,v2,v3,v4) unit for I3 defined by the list of vertices:

v1 = (0, 0, 0) , v2 = (1, 0, 0) , v3 =

(
1

2
,

√
3

2
, 0

)
and v4 =

(
1

2
,

√
3

6
,

√
2

3

)
.

The proof does not depend on this specific choice of coordinates. We first demonstrate the
following preliminary result: For all lines (D) passing through one of the vertices of K0,
the sum of the square lengths of the edges projected on (D) is invariant. Without loss of
generality, we assume that line (D) passes through the vertex v1 of K0. If line (D) is defined
by the vector

n = (cos(u) cos(v), cos(u) sin(v), sin(u)) ,

INRIA



Continuous mesh model 13

with (u, v) ∈ R
2, then the length of the first three edges of K0 projected on (D) are given

by:
a = e1 .n = cos(u) cos(v),

b = e2 .n =
1

2
cos(u) cos(v) +

√
3

2
cos(u) sin(v),

c = e3 .n =
1

2
cos(u) cos(v) +

√
3

6
cos(u) sin(v) +

√
2

3
sin(u),

with conventions of Figure 5. A direct trigonometric calculus shows that the sum of the
square length of all the edges projected on (D) is equal to 2. Indeed, it comes:

Σ = a2 + b2 + c2 + (b − c)2 + (c − a)2 + (a − b)2

= 3 a2 + 3 b2 + 3 c2 − 2ab − 2ac − 2bc.

After expanding and factorizing, Σ reads:

Σ = 2 cos(u)2 cos(v)2 + 2 cos(u)2 sin(v)2 + 2 sin(u)2 = 2.

When M is different from I3, we use the mapping M− 1

2 that maps the unit ball of
I3 onto the unit ball of M. As regards line (D), we select the specific line which has for
direction vector one the main direction of M, e.g. uj , and which is passing through v1.
The lengths a, b and c are thus multiplied by hj which is the size prescribed by M in the
direction uj . Consequently, the square length of the edges projected on (D) are multiplied
by h2

j . It comes:

Σj =

6∑

i=1

|ei .uj |2 = h2
j Σ = 2 h2

j .

Considering the previous relation for all the principal directions of M and summing the Σj

complete the proof:

6∑

i=1

‖ei‖2
2 =

3∑

j=1

6∑

i=1

|ei .uj |2 = 2
(
h2

1 + h2
2 + h2

3

)
= 2 trace(M−1). (6)

We now consider the more general case where H is symmetric definite positive. The
matrices H

1

2 and H− 1

2 are well defined and are symmetric. We first prove that if K is a
unit element for M then H

1

2 K is a unit element with respect to M 1

2 H−1 M 1

2 . Indeed, if
we consider the edge ẽj = H

1

2 ej of H
1

2 K where ej is a unit length edge of K with respect
to M, it comes:

tẽj M
1

2 H−1 M 1

2 ẽj = t(H
1

2 ej)M
1

2 H−1 M 1

2 (H
1

2 ej) = 1.

Then, from Relation (6) we get the last invariant:

6∑

i=1

tei Hei =

6∑

i=1

‖ẽi‖2
2 = 2 trace(M− 1

2 HM− 1

2 ) .
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14 A. Loseille and F. Alauzet

Other geometric invariants can be found in [25].

2.3 Continuous mesh and class of unit meshes

A continuous mesh of a domain Ω ⊂ R
n is a Riemannian metric space M = (M(x))x∈Ω.

We recall the spectral decomposition of M(x):

M : x ∈ Ω 7→ M(x) = R(x)




λ1(x)

. . .

λn(x)



 tR(x)

= R(x)




h−2

1 (x)
. . .

h−2
n (x)



 tR(x) ,

where R(x) is an orthonormal matrix providing the local orientation, (λi(x))i=1,n are the
local eigenvalues and (hi(x))i=1,n are the local sizes along the principal directions of the
continuous mesh. Practically, another decomposition is used that points out the local char-
acteristics of the continuous mesh. This decomposition is given by the following proposition.

Proposition 3 (Continuous mesh). A continuous mesh M = (M(x))x∈Ω locally writes:

M(x) = d
2

n (x)R(x)





r
− 2

n

1 (x)
. . .

r
− 2

n
n (x)




tR(x),

where

• the density d is equal to: d =

(
n∏

k=1

hk

)−1

=

(
n∏

k=1

λk

) 1

2

,

• the n anisotropic quotients ri are equal to: ri = hn
i

(
n∏

k=1

hk

)−1

.

Proof. The proof consists in computing d
2

n r
− 2

n

i :

d
2

n r
− 2

n

i =

(
n∏

k=1

hk

)− 2

n

h−2
i

(
n∏

k=1

hk

) 2

n

= h−2
i = λi.

INRIA



Continuous mesh model 15

The density d controls only the local level of accuracy of the continuous mesh. Increasing
or decreasing d does not change the anisotropic properties or the orientation, see Figure 6
(left). In 3D, anisotropic quotients arises from the quotient of different parallelepipeds, see
Figure 6 (right).

We also define the complexity C of a continuous mesh:

C(M) =

∫

Ω

d(x) dx =

∫

Ω

√
det(M(x)) dx.

This real-value parameter is useful to quantify the global level of accuracy of the continuous
mesh (M(x))x∈Ω. It can also be interpreted as the continuous counterpart of the number
of vertices of a discrete mesh. This quantity also leads to the definition of sequence of
continuous embedded meshes. Two continuous embedded meshes have the same anisotropic
ratios and orientations. They only differ from their complexity:

Definition 3 (Embedded continuous meshes). Two continuous meshes (M(x))x∈Ω and
(N (x))x∈Ω are embedded if a constant c exists such that:

∀x ∈ Ω, N (x) = cM(x).

Conversely, from a continuous mesh M = (M(x))x∈Ω, we can deduce a continuous
mesh N = (N (x))x∈Ω of complexity N having the same anisotropic properties (anisotropic
orientations and ratios) by considering:

N (x) =

(
N

C(M)

) 2

n

M(x).

In the context of error estimation, this notion enables the study of the order of convergence
with respect to an increasing complexity N . Consequently, the complexity C(M) is also the
continuous counterpart of the classical parameter h used for uniform meshes while study-
ing convergence. In the continuous mesh framework, the uniform refinement consisting in
dividing by two each edge of a uniform mesh of size h writes:

Mi = 4i




1
h2

1
h2

1
h2



 ,

where i is the level of refinement. (Mi)i=1...k defines a sequence of continuous embedded
meshes. Consequently, this simple practical adaptive strategy has a simple continuous inter-
pretation in term of embedded continuous meshes. Such a uniform refinement is exemplified
on Figure 7. However, when dealing with anisotropic meshes, a unique size h is no more
sufficient to give a quantitive information on the accuracy. The size h is then replaced by
the continuous mesh complexity.

RR n° 6846



16 A. Loseille and F. Alauzet

h1

h2

h3

Figure 6: Left, different unit elements where only the density increases from left to right.
Right, the geometric interpretation of anisotropic quotients as quotients of parallelepipeds
volumes.

Figure 7: In a sequence of uniformly refined uniform meshes, a single size information h is
sufficient to describe the accuracy of the current mesh in the whole domain. On the contrary
when the mesh involves strong differences in sizes and orientations, this size is replaced by
another measure, the complexity.

INRIA



Continuous mesh model 17

Unit mesh. The notion of unit mesh is far more complicated than the notion of unit
element as the existence of a mesh composed only of unit regular simplexes with respect
to a given continuous mesh is not guaranteed. For instance, if the continuous mesh is not
compatible with the domain size, then it clearly does not exist such discrete mesh. To avoid
this problem, let us look at the existence of a discrete mesh composed only with unit regular
simplexes with respect to a continuous mesh in R

n. To simplify even more the problem, we
first consider the continuous mesh (In(x))x∈Rn .

It is well known that R
3 cannot be filled only with the regular tetrahedron while it

is possible to fill R
2 with the equilateral triangle. Consequently, even for the simplest

continuous mesh (I3(x))x∈R3 , there is no discrete mesh composed only of the unit regular
tetrahedron. Therefore, the notion of unit mesh has to be released:

Definition 4 (Unit mesh). A discrete mesh H of a domain Ω ⊂ R
n is unit for a continuous

mesh (M(x))x∈Ω if all its elements are quasi-unit.

Now, let us give a meaning to quasi-unit in three dimensions. A first way to release the
definition of unity is to take into account technical constraints imposed by mesh generators.
To converge (and to avoid cycling) while analyzing edges length, the meshing algorithm
considers an admissible edge length interval of the form [ 1

α , α] with α > 0 [16]. If the

symmetry property is required, i.e., α
2 = 1

α , then we obtain α =
√

2. Therefore, as regards
the meshing requirement, a tetrahedron K defined by its list of edges (ei)i=1...6 is said
quasi-unit if ∀i ∈ [1, 6], ℓM(ei) ∈ [ 1√

2
,
√

2]. Nevertheless, we do not know if this definition

provide the existence of a unit mesh for the continuous mesh (I3(x))x∈R3 . In the following,
this question of existence is studied by means of the space filling tetrahedra.

Non-regular space filling tetrahedra. The study of space filling tetrahedra is an old ge-
ometrical question [28, 31]. In the past, it has been demonstrated that there exist sets
of non-regular space filling tetrahedra: the Sommerville tetrahedra [32] and the Goldberg
tetrahedra family [19].

The Sommerville tetrahedra are based on particular splittings of the unit cube, see
Figure 8. We recall these tetrahedra thanks to their vertices coordinates, only the last
vertex distinguishes them. K is denoted (v1,v2,v3,v4) with v1 = (0, 0, 0), v2 = (1

2 ,− 1
2 , 1

2 ),
v3 = (1

2 , 1
2 , 1

2 ) and

• v4 = (1
2 , 0, 0) for the Sommeville tetrahedron 1

• v4 = (1, 0, 0) for the Sommeville tetrahedron 2

• v4 = (1
2 ,− 1

2 ,− 1
2 ) for the Sommeville tetrahedron 3

• v4 = (1
2 , 0,− 1

4 ) for the Sommeville tetrahedron 4.

The Goldberg tetrahedra are based on the splitting of a prism the basis of which is
the equilateral triangle, see Figure 9. Their coordinates depend on an initial choice of two
lengths a and e. We specify one of the Goldberg tetrahedra for the specific choice a = 1

3
and e = 1:
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18 A. Loseille and F. Alauzet

1

A

Figure 8: From left to right, Sommerville tetrahedra 1, 2, 3 and 4.

• v1 = (0, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 1
3 ) and v4 = (

√
3

2 , 1
2 , 2

3 ) for the Goldberg
tetrahedron.

Figure 9: Goldberg’s tetrahedra family. They are parameterized by the prescription of the
lengths a and e, with b2 = a2 + e2 and c2 = 4a2 + e2. Left, gathering tetrahedra together
fills a prism which basis is the regular triangle of side length e.

We propose now to compare these space filling tetrahedra to the unit regular tetrahedron.

To this end, all these tetrahedra are scaled such that their volumes are equal to
√

2
12 . The

resulting edges lengths for each tetrahedron are specified in Table 1. We notice that the
proposed notion of quasi-unit element is only verified for the Sommerville tetrahedra 1 and
2, and the Goldberg tetrahedron. Therefore, there exists space filling tetrahedra that are
quasi-units for the metric I3 in the sense proposed above.
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Continuous mesh model 19

Now, the case of a constant anisotropic metric M is studied. We consider the pattern
around a vertex, i.e., the vertex ball, composed only with the second Sommerville tetrahe-
dron. This pattern exists as it fills (R3,M). The vertex ball is mapped back in the natural

Euclidean space thanks to the application M 1

2 . Then, we notice that the non-regularity
of the second Sommerville tetrahedron leads necessarily to the creation (in the Euclidean
space) of several different anisotropic tetrahedra. However, all these different tetrahedra
have the same edges lengths and the same volume in the metric M. Consequently, filling
space with only one tetrahedra is possible for all isotropic metrics of the form αI3, but a set
of tetrahedra is required to fill the Euclidean space anisotropically.

Controlling the volume. Unfortunately, the weaker constraint on the edges length can lead
to the generation of quasi-unit elements with a null volume. For instance in (R3, I3), the
regular tetrahedron with edges length equal to

√
2 is quasi-unit for I3. However, if one of

its vertex is projected orthogonally on the opposite face, then a quasi-unit element of null
volume is obtained. Indeed, three edges are of length

√
2 and the three other are of length√

3
6 ≈ 0.816 ∈

[
1√
2
,
√

2
]
. In consequence, controlling only the edges length is not sufficient,

the volume must also be controlled to release the notion of unit element. Practically, this is
achieved by prescribing a quality function:

QM(K) =
36

3
1

3

|K|
2

3

M∑6
i=1 ℓ2M(ei)

∈ [0, 1] . (7)

For the perfect regular tetrahedron, whatever its edges length, the quality function is equal
to 1. For a null volume tetrahedron, QM is 0. The qualities of the space filling tetrahedra
are given in Table 1. Notice that QM only quantifies the gap to the regular tetrahedron
shape.

We deduce the following definition of quasi-unit element, which is also practically used
by mesh generators,

Tetrahedron Coeff. Edges length Quality

Sommerville 1
√

2 0.70 1.22 1.22 1.0 1.0 1.41 0.800

Sommerville 2 2
1

6 1.12 0.970 0.970 0.970 0.970 1.12 0.954

Sommerville 3 2
1

6 0.970 0.970 0.970 1.12 1.59 1.12 0.763

Sommerville 4 12−
1

3 2
3

2 0.691 1.07 1.07 1.12 1.12 1.23 0.886

Goldberg 3−
1

2 2
1

6 0.932 0.990 1.12 1.12 0.990 0.990 0.950

Table 1: Space filling tetrahedra characteristics. Coeff. is the coefficient that scales the
tetrahedron onto a unit volume tetrahedron, i.e., |K| =

√
2/12. The edges length and the

tetrahedron quality QI3
given by Formula (7) are provided.
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20 A. Loseille and F. Alauzet

Definition 5 (Quasi-unit element). A tetrahedron K defined by its list of edges (ei)i=1...6

is said quasi-unit for M if

∀i ∈ [1, 6], ℓM(ei) ∈
[

1√
2
,
√

2

]
and QM(K) ∈ [α, 1] with α > 0 .

In our case, α = 0.8 is an acceptable value as it enables the Sommerville tetrahedra 1 and
2, and the Goldberg tetrahedron to be generated.

Remark 2. Instead of considering QM, the quality function 1
QM

can be considered. As the

variation range becomes [1,∞[, the discrimination of bad elements is made easier.

3 Continuous linear interpolation error

In the previous section, a continuous framework has been introduced to model elements
and meshes. Now, we aim at applying this framework in the context of error estimation.
Let (M(x))x∈Ω be a continuous mesh of a domain Ω and let u be a non linear function
which is assumed to be only twice continuously differentiable. We seek a well-posed defi-
nition of the continuous linear interpolation error ‖u − πMu‖L1(Ω) related to a continuous
mesh (M(x))x∈Ω which implies a well-posed definition of a linear continuous interpolate
πMu. More precisely, we would like the continuous linear interpolation error to be a reliable
mathematical model of ‖u − Πhu‖L1(Ωh) where Πh is defined by a mesh H of a discretized
domain Ωh which is a unit mesh with respect to (M(x))x∈Ω. This means that considering
‖u − πMu‖L1(Ω) is equivalent to consider ‖u − Πhu‖L1(Ωh).

The error analysis is first done locally, i.e, in a tangent space of (M(x))x∈Ω at a given
point a. In the tangent space, the continuous mesh (M(x))x∈Ω reduces to the continuous
element M(a), i.e., the analysis is performed locally at the element level. The function u is
approximated by its local quadratic taylor expansion. Indeed, terms of order greater than
two can be neglected while studying the linear interpolation error. Then, a global error
estimate is derived by taking into account the variation of the continuous mesh and of the
function.

3.1 Interpolation error in L1 norm for quadratic functions

In this section, we consider a quadratic function u defined on a domain Ω ⊂ R
3. The

function is given by its matrix representation:

∀x ∈ Ω, u(x) =
1

2
txH x,

where H is a symmetric matrix representing the Hessian of u. For every symmetric matrix
H, |H| denotes the positive symmetric matrix deduced from H by taking the absolute values
of its eigenvalues. The function u is linearly interpolated on an tetrahedron K defined by
its vertices list: K = (v1,v2,v3,v4). |K| denotes the Euclidean volume of K. We denote
by Πhu the linear interpolate of u on K. We can now state the following result:
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Continuous mesh model 21

Proposition 4. For every quadratic function u, its linear interpolation error in L1 norm
on an element K verifies:

‖u − Πhu‖L1(K) ≤
|K|
40

6∑

i=1

tei|H|ei,

where {ei}i=1,6 is the set of edges of K.
The previous inequality becomes an equality when u is elliptic or parabolic.

Proof. The proof consists in deriving an exact error estimate of the point-wise interpolation
error within the element K: e(x) = (u − Πhu)(x) for x ∈ K. This error is then integrated
over K. To derive e, we use the standard reference element technique. Reference element
Kref is defined by its four vertices coordinates:

v̂1 = t(0, 0, 0), v̂2 = t(1, 0, 0), v̂3 = t(0, 1, 0) and v̂4 = t(0, 0, 1).

All the computations are done on Kref and the result is then mapped onto the current
element K by using the following affine mapping:

x = v1 + BK x̂ with BK = (v2 − v1,v3 − v1,v4 − v1), x ∈ K, x̂ ∈ Kref .

The matrix Bk is given as a function of the following edges:

e1 = v2 − v1, e2 = v3 − v1 and e3 = v4 − v1,

so that BK = (e1, e2, e3). The quadratic function u reads in the frame of Kref :

u(x(x̂)) =
1

2
tv1 H v1 +

1

2
tv1 H BK x̂ +

1

2
tx̂ tBK H v1 +

1

2
tx̂ tBK H BK x̂.

As we consider the linear interpolation, linear and constant terms of u(x(x̂)) are exactly
interpolated. Without loss of generality, these terms are neglected and only quadratic terms
are kept. Indeed, if we consider ũ(x) = 1

2
tx̂ tBK H BK x̂, then it comes:

e(x) = (u − Πhu)(x) = (ũ − Πhũ)(x).

We can now consider ũ instead of u. However for the sake of clarity, we keep on writing u
and not ũ. We rewrite u in a matrix form:

u(x(x̂)) =
1

2
t




x̂
ŷ
ẑ








te1He1

te1He2
te1He3

te2He1
te2He2

te2He3
te3He1

te3He2
te3He3








x̂
ŷ
ẑ



 .

u in Kref reads:

u(x(x̂)) =
1

2
[ (te1He1) x̂2 + (te2He2) ŷ2 + (te3He3) ẑ2 +

2(te1He2) x̂ŷ + 2(te1He3) x̂ẑ + 2(te2He3) ŷẑ ].
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22 A. Loseille and F. Alauzet

u is now linearly interpolated on Kref . Its linear interpolate Πhu(x̂) writes ax̂ + bŷ + cẑ +
d, where coefficients (a, b, c, d) ∈ R

4 satisfies the following linear system ensuring the P1

exactness, i.e., Πhu(vi) = u(vi) for all i ∈ [1, 4]:





Πhu(v1) = d = u(x((0, 0, 0)) = 0,

Πhu(v2) = a = u(x((1, 0, 0)) = 1
2 (te1He1),

Πhu(v3) = b = u(x((0, 1, 0)) = 1
2 (te2He2),

Πhu(v4) = c = u(x((0, 0, 1)) = 1
2 (te3He3).

The solution of the previous linear system gives the final expression of Πhu:

Πhu(x(x̂)) =
1

2

[
(te1He1) x̂ + (te2He2) ŷ + (te3He3) ẑ

]
.

The exact point-wise interpolation error e(x) is then given by:

e(x(x̂)) =
1

2
[ (te1He1) (x̂2 − x̂) + (te2He2) (ŷ2 − ŷ) + (te3He3) (ẑ2 − ẑ)

+ 2 (te1He2) x̂ŷ + 2 (te1He3) x̂ẑ + 2 (te2He3) ŷẑ ].

From this equality, estimate in L1, L2 or H1 can be deduced by considering the change of
variables given by the mapping BK . Indeed, for every function F , its integration over K
can be computed through its expression in Kref :

∫

K

F (x) dxdydz =

∫

Kref

F (x(x̂)) |det(BK)|dx̂dŷdẑ,

As 6 |K| = det(Bk), previous equality becomes:
∫

K

F (x) dxdydz = 6|K|
∫

Kref

F (x(x̂)) dx̂dŷdẑ.

Consequently, the interpolation error in L1 norm is evaluated by a direct integration of
|e(x)|. When u is concave or convex, we have: |(u−Πhu)(x)| = (u−Πhu)(x) in the convex
case and |(u − Πhu)(x)| = −(u − Πhu)(x) in the concave case. The error reads:

‖u − Πhu‖L1(K) =
|K|
40

∣∣ 2(te1 H e2 + te1 H e3 + te2 H e3)

− 3(te1 H e1 + te2 H e2 + te3 H e3)
∣∣.

Using the conventions of Figure 5, the crossed terms can be expressed only in terms of
ei H ei for i = 1, .., 6:






2 te1 H e2 = te1 H e1 + te2 H e2 − te4 H e4,

2 te1 H e3 = te1 H e1 + te3 H e3 − te5 H e5,

2 te2 H e3 = te2 H e2 + te3 H e3 − te6 H e6.
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We deduce:

∣∣2(te1 H e2 + te1 H e3 + te2 H e3) − 3(te1 H e1 + te2 H e2 + te3 H e3)
∣∣ =

∣∣∣∣∣

6∑

i=1

tei H ei

∣∣∣∣∣ .

If u is hyperbolic, the following inequality is used:

1

2
|xH x| ≤ 1

2
x |H|x,

to conclude the proof in the general case.

The same proof applies in 2D. For a quadratic function u, the linear interpolation error
on a triangle K is given by:

‖u − Πhu‖L1(K) ≤
|K|
24

3∑

i=1

tei|H|ei.

Error estimates in L2 norm and in H1 norm can also be derived. We refer to [4, 27] and
references therein for their evaluations. These error estimates are classically used to exhibit
mesh quality functions and to obtain the best element shape minimizing the interpolation
error. In the continuous mesh framework, the interpolation error estimate in L1 norm is
used to prove some exactness properties of the continuous linear interpolate.

Remark 3 (Safety principle). Even if it is possible to define exactly the linear interpolation
error in L1 norm for hyperbolic functions, we do not consider these expressions from a
practical point of view. We prefer to consider |H| instead of H transforming the function
into an elliptic or a parabolic one. It comes to in over-estimating the error for hyperbolic
functions. Indeed, it seems that we do not take any advantages of considering the null error
directions. However, the maximal error directions are those of the gradient of u. These
directions correspond to the eigenvectors direction of H. All these choices are illustrated for
the 2D example where the function x2 − y2 is considered. In that case, the following elliptic
approximates can be used:

|x2 − y2| ≤ x2 + y2

|x2 − y2| ≤ r
2 (x − y)2 + 2

r (x + y)2 for all r > 0
|x2 − y2| ≤ r

2 (x + y)2 + 2
r (x − y)2 for all r > 0 .

The first one is the approximation retained in this paper. The others are elliptic form
aligned with null directions of the hyperbolic function. The interesting point to note is that,
whatever the considered bound, the unit balls of the three elliptic bounds have the same area.
Consequently, even if the safety principle consists in over-estimating the interpolation error
in the hyperbolic case, it does not result in over-meshing.
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3.2 Linear interpolation on a continuous element

Let M be a continuous element and u be a quadratic positive function (see Remark 3).
We study the interpolation error for the class of all unit discrete elements in M, given by
Definition 2. Figure 4 depicts for a given metric tensor M some unit elements. We can now
state the main result:

Theorem 1. For all unit element K with respect to M, the interpolation error of u in L1

norm does not depend on the element shape and is only a function of the Hessian H of u
and of the metric M.

• In 3D, for all unit elements K in M, the following equality holds:

‖u − Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1

2 H M− 1

2 ). (8)

• In 2D, for all unit elements K in M, the following equality holds:

‖u − Πhu‖L1(K) =

√
3

64
det(M− 1

2 ) trace(M− 1

2 H M− 1

2 ).

Proof. According to Proposition 4, the interpolation error in L1 norm of a quadratic positive
function u on an element K is:

‖u − Πhu‖L1(K) =
|K|
40

6∑

i=1

teiHei .

Then, if K is unit with respect to M, the previous interpolation error is expressed by:

‖u − Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1

2 H M− 1

2 ).

thanks to the geometric invariants related to the volume, Relation (4), and to the square
lengths of the edges, Relation (5).

We note the strong analogy with classical interpolation error estimate for Lagrange
interpolation [8]:

• The term det(M− 1

2 ) stands for the Jacobian of the affine transformation from the
reference element K̂ onto the current element K. In our continuous framework, it is
the Jacobian of the affine mapping between the reference continuous element unit ball
BI3

onto the current continuous element unit ball BM.

• The term trace(M− 1

2 H M− 1

2 ) stands for the semi-norm involved in classical error
estimates. Generally, this semi-norm contains the anisotropic behavior of the estimate.
In the continuous framework, the trace-term gives the alignment correlation between
the principal directions of the Hessian H and the principal directions of the metric M.
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Relation (8) shows that the infinite set of discrete elements that are unit for a given metric
M achieves the same interpolation error, and moreover, shows that this interpolation error
is only expressed with continuous quantities: the continuous element M and the Hessian of
the function u. Consequently, Theorem 1 points out that the metric alone contains enough
information to describe completely the linear interpolation error in L1 norm. In other
words, this theorem confirms that the use of metric-based mesh adaptation is particularly
well suited to control anisotropically the interpolation error. In the past, this efficiency has
been observed practically on real life problems, see for instance [5, 13, 14, 17, 26, 29, 30, 34].

3.3 Continuous linear interpolate

The main difficulty in defining the continuous linear interpolate is to connect a discrete error
computed on an element to a local continuous error that is defined point-wise. Indeed, the
discrete interpolation error in norm L1 is integrated on the element K. On the contrary, a
continuous mesh is a function x 7→ M(x) defined at each point x of Ω.

Suppose now that the continuous mesh (M(x))x∈Ω is varying and that the function u is
no more quadratic but only twice continuously differentiable. If Equality (8) of Theorem 1
does not hold anymore, all the terms of the right-hand-side M and H are well defined
continuously. The definition of a continuous interpolate follows up from this consideration.

We denote by uQ the quadratic approximation of a smooth function u. At point a, uQ

is defined in the vicinity of a as the truncated second order Taylor expansion of u:

∀x ∈ V(a) , uQ(a;x) = u(a) + ∇u(a)(x − a) +
1

2
〈(x − a), H(a)(x − a)〉.

When no confusion is possible, the notation uQ(a;x) is replaced by uQ(x). uQ is a complete
quadratic form composed of a constant term, a linear term and finally a quadratic term.

The first result of this section provides an equivalence formula between discrete and con-
tinuous views locally around a point a of the domain. In the vicinity of a, uQ approximates
u and (M(x))x∈Ω reduces to M(a) in the tangent space. We can now state the main result:

Theorem 2 (Discrete-continuous equivalence). Let u be a twice continuously differentiable
fonction of a domain Ω and (M(x))x∈Ω be a continuous mesh of Ω. Then, there exists a
unique continuous linear interpolate function πM such that:

∀a ∈ Ω , |u − πMu|(a) = 2
‖uQ − ΠhuQ‖L1(K)

|K| ,

for every K unit element with respect to M(a).

The proof is given hereafter, we first look at the consequences of this theorem.
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Corollary 1. Let u be a twice continuously differentiable fonction of a domain Ω and
(M(x))x∈Ω be a continuous mesh of Ω. Then, the following continuous linear interpolation
estimate holds in 3D:

∀a ∈ Ω , |u − πMu|(a) =
1

10
trace

(
M(a)−

1

2 |H(a)|M(a)−
1

2

)

=
1

10

(
d(a)−

2

3

3∑

i=1

ri(a)
2

3 tui(a) |H(a)|ui(a)
)
.

In 2D, the estimate is:

∀a ∈ Ω , |u − πMu|(a) =
1

8
trace

(
M(a)−

1

2 |H(a)|M(a)−
1

2

)

=
1

8

(
d(a)−1

2∑

i=1

ri(a) tui(a) |H(a)|ui(a)
)
.

Proof. In 3D, for all unit elements K with respect to M(a), the error estimation (8) can be
rewritten as follow for the quadratic function uQ approximating u in the vicinity of a:

‖uQ − ΠhuQ‖L1(K)

|K| =
1

20
trace(M(a)−

1

2 |H(a)|M(a)−
1

2 ).

Then, expressing M(a) as a function of the continuous mesh parameters given by the de-
composition of Proposition 3 leads to:

‖uQ − ΠhuQ‖L1(K)

|K| =
1

20

(
d(a)−

2

3

3∑

i=1

ri(a)
2

3
tui(a) |H(a)|ui(a)

)

where the (ui(a))i=1,3 stand for the eigenvectors of M(a).

This result shows that the continuous point-wise linear interpolation can be decomposed
into the product of two terms:

• a first term that control the accuracy, this density term is directly connected to the
size of the continuous element,

• a second term that measures alignment deviation between the continuous element
orientation and the anisotropy features of the function u.

It is possible to give a geometric interpretation of this estimate. This interpretation
illustrates the impact of a continuous mesh on the error iso-values and, consequently, gives
some clue toward the control of the error by means of a continuous mesh. The term
M− 1

2 (a)H(a)M− 1

2 (a) corresponds to the frame change related to the continuous mesh
local orientation. Given a symmetric matrix |H(a)|, the corresponding quadratic form is:

f =
1

2
tx |H(a)| x.
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The matrix M− 1

2 (a) |H(a)|M− 1

2 (a) corresponds to a new quadratic form observed in the

space deformed by M(a). Indeed, if we consider the change of coordinates x̃ = M 1

2 (a)x,
we define a new quadratic form f̃ :

f̃(x̃) = tx |H(a)|x = t(M− 1

2 (a) x̃) |H(a)|M− 1

2 (a) x̃ = tx̃
(
M− 1

2 (a) |H(a)|M− 1

2 (a)
)
x̃.

Iso-values of f̃ and f are different when they are seen in the canonical Euclidean space. In
fact, viewing a quadratic form for different continuous meshes changes its iso-values in the
Euclidean space, i.e., the real physical space. It is then possible to control the error iso-
values by modifying M. This is the main principle of mesh adaptation, but here formulated
in a continuous framework. Classical metric-based mesh adaptation consists in finding a
metric field that provides isotropic iso-values of the error function, see pionneer work [7].

These results demonstrate that both the interpolation error and the linear interpolate
Πh have continuous counterparts. It is then a step forward in finding a complete analogy
between the discrete and the continuous views. From a practical point of view, we deduce
the following analogy. Given a unit mesh H of a domain Ωh with respect to a continuous
mesh (M(x))x∈Ω, the global interpolation error is:

‖u − Πhu‖L1(Ωh) =
∑

K∈H
‖u − Πhu‖L1(K). (9)

In the continuous case, the discrete summation becomes an integral:

‖u − πMu‖L1(Ω) =

∫

Ω

|u − πMu|(x) dx. (10)

Note that there is no global guarantee on the continuous interpolation error reliability given
by Relation (10). For instance, there is no a priori relationship between (9) and (10). The
only guarantee is the local equivalence given by Theorem 2. However, the local guarantee
becomes global when the mesh is unit with respect to a constant metric tensor (this does
not necessary implied that the mesh is uniform) and when the function is quadratic. In this
specific case, by neglecting error due to the boundary discretization, we have the equality:

2 ‖u − Πhu‖L1(Ωh) = ‖u − πMu‖L1(Ω),

for all unit meshes H with respect to (M(x))x∈Ω. The numerical examples of Section 4
will numerically demonstrate the efficiency of the continuous model. In particular, we will
observe that:

• the model is accurate and the equivalence (9)≈(10) is observed for non quadratic
functions and non-constant continuous meshes,

• the error due to the fact that mesh generator generates edges with length not stricly
equal to one is negligible. In particular, edges length range given in Definition 5 ensures
reliable numerical results.
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The constant 2 involved in Theorem 2 arrises in the perfect case where the mesh is only
composed of perfect unit elements. Note this is only possible in 2D whereas it is always
false in 3D due the impossibility to tessel the space only with the regular tetrahedron. In a
more practical situation, this constant needs to be evaluated from one unit mesh in order to
estimate the deviation between the continuous mesh complexity with respect to the number
of vertices of the unit mesh. In other words, the number of vertices Nv of a unit mesh verifies
the following function:

Nv = C N,

where N is the continuous mesh complexity and C a constant. The constant C depends
on the domain shape, the mesh generator used and the unit mesh resulting quality. Conse-
quently, it reflects how far the current mesh is from the perfect unity. Several examples are
given in the numerical examples section and illustrates this relation.

To conclude this section, the proof of Theorem 2 is given. This proof is based on the
exact expression of the continuous linear interpolate:

Proposition 5. The continuous interpolate πMu evaluated at a ∈ Ω for a continuous mesh
(M(x))x∈Ω and for a smooth function u is given by:

πMu(a) = p∗(0),

where p∗ is the unique linear polynomial solution of:

p∗ = min
p∈P1

‖uQ − p‖L2(BM),

where uQ is the quadratic model of u at a and BM is the unit ball of M at a. πM is given
by

πMu(a) = u(a) + ∇u(a) +
1

cn
trace(M− 1

2 (a) H(a)M− 1

2 (a)),

where cn is a constant that depends only on the space dimension:

c2 =
1

8
and c3 =

1

10
.

Proof. The quadratic model uQ of u at point a defined by:

uQ(a;x) = u(a) + ∇u(a)(x − a) +
1

2
〈(x − a), H(a)(x − a)〉,

becomes after the translation x 7→ x + a

uQ(x) =
1

2
txH(a)x + ∇u(a)x + u(a).
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The linear polynomial p∗ is given by:

p∗ : x ∈ BM 7→ tg x + c,

where c ∈ R and g ∈ R
3. As the space of linear polynomials P1 and the unit ball BM are

convex, p∗ exists and is unique. We seek for p∗ verifying the following condition:

∀p ∈ P1 ,

∫

BM

(uQ(x) − p∗(x)) p(x) dx = 0.

In particular, it is true for the following basis of P1:

x 7→ 1, x 7→ x1, x 7→ x2 and x 7→ x3.

The previous condition leads to:
∫

BM

(uQ(x) − p∗(x)) dx = 0,

∫

BM

(uQ(x) − p∗(x))xi dx = 0,

(11)

for i = {1, 2, 3}. The initial integration domain BM is mapped onto the unit sphere BI3
by

using the following one-to-one change of variables:

BM −→ BI3

x 7−→ y = M(a)
1

2 x.

Functions uQ and p∗ becomes:

uQ(x) = ũQ(y) = 1
2

tyM(a)−
1

2 H(a)M(a)−
1

2 y + tyM(a)−
1

2 ∇u(a) + u(a),

p∗(x) = p̃∗(y) = tyM(a)−
1

2 g + c.

We now consider the following basis:

y 7→ 1, y 7→ y1, y 7→ y2 and y 7→ y3,

Equations (11) become:
∫

BI3

(ũQ(y) − p̃∗(y)) det(M(a)−
1

2 ) dy = 0,

∫

BI3

(ũQ(y) − p̃∗(y)) yi det(M(a)−
1

2 ) dy = 0,

for i = {1, 2, 3}. By using integration formula of Annexe A, it comes in 3D:
(

2

15
trace(M(a)−

1

2 H(a)M(a)−
1

2 ) +
4

3
(u(a) − c)

)
det(M(a)−

1

2 ) = 0,

(
4

15
M(a)−

1

2 (∇u(a) − g)

)
det(M(a)−

1

2 ) = 0,
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from which the expression of p∗ is deduced:
{

g = ∇u(a),

c = u(a) +
1

10
trace(M(a)−

1

2 H(a)M(a)−
1

2 ).

Finally, for the 2D case, integration formula of Annexe A provides:
(

1

8
trace(M(a)−

1

2 H(a)M(a)−
1

2 ) + (u(a) − c)

)
det(M(a)−

1

2 ) = 0,

(
1

4
M(a)−

1

2 (∇u(a) − g)

)
det(M(a)−

1

2 ) = 0.

and the expression of p∗ is given by:
{

g = ∇u(a),

c = u(a) +
1

8
trace(M(a)−

1

2 H(a)M(a)−
1

2 ).

The proof of Theorem 2 is deduced from the definition of πMu(a).
In the case where the continuous mesh is constant and the function u quadratic, we verify

(9)=(10).

Notice that using the L2 projection of the quadratic model uQ of u is necessary to ensure
the specific equivalence between the discrete linear interpolate Πh and the continuous linear
interpolate πM of Theorem 2. However, the continuous linear interpolate is still well defined
if we use the function u instead of uQ. It seems then possible to define the continuous linear
interpolate for far less regular functions. For instance, one may consider only functions that
are locally L2. An open problem is then to find a discrete linear interpolation operator
which enables discrete and discontinuous approaches to be linked. Some works involving
other interpolation operators have already been considered, we can cite the developments
in [15] that derive interpolation error estimate based on the Clément’s interpolate [9].

4 Numerical examples

Using the continuous framework introduced above, the continuous interpolation error in L1

norm of a function over a domain Ω can be computed analytically for any function u and
any continuous mesh (M(x))x∈Ω that are defined by analytic functions. We exemplify this
continuous view on examples in 2D and 3D. This calculus does not require any discrete
support, e.g. any mesh. To validate the approach, each continuous error is compared to the
discrete interpolation error computed on a unit mesh with respect to the continuous one.

Note. In this section, the analytical integrations are computed by using symbolic calculus,
when possible, with Maple.
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4.1 Continuous interpolation error computation

Embedded continuous meshes. We consider the set of continuous embedded meshes
M(α) = (Mα(x))x∈Ω1

. M(α) is defined on the square domain Ω1 = [0, 1] × [0, 1] and is
given by:

Mα(x, y) = α

(
h−2

1 (x, y) 0
0 h−2

2 (x, y)

)
,

where h1(x, y) = 0.1(x + 1) + 0.05(x − 1) and h2(x, y) = 0.2. The parameter α is used to
control the level of accuracy of the mesh. The continuous mesh becomes coarser when α
decreases but anisotropic quotients and orientation remain constant. This trend is given by
the computation of the complexity C(M(α)):

C(M(α)) = N(α) =

∫∫

Ω1

1

h1h2
(x, y) dxdy =

200

3
ln(2)α.

The parameter α defines embedded continuous meshes accordingly to Definition 3. The
continuous interpolation error on M(α) is computed for two analytical functions u1 and u2:

• u1 is a quadratic function given by:

u1(x, y) = 6x2 + 2xy + 4y2 ,

• u2 is a non quadratic function given by:

u2(x, y) = e(2x2+y).

As regards the function u1, the point-wise continuous interpolation error on M(α) is:

(u1 − πMu1)(x, y) =
1

8
trace(M− 1

2

α (x, y) |Hu1
|(x, y)M− 1

2

α (x, y))

=
3 (0.15x + 0.05)2

2 α
+

0.04

α

=
27 x2 + 18 x + 35

800 α
.

The previous expression is then integrated over Ω1:

∫∫

Ω1

|u1 − πMu1|(x, y) dxdy =
53

800 α
=

53

21

ln(2)

N(α)
.

For function u2, the point-wise continuous interpolation error on M(α) is:

(u2 − πMu2)(x, y) =
1

8
trace(M− 1

2

α (x, y) |Hu2
|(x, y)M− 1

2

α (x, y))

=
e4x2+y

8 α

(
(0.15x + 0.05)2 (4 + 16x2) + 0.05

)
.
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By a direct integration over Ω1, it comes:

∫∫

Ω1

|u2 − πMu2|(x, y) dxdy ≈ 0.2050950191

α
≈ 13.673 ln(2)

N(α)
.

Before comparing the continuous evaluation of interpolation error to the discrete one,
some remarks can be made. According to the continuous mesh M(α), the continuous inter-
polation for a smooth function u writes:

‖u − πMu‖L1(Ω1) =
Cu

N(α)
,

where the constant Cu depends on u and N(α) is the complexity of M(α). The previous
expression gives a quantitative information on the order of convergence of the interpolation
error on a sequence of continuous embedded meshes issued from M(1). Indeed, with a simple
analogy with uniform meshes, we have N(α) = O(h−2(α)), so that:

‖u − πMu‖L1(Ω1) = Cu h2(α).

Consequently, the continuous interpolation error model predicts an order of convergence of
two on a sequence of embedded continuous meshes. From the discrete view, it is well known
that a uniform refinement leads to a second order of convergence for the linear interpolation
error with respect to a smooth function. This fact is also given by the continuous analysis.

Non-embedded continuous mesh. Now, let us give a more complex example in order
to demonstrate the ability of the continuous mesh model to predict the order of convergence.
In this example, a discrete study of the prediction of the interpolation error is impossible
whereas a clear convergence order is exhibited with the continuous mesh model.

We consider the following set of continuous meshes I(α) = (Mα(x))x∈Ω2
. I(α) is defined

on the square domain Ω2 = [0.5, 1] × [0.5, 1] and is given by:

Mα(x, y) = F (x, y)

(
α2 h−2

1 (x, y) 0
0 α h−2

2 (x, y)

)
tF (x, y),

where

F (x, y) =
1√

x2 + y2

(
x −y
y x

)
,

and

h−2
1 (x, y) = 4(x2 + y2) and h2(x, y)−2 =

1

2
√

x2 + y2
.

Note that this set is no more embedded accordingly to Definition 3. On the contrary, the
continuous meshes are rather non uniformly embedded as one size is scaled by α and the
other is scaled by α2. The equivalent discrete refinement process is no more homogeneous,
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i.e., the factor of division of each edge while increasing α depends on the edge coordinates.
Consequently, the order of convergence seems unpredictable a priori contrary to the embed-
ded case. However, we show that we are able to predict the asymptotic convergence order
of the continuous interpolation error for the set spanned by I(α) by using the continuous
analysis. The complexity of I(α) is given by:

C(I(α)) = N(α) =

∫∫

Ω2

1

h1h2
(x, y) dxdy ≈ 0.364 α

3

2 .

We consider the interpolation error of the quadratic function u3:

u3(x, y) = x2 + y2.

The point-wise continuous interpolation error on I(α) is given by:

(u3 − πMu3)(x, y) =
1

8
trace(M− 1

2

α (x, y) |Hu3
|(x, y)M− 1

2

α (x, y))

=
1

16 (x2 + y2) α2
+

√
x2 + y2

2 α
.

The previous expression is then integrated over Ω2, it results:
∫∫

Ω2

|u3 − πMu3|(x, y) dxdy =
0.133

N(α)
4

3

+
0.014

N(α)
2

3

.

The inhomogeneity in the scaling of the sizes leads to two terms with different order of
convergence: 8

3 and 4
3 for the first and the second terms, respectively. Consequently, the

asymptotic order of convergence for the continuous interpolation error of u3 on I(α) is only

O(N− 2

3 ) leading to a convergence order of 4
3 ≈ 1.33. This is less than the second order

reached on the previous set of meshes defined by M(α). Indeed, for a sufficiently large

value of N , the term of order O(N− 4

3 ) becomes negligible with respect to the low order

term O(N− 2

3 ). However, this approximation is only true asymptotically. Practically, the
complexity allowing this simplification depends on the constant 0.014 and 0.133. According
to Figure 10 (left), as soon as the complexity becomes greater than 1000, the asymptotic
order of convergence is fully represented by 0.014

N(α)
2

3

. Note that this value is reachable in

practice on discrete meshes.

Remark 4. Depending on the constants involved in the estimation of the order of conver-
gence, a convergence order different from the asymptotic one can be observed. If we suppose
that the error for a function u on I(α) now writes:

∫∫

Ω2

|u − πMu|(x, y) dxdy =
133

N(α)
4

3

+
0.014

N(α)
2

3

.

Then, the asymptotic complexity such that the term of order 4
3 becomes negligible is difficult

to reach in practice with discrete meshes (greater than 106), see Figure 10 (right). Conse-
quently, the observed order of convergence for acceptable complexities (C(I(α)) ∈ [1, 106]) is
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Figure 10: Left, convergence history obtained for the function u3 on the set of inhomogeneous
continuous meshes spans by I(α) defined on Ω2. Right, convergence history for the error
function of Remark 4. In that case, the coefficients involved in the error expression lead to
observe O(N− 4

3 ) as predominant term in the reachable range of complexity [1, 106] whereas

the asymptotic convergence order is O(N− 2

3 ).

of the order of O(N− 4

3 ). This example shows that predicting both the order of convergence
and the magnitude of the constants is crucial to get a reliable asymptotic prediction of the
interpolation error.

In the next section, the analytic evaluation of the constant Cu along with the convergence
order are compared to discrete estimations obtained by generating unit discrete meshes with
respect to M(α) and I(α) for different values of α.

4.2 Numerical interpolation error computation

Sequences of unit meshes are generated with respect to M(α) and I(α). Interpolation errors
in L1 norm are first computed on these meshes and then are compared to continuous error
estimations.

Unit meshes. To validate the previous continuous evaluation of the interpolation error,
a series of discrete unit meshes with respect to M(α) = (Mα(x))x∈Ω is generated. These
meshes are considered for α = {1, 2, 4, 8, 16, 32}. We denote by (Hα)α∈[1...32] this sequence
of discrete meshes. They have been generated using Yams [16]. Figure 11 depicts all these
meshes. The histograms reporting the meshes edges length and elements quality are given
in Table 2. These histograms point out the gap between the generated unit meshes and a
perfect unit mesh. We notice that an almost perfect quality is reached for each mesh and

that more than 80% of the edges length lie in the range [
√

2
2 ,

√
2] as soon as α ≥ 4. Unit
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0.20 < L < 0.50 5 1.94 %
0.50 < L < 0.71 53 20.54 %
0.71 < L < 0.90 116 44.96 %
0.90 < L < 1.11 68 26.36 %
1.11 < L < 1.41 16 6.20 %

1 < Q < 2 160 99.38 %
2 < Q < 3 1 0.62 %

M1

0.50 < L < 0.71 281 16.6 %
0.71 < L < 0.90 564 33.31 %
0.90 < L < 1.11 542 32.01 %
1.11 < L < 1.41 306 18.07 %

1 < Q < 2 328 99.18 %
2 < Q < 3 2 0.82 %

M8

0.20 < L < 0.50 1 0.19 %
0.50 < L < 0.71 130 25.15 %
0.71 < L < 0.90 204 39.46 %
0.90 < L < 1.11 133 25.73 %
1.11 < L < 1.41 49 9.48 %

1 < Q < 2 328 99.39 %
2 < Q < 3 2 0.61 %

M2

0.20 < L < 0.50 9 0.28 %
0.50 < L < 0.71 276 8.44 %
0.71 < L < 0.90 1436 43.89 %
0.90 < L < 1.11 1071 32.73 %
1.11 < L < 1.41 480 14.67 %

1 < Q < 2 328 99.77 %
2 < Q < 3 2 0.23 %

M16

0.20 < L < 0.50 6 0.71 %
0.50 < L < 0.71 82 9.69 %
0.71 < L < 0.90 352 41.61 %
0.90 < L < 1.11 279 32.98 %
1.11 < L < 1.41 127 15.01 %

1 < Q < 2 541 99.27 %
2 < Q < 3 4 0.73 %

M4

0.20 < L < 0.50 8 0.12 %
0.50 < L < 0.71 905 13.69 %
0.71 < L < 0.90 2491 37.67 %
0.90 < L < 1.11 2081 31.47 %
1.11 < L < 1.41 1127 17.04 %

1 < Q < 2 328 99.70 %
2 < Q < 3 2 0.30 %

M32

Table 2: Quality 1/QM and edges length for the unit meshes with respect to M(α) in 2D
for α = {1, 2, 4, 6, 8, 16, 32}.

meshes sequence for the continuous mesh I(α) are depicted in Figure 12. Similar conclusions
arise.

Complexity vs. number of vertices. We first study the correlation between the discrete
number of vertices Nv and the continuous complexity N . This preliminary study is necessary
in the continuous discrete comparison. Indeed, the continuous interpolation error estimate
involves the continuous complexity whereas the discrete number of points is used in the
discrete error computation. As regards the sequence of discrete meshes (Hα)α with respect
to (M(α))α, the discrete number of nodes Nv is plotted as a function of the complexity N
in Figure 13 (top right). This function is linear and the slope evaluated numerically gives:

∀Hα , Nv(α) = 1.54 N(α).

Note that this constant handles the discrepancy between the perfect unit mesh and the
generated constrained discrete mesh with respect to the continuous one. Constraints arise
from the domain boundary, the used mesh generator and the smoothness of the continuous
mesh. This constant is in the theoretical framework equal to 2, see Theorem 2. When the
constant is equal to 2, it ensures the following equality between discrete and continuous
errors:

Cu

N
= 2

Cu

Nv
.

In the case of the set of inhomogeneous continuous meshes defined by I(α), the constant is
equal to 3.37.

Discrete interpolation error. The discrete interpolation error of a function u on a mesh
Hα reads:

‖u − Πhu‖L1(Hα) =
∑

K∈Hα

‖u − Πhu‖L1(K),
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Figure 11: Unit meshes with respect to M(α) on Ω1 for α = {1, 2, 4, 8, 16, 32} from left to
right and from top to bottom.

where K stands for an element of Hα. The element-wise interpolation error ‖u−Πhu‖L1(K)

is computed by means of a 5-order Gauss quadrature numerical integration. The discrete
interpolation error is compared to the continuous one by considering Nv instead of N in
the continuous estimates. Figure 13 plots discrete and continuous interpolation errors for
functions u1 and u2 on M, and for function u3 on I. An excellent correlation is obtained
between the continuous and the discrete evaluations. The slight differences between the
continuous and the discrete expressions come from the practical difficulty to generate a
perfect unit mesh. Indeed, mesh generators generate unit meshes in the sense of Definition 5
implying that elements are quasi-unit. In consequence, most of the edges length lie in the

range [
√

2
2 ,

√
2]. Bounds of the interpolation error can be deduced from this edge length

tolerance. For every function u and for every continuous mesh, we have :

‖u − πMmin
u‖L1 ≤ ‖u − πMu‖L1 ≤ ‖u − πMmax

u‖L1 ,

where

Mmin = 2M and Mmax =
1

2
M.
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Figure 12: Unit meshes with respect to I(α) on Ω2 for α = {16, 32, 64, 128, 256, 512} from
left to right and from top to bottom.

Unit meshes composed of edges length that lie in the acceptable range will verify:

1

2
‖u − πMu‖L1 ≤ ‖u − Πhu‖L1 ≤ 2 ‖u − πMu‖L1 .

These bounds are plotted in Figure 13. Note that previous bounds impact only the constant
evaluation Cu and not the order of convergence of the interpolation error.

4.3 3D examples

In this section, a 3D analytical and a 3D numerical examples are presented.

A fully analytical example. We first consider the set of 3D continuous embedded meshes
M(α) = (Mα(x))x∈Ω3

defined on the domain Ω3 = [0, 1]× [0, 1]× [0, 1] which are given by:

Mα(x, y, z) = α




h−2

1 (x, y, z) 0 0
0 h−2

2 (x, y, z) 0
0 0 h−2

3 (x, y, z)



 ,
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Figure 13: Top left, comparison between the continuous complexity and the number of
vertices for a sequence of discrete meshes (Hα)α with respect to (M(α))α. Top right and
bottom, comparison between continuous interpolation error ‖u − πMu‖L1(Ω) and discrete
interpolation error ‖u−Πhu‖L1(Ω) for function u1 (top right), u2 (bottom left) on M(α) and
u3 (bottom right) on I(α). Black plain lines represent interpolation error when considering
Mmax and Mmin.

where h1(x, y, z) = 0.1(x + 1) + 0.05(x − 1), h2(x, y, z) = 0.2 and h3(x, y, z) = 0.2(z + 2).
The parameter α is used to control the level of accuracy of the mesh. The continuous mesh
becomes coarser when α decreases. This trend is given by the computation of the complexity
C(M(α)):

C(M(α)) = N(α) =

∫∫∫

Ω3

1

h1h2h3
(x, y, z) dxdydz =

1000

3
ln(2)(ln(3) − ln(2))α

3

2 .
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We consider the interpolation error of the function u4 given by:

u4(x, y, z) = e2x+y+z.

The point-wise continuous linear interpolation error is

(u4 − πMu4)(x, y, z) =
1

105

e2 x+y+z
(
441 x2 + 798 x + 2361 + 400 z2 + 1600 z

)

α
.

Integration over Ω3 leads to:

ZZZ

Ω3

|u4 − πMu4|(x, y, z) dxdydz =

`

−2133 − 1772 e4 + 7466 e2 − 10322 e6 + 6761 e8
´

e−4

4. 105α

≈
0.73

α
≈

126.215

N(α)
2

3

.

Sequence of unit meshes with respect to M(α) for α ∈ {2, 4, 8, 16, 32} have been generated
using Yams [16] and Gamanic [18], see Figure 14. In this example, the constant linking the
number of vertices and the continuous complexity is 2.07, see Figure 15 (left). Consequently,
the perfect theoretical case is almost reached. The comparison between discrete and contin-
uous interpolation error is depicted in Figure 15 (right). We observe an excellent correlation
between the continuous model and the numerical computation.

A fully numerical example. The theory is now applied to a more realistic 3D example
where the continuous interpolation error results from numerical computations and nor from
an analytical evaluation which is not possible in that case. More precisely, the function
and the continuous mesh (i.e.,the metric field) are linearly interpolated on a discrete mesh.
Then, the continuous interpolation error is evaluated by using these discrete data. This case
is more representative of the practical use of the continuous mesh model. The aim of this
example is to point out that, even with numerical computations, the continuous mesh model
turns out to be a reliable model to predict interpolation error.

If u is the function of interest and I(α) = (Mα(x))x∈Ω is the continuous mesh, the
continuous interpolation error is computed on the discrete mesh H0 as follow:

∫

Ω

|u(x) − πMu(x)|dx ≈ 1

10

∑

K∈H0

trace(Mα(K)−
1

2 |Hu(K)|Mα(K)−
1

2 ) |K|, (12)

where Mα(K) and |Hu(K)| are the linear discrete representation on the element K of the
continuous mesh and of the Hessian of u, and where a simple 1-order Gauss quadrature
numerical integration has been considered.

We first define the continuous mesh I(α) = (Mα(x)) on the domain Ω = [−1, 1] ×
[−1, 1] × [−1, 1] ⊂ R

3. The analytical expression of Mα is inherited from the following
quadratic form:

q(x, y, z) = 2x2 − yx + 6y2 + z2.

RR n° 6846



40 A. Loseille and F. Alauzet

Figure 14: 3D discrete meshes with respect to M(α) for α = {1, 2, 4, 8, 16, 32} from left to
right and from top to bottom.

The gradient vector is denoted g(x, y, z) = t

(
∂q

∂x
,
∂q

∂y
,
∂q

∂z

)
. The local Frenet frame is given

by F = (n, t1, t2), where the vectors t1, t2 lies in the plane orthogonal to n = g/‖g‖2. We
assume that (t1, t2) is an orthonormal basis of R

2. We also consider the Hessian matrix Hq

of q:

Hq =




4 −1 0
−1 12 0
0 0 2



 .

From this matrix, we define the sub-matrix:

Hq =

(
tt1 Hq t1

tt1 Hq t2
tt1 Hq t2

tt2 Hq t2

)
,
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Figure 15: Left, comparison between the continuous complexity and the number of vertices
for a sequence of unit meshes with respect to M(α) on Ω3. Right, comparison between
the continuous interpolation error ‖u4 − πMu4‖L1(Ω3) and the discrete interpolation error
‖u4 − Πhu4‖L1(Ω3).

which is the projection of Hq onto the plane defined by (t1, t2). We denote by λ1 and λ2

the eigenvalues of Hq. The continuous mesh I(α) parametrized by α is then given by:

Mα = F





α2 ‖g‖2
2

α
|λ1|

2 ‖g‖2

α
|λ2|

2 ‖g‖2




tF.

The complexity of I(α) is:

C(I(α)) =
α2

2

∫

Ω

√
‖g‖2

2 |λ1| |λ2| ,

which can be evaluated numerically. This continuous mesh has the physical feature to follow
the iso-surfaces of the function q and to adapt the sizes to the local curvature of the iso-
surfaces. The iso-surfaces of q are represented in Figure 16 (left). A sequence of discrete
meshes (Hα)α for a complexity of

[4 000, 8 000, 16 000, 32 000, 64 000, 128 000] ,

have been generated. Resulting unit meshes are depicted in Figures 17 and 18. In this case,
the number of vertices is almost 2.3 times the continuous complexity.

The interpolation error of the function

u5(x, y, z) = x2 + y2 + z2 .
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is computed on this sequence of discrete meshes. These discrete errors are compared to
continuous interpolation errors evaluated on a fine uniform mesh of constant size h = 0.004
using Relation (12). This size corresponds to the minimal size prescribed by the continuous
mesh I(128 000). The correlation between the continuous and the discrete interpolation
error is shown in Figure 16 (right). As expected, the order of convergence is well predicted
but the numerical computations induces an over error estimation. Consequently, if the slope
(i.e., the convergence order) of the error is well approximated, the perfect fitting due the
approximated evaluations of Cu results in a slightly shifted curve.

4.4 Some conclusions

These examples reveal that the interpolation error can be computed continuously without
any discrete support. From this point of view, a discrete mesh is simply the projection of
the continuous one. Discrepancies between continuous and discrete interpolation errors are
due to projection errors. Practically, this gap depends on the mesh generator used and the
difficulty to generate a unit mesh.

When the continuous interpolation error cannot be anymore evaluated analytically, we
have shown that a numerical evaluation using a discrete mesh still provides accurate predic-
tions of either the convergence order or the error magnitude.
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Figure 16: Left, iso-surfaces of q. Right, comparison between the continuous and the dis-
crete interpolation error for u5 on I(α). In that case, the continuous interpolation error is
computed numerically by means of the linear approximation of the continuous mesh on a
fine uniform discrete mesh.
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Figure 17: A cut through the plane y = 0 of the discrete meshes with respect to I(α) of
complexity 4000, 8000, 16000, 32000, 64000, 128000 from top to bottom, from left to right.

Figure 18: A cut through the plane x = 0 of the discrete meshes with respect to I(α) of
complexity 4000, 8000, 16000, 32000, 64000, 128000 from top to bottom, from left to right.
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5 Perspective uses

We give some possible extensions related to the use of continuous meshes. In particular,
we emphasize the available mathematical tools and their possible use with the concept of
continuous mesh. These extensions are related to the wish of describing the optimal mesh
for a given functional.

Optimal mesh adaptation. Given a smooth function u and a continuous mesh M, the
linear continuous interpolation error reads, at least asymptotically:

‖u − πMu‖L1(Ω) =
Cu

N
k
n

,

where n is the space dimension, k the expected order of convergence and Cu a constant
revealing alignment correlation between M and the Hessian of u. We have seen previously
that the previous relation leads to a second order of convergence on a sequence of embed-
ded continuous meshes having an increasing complexity. In the case of a sequence of non
embedded continuous meshes, the order of convergence is related to the specific refinement
strategy. Deriving an optimal mesh adaptation strategy consists in increasing the conver-
gence order while reducing the constant Cu. As regards the convergence order, it is fixed by
the chosen refinement (embedded or inhomogeneous) along with the order of the interpola-
tion. Consequently, the remaining possibility to reduce the error is to diminish the constant
Cu. This problem is rewritten as an optimization problem set up on the space of continuous
meshes:

min
M

F (M) (13)

In the case of the linear interpolation error, the functional is equal to:

F (M) =

∫

Ω

|u − πMu|.

To avoid the trivial solution giving a null error, a constraint is imposed on the complexity:

C(M) = N. (14)

In the following, two methods to solve (13)-(14) are briefly presented. The first one is based
on calculus of variations while the second uses differentiable optimization. Note that these
methods are not defined on the space of discrete meshes.

Calculus of variations. This approach consists in deriving analytically a necessary con-
dition for the optimal solution of (13)-(14). For instance, the necessary Euler-Lagrange
condition states that there exists λ such that: ∀δM, δF (M; δM) = λδC(M; δM). This
method needs to be able to exhibit the variation of the functionals F and C with respect to
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M. This can be done, at least formally, on the space of continuous meshes. The variation
of F is:

δF (M; δM) = lim
ε→0

F (M + ε δM) − F (M)

ε
.

where
M + ε δM = (M(x) + εδM(x))x∈Ω.

The previous variation is well defined on the space of continuous meshes for ε ≥ 0.

Numerical optimization. In the case of a non-linear functional F , deriving an optimality
condition can be unpractical. Consequently, a numerical optimization approach is advised.
Such an approach is still possible on the set of continuous meshes. Let us consider a classic
descent step: from a continuous mesh Mi, a new continuous mesh Mi+1 is found:

Mi+1 = Mi − αdi,

where di is a descent direction ensuring that F (Mi) > F (Mi+1). It generally involves
derivatives information or approximation of F with respect to Mi. The difficulty in this
approach is to ensure that at each step the new continuous mesh Mi+1 is well defined,
i.e., whatever the point x ∈ Ω, Mi+1(x) is a metric tensor. At first, it seems that a lot of
additional non linear constraints are necessary to ensure this property. For instance, we may
impose all principal determinants of Mi+1(x) to be strictly positive. An elegant solution
to avoid additional constraints is the use the log-Euclidean framework [1]. This framework
ensures that a classic descent direction step will result in a valid metric tensors field.

6 Conclusion

In this paper, we have proposed a continuous framework to model a mesh and its elements.
We have investigated how a discrete mesh can be viewed as the discrete projection of a
continuous mesh. Far to be able to give a general continuous mesh model for any discrete
meshes, we only consider a model based on the notion of Riemannian metric space. This
model corresponds to a wide class of existing 2D and 3D mesh generators [5, 10, 12, 16,
18, 20, 22, 23, 24, 29, 34]. Practically, these mesh generators compute edges length in a
Riemannian metric space and aim at generating unit meshes, i.e., meshes with only unit
length edges and unit volume elements with respect to the prescribed Riemannian metric
field.

The continuous mesh model is mathematically given by rewriting the symmetric definite
positive matrix representing the metric tensor at each point of the computational domain.
Continuous mesh features as density, orientation and stretching ratio are then exhibited.
Geometric invariants that connect discrete elements and continuous elements have been
provided. These invariants point out all the information contained in a metric. The discrete
projection is then based on the notion of unit mesh. A unit mesh with respect to a continuous
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mesh is provided by the use of an adaptive mesh generator. Consequently, the discrete image
depends on the method used to generate the mesh.

This model has then been considered to study the interpolation error. We have demon-
strated that the interpolation error estimate can be formulated in this continuous framework.
The main result states that the linear interpolation error on the class of unit elements is only
a function of the associated continuous element and of the considered function. In other
words, the notion of continuous mesh handles sufficient information to completely model
the interpolation error which is a priori only discrete. The numerical examples section has
illustrated that, for a given continuous mesh (known analytically), we are able to compute
the interpolation error of a given function on this continuous mesh without any discrete
support. Consequently, the continuous mesh model demonstrates the well-foundedness of
the metric-based mesh adaptation. The numerical examples have also shown that the con-
tinuous framework is able to predict perfectly the convergence order of the interpolation
error on a sequence of embedded continuous meshes.

The continuous mesh concept is both a theoretical and a practical tool. Theoretically, it
can be used to predict order of convergence for complex refinement strategies. The correla-
tion between the continuous and the discrete estimates depends on the correlation between
the continuous complexity and the discrete number of nodes. This dependance is linear.
Consequently, one unit mesh is sufficient practically to fit the continuous model on the dis-
crete one. This constant contains non linear features induced by the geometry of the domain
or the specific used mesh generator. The numerical examples have demonstrated that the
continuous mesh concept can also be used numerically and still gives reliable results. This
feature is mandatory to deal with and to predict interpolation error on real-life problem
involving complex geometries. In that case, symbolic calculus and analytical integration are
impractical.

The on-going work is to use this model to propose numerical and analytical mesh adap-
tation strategies. Indeed, as a mathematical meaning of the continuous interpolation error
u−πMu for a given continuous mesh (M(x))x∈Ω of a domain Ω and a given function u has
been exhibited in this paper, it is then possible to tackle the following global optimization
problem:

min
M

(∫

Ω

|u − πMu|p
) 1

p

,

subject to the constraint C(M) = N . This problem is simply the continuous equivalent of
seeking the optimal discrete mesh minimizing globally the Lp norm of the interpolation error
of the function u. The main interest of adopting a continuous view is to be able to use well
defined mathematical tools, such as the calculus of variations or differential optimization
that are not available on the space of discrete meshes.

Acknowledgment. The authors are greatly indebted to M. Mehrenberger for his fruitful
discussions and advice for proving geometric invariants and to G. Olivier for her careful
reading and comments on this work.
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A Integration formula on ellipsoids

All the results provided here can be found in [33]. We briefly recall the main results and the
way to find them.

Notations. x is a vector R
n, its coordinates are denoted x = (x1, . . . , xn). We recall that

BIn
is the unit ball of the identity matrix metric of R

n. It is fully described by the set of
points verifying:

{x = (x1, . . . , xn) | ‖x‖2 ≤ 1} .

We denote by Vn(R) the volume of a sphere of R
n with a radius R. With this notation, it

comes Vn(1) = |BIn
|. Given an index vector p = (p1, . . . , pn) and a polynomial function

E(x,p) =
∏

i

(x2
i )

pi ,

the expression of the following integral can be computed:

Wn(p) =

∫

BIn

E(x,p) dx. (15)

We propose an induction on n to compute (15). We first consider the following one-to-one
change of variables:

(x1, . . . , xn) −→ (x1, . . . , xn−1, cos(θ)), 0 ≤ θ ≤ π,

the Jacobian of which is | sin(θ)| = sin(θ). If we write: p̃ = (p1, . . . , pn−1) and x̃ =
(x1, . . . , xn−1), using the previous change of variables leads to

Wn(p) =

∫ π

0

(∫

Vn−1(sin(θ))

E(x̃, p̃) dx̃

)
(cos2(θ))pn sin(θ) dθ.

The domain Vn−1(sin(θ)) is mapped onto Vn−1(1) by simply dividing each coordinate by
sin(θ). This new change of variables is given by:

(x1, . . . , xn−1) −→
1

sin(θ)
(x1, . . . , xn−1).

Its Jacobian equals sin(θ)n−1. It comes:

∫

Vn−1(sin(θ))

E(x̃, p̃) dx̃ =

(
n−1∏

i=1

(sin(θ))2pi+1

)
Wn−1(p̃).

Wn(p) becomes:

Wn(p) = Wn−1(p̃)

∫ π

0

(
n−1∏

i=1

(sin(θ))2pi+1

)
(cos2(θ))pn sin(θ) dθ.
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We finally get:

Wn(p) = 2Wn−1(p̃)

∫ π
2

0

(sin(θ))2α−1 (cos(θ))2β−1 dθ,

with

α =
n + 1

2
+

n−1∑

i=1

pi and β =
1

2
+ pn.

The last integral is the Beta function. The following tables sums up examples of integrals
both in 2D and 3D. These formula are used to integrate quadratic forms on Vn(1):

n 1 xi xixj x2
i |xi| |xixj |

2 π 0 0
π

4

4

3

1

2

3
4

3
π 0 0

4

15
π

π

2

8

15

Examples. Given a quadratic form f defined on R
n:

f(x) =
1

2
txH x + txG + c,

where H ∈ L(Rn, Rn) is a symmetric matrix, G = (gi)i=1...n ∈ R
n a vector and c ∈ R a

constant, then the following integration results hold in 2D
∫

‖x‖2

2
≤1

f(x) = π

(
1

8
trace(H) + c

)
,

∫

‖x‖2

2
≤1

f(x)x1 =
1

4
π g1,

∫

‖x‖2

2
≤1

f(x)x2 =
1

4
π g2.

In 3D, integration formula become:
∫

‖x‖2

2
≤1

f(x) = π

(
2

15
trace(H) +

4

3
c

)
,

∫

‖x‖2

2
≤1

f(x)x1 =
4

15
π g1,

∫

‖x‖2

2
≤1

f(x)x2 =
4

15
π g2,

∫

‖x‖2

2
≤1

f(x)x3 =
4

15
π g3.
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