
HAL Id: inria-00371226
https://hal.inria.fr/inria-00371226

Submitted on 30 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Architecture Evolution
Olivier Barais, Anne-Françoise Le Meur, Laurence Duchien, Julia Lawall

To cite this version:
Olivier Barais, Anne-Françoise Le Meur, Laurence Duchien, Julia Lawall. Software Architecture
Evolution. Tom Mens and Serge Demeyer eds. Software Evolution, Springer Verlag, pp.233–262,
2008. �inria-00371226�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50182969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00371226
https://hal.archives-ouvertes.fr

1

Software Architecture Evolution

Olivier Barais1, Anne Françoise Le Meur2, Laurence Duchien2, and Julia Lawall3

1 Universit́e of Rennes 1/IRISA/INRIA Triskell project
Campus de Beaulieu . F - 35 042 Rennes Cédex - France
barais@irisa.fr

2 Universit́e of Lille 1 / LIFL/INRIA ADAM project
Cité scientifique 59655 Villeneuve d’Ascq Cédex - FRANCE
lemeur,duchien@lifl.fr

3 DIKU, University of Copenhagen
2100 Copenhagen Ø, Denmark
julia@diku.dk

Summary. This chapter provides an overview, comparison and detailed treatment of the var-
ious state-of-the-art approaches to evolving software architectures.Furthermore, we discuss
one particular framework for software architecture evolution in more detail.

1.1 Introduction

The role of software architecture in the engineering of software-intensive applica-
tions has become more and more important and widespread. Component based soft-
ware architecture models the structure and behaviour of thesystem, including the
software elements and the relationships between them. It becomes a base for the
design process, a guide for the software development process and one of the main
input to drive the integration tests. There exist currentlya lot of Architecture De-
scription Languages (ADLs) [1], which enable the architectto specify his software
system. Indeed, during the design process, the architect relies on the ADL to create
the architecture of his system by constructing and combining increasingly complex
components and connectors.

Despite of the assets of these languages, most of them do not provide means to
facilitate the evolution of a software system. However, oneof the primary task of
the architect is to ensure the quality of a system and its continued existence .Thanks
to ADLs, building a functional architecture that contains only business concerns is
in fact relatively easy. Supporting the evolution of a software architecture is more
pervasive. The essence of the architect’s task is to negotiate and balance the conflict-
ing concerns of many diverse stakeholders and to anticipatethe possible evolution
of their requirements. This characterisation enforces theidea that traditional soft-
ware architecture languages suffer from a number of key problems that cannot be
solved without changing our point of view on the notion of software architecture.

2 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

The main problem is the lack of representation of changes in asoftware architecture
description.

In this chapter, we identify two main architectural kinds ofchanges in software
architectures: internal evolution and external evolution. Internal evolution models the
changes of the topology of the components and interactions.Components and inter-
actions may be created or destroyed during execution. This kind of evolution cap-
tures the dynamic of the system. External evolution allows the specification of the
components and interactions to be changed during execution. It captures the needs
for an architecture description to be adapted in order to cope with the evolution re-
quirements. In this chapter, we study, through several approaches the lacks and the
initial solutions to cope with evolution in a software architecture description. This
study proposes a classification of these solutions according to the supported evolu-
tion kind.

The external evolution is studied in particular through theseparation of con-
cerns issue in a software architecture. Indeed, separationof concerns is tradition-
ally achieved through modularity [2] and encapsulation. Ifthe software component
paradigm provides a good support for encapsulation with thehelp of information hid-
ing, it suffers however from the problems that arise with thetyranny of the dominant
decomposition [3]. Indeed, as the object-oriented paradigm, components fail to mod-
ularise some concerns because they allow a single dimensionof decomposition. As a
consequence, some concerns are spread over and repeated in several components in
the system [4]. ADLs already provide some implicit separation of concerns: by de-
scribing the component configuration and the component interface, they separate the
dimensions of composition from interaction. Nevertheless, the separation of these
dimensions are not sufficient to modularise concerns such assecurity that crosscut
the software architecture. In these cases, integrating a new concern or modifying an
existing one require pervasively modifying the ADL specification, at all points af-
fected by the concern. These modifications are low-level, tedious and error-prone,
making the integration of such concerns difficult.

To address the complexity of integrating a new concern and modifying concern
into a software architecture, several research works are inspired by Aspect-Oriented
Software Development (AOSD) [5], which aims at improving the separation of con-
cerns. In the spirit of Aspect-Oriented Programming (AOP),these approaches put the
description of each concern in a separate architecture construct, that can automati-
cally be integrated into an existing software architectureby a weaver. However, in
specifying the integration of a new concern into an existingarchitecture, the coher-
ence of the result remains a key issue. Because architectures are complex and aspects
are invasive, many transformations caused by the composition may be needed to inte-
grate or modify a concern, making the specification of the transformation highly error
prone. Although the global coherence of an architecture canoften be checked once
the architecture is complete, these verifications are expensive as they consider the en-
tire architecture. Furthermore, the interdependencies between architecture elements
may make it difficult to identify the source of an error at thispoint. A second part of
the chapter is focused on the coherence issue when a softwarearchitecture descrip-
tion changes. This issue is presented through a detailed presentation of TranSAT [6].

1 Software Architecture Evolution 3

TranSAT proposes, through a specific language for specifying architectural aspects,
a solution that ensures a number of coherence properties. This language is carefully
designed to make certain unsafe transformations impossible to express, and allows
static verification of additional coherence properties before aspect weaving or un-
weaving. In this approach, there remain, however, some properties that can only be
checked dynamically, when integrating a new concern into anexisting architecture.
For these properties, TranSAT uses information found in theconcern specification to
limit the cost of the checks, by focusing on the parts of the architecture affected by the
architectural aspect, and to present error messages in terms of the aspect elements.
Overall, this approach provides verification early in the architecture development
process, to enable the architect to rapidly and safely integrate new concerns.

The rest of this chapter is organised as follows. The first section presents sev-
eral software architecture languages in order to identify the key concepts of these
languages and their lacks. The following sections detail several initial solutions to
cope with internal and external evolution. These sections provide a classification
of these solutions. Section 1.5 presents the TranSAT approach in order to illustrate
how addressing aspects at the architectural level can help to solve the AOSD evolu-
tion paradox and how an explicit specification of the weavingcan help to guarantee
the resulting architecture. Section 1.6 describes some related work and finally Sec-
tion 1.7 concludes and details the remaining critical issues of software architecture.

1.2 Component-based software architecture: concepts and lacks

A software architecture describes the structure and behaviour of a software system.
In a software architecture specification, a system is represented as a set of software
components, their connections, and their behavioural interactions. Creating a soft-
ware architecture promotes better understanding of the system, thus facilitates the
design process. It also provides a basis for rigorous analysis of the system design,
making possible the early detection of design errors and flaws that leads to improve-
ments in software quality and help to ensure correctness.

An architectural description language (ADL) is used to describe a software archi-
tecture. It can be a graphical or a textual language, or include both. The advantage of
using an ADL lies in the ability of rigorously specifying theglobal architecture of a
system that can be thus analysed. An ADL may be associated with a set of tools that
offer useful analysis for architectures specified in the language. An ADL is intended
to be both human and machine readable and provides a high level of abstraction. It is
a blueprint for the design and can support automatic generation of parts of software
systems.

Lots of ADLs have been developed by either academic or industrial groups. If
the various ADLs are different in many points, the ADL community generally agrees
that the key elements of ADLs are the components, the connectors and the configu-
ration [1]. A component represents a computational elementwith multiple ports to
communicate with its environment. A Connector is a first class element to model

4 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

the interaction between components. Finally, the configuration describes how com-
ponents and connectors are related into a system.

In this section, instead of providing a catalogue of ADL characteristics, we focus
on three significant directions for software architecture definitions: (i) the specifica-
tion and the analysis of distributed software behaviour, illustrated with Darwin [7]
and Wright [8], (ii) the strong link with the implementation,that may be found
in ArchJava [9], Fractal [10] and Sofa [11], and (iii) the building of architecture-
driven software development environment, as promoted by ArchStudio [12], AcmeS-
tudio [13] and SafArchie [14]. Finally, we provide a short evaluation of these works
against the evolution issue.

Architecture analysis

Some ADLs, such as Wright [8] and Darwin[7], support the specification and anal-
ysis of relatively complex component communication protocols. First, Wright pro-
vides a formal basis for architectural description. It can be used to provide a precise,
abstract meaning to an architectural specification and to analyse a component as-
sembly. To further aid developers in the realisation and exploitation of architectural
abstractions, Wright defines a set of standard consistency and completeness checks
that can be used to increase the designer’s confidence in the design of a system.
These checks are defined precisely in terms of Wright’s underlying model in CSP,
and can be checked using standard model checking technologies. Darwin has the
same background and the same goals than Wright. It is a formal language for de-
scribing software structures and network topologies. It models dynamic distributed
systems. It possesses both a textual and graphical notation. It uses Finite State Pro-
cess (FSP) Languages to specify system behaviour [15]. FSP provides a concise way
of describing Labelled Transition Systems (LTSs).

System configuration and code generation

Lots of existing approaches decouple implementation code from architecture, allow-
ing inconsistencies and violating architectural properties. ADLs like Fractal [10],
ArchJava [9] or Sofa [11] seamlessly unify software architecture with implementa-
tion.

ArchJava proposes a hierarchical component model. Components can be either
primitive or composite - a composite is built of other components, while a primi-
tive component contains no subcomponents. Components communicate with their
environment through ports. Port contains provided or required operations. ArchJava
uses a type system to ensure that the implementation conforms to architectural con-
straints in a strict technical sense known as communicationintegrity. Communication
integrity means that the components in a program only communicate along declared
communication channels in their architecture.

Fractal is a general component model part of the OW2 consortium4. As Arch-
Java, it is based on a hierarchical component model. It supports the definition of
4 http://www.ow2.org

1 Software Architecture Evolution 5

primitive and composite components, bindings between the interfaces provided or
required by these components, and hierarchic composition (including sharing). Un-
like other Java-based component models, such as ArchJava, Fractal is not a language
extension, but a run-time library which enables the specification and manipulation
of components and architectures. Fractal distinguishes two kinds of components:
primitives which contain the actual code, and composites which are only used as a
mechanism to deal with a group of components as a whole, whilepotentially hiding
some of the features of the subcomponents. Primitives can besimple, standard Java
classes conforming to some coding conventions. Each Fractal component is made of
two parts: a membrane which exposes the component’s interfaces, and a cell which
can be either a user class in the case of a primitive or other components in the case
of a composite. All interactions between components pass through their controller.
Finally, the Fractal component model is language independent, and fully modular
and extensible. Fractal provides an XML based ArchitectureDescription Language.
It is based on three main constructs to specify component types, primitive templates
and composite templates. A tool can parse Fractal ADL specification and instantiate
the corresponding components. Contrary to Darwin or Wright,ArchJava and Frac-
tal ADL do not provide any behaviour specification. The composition analysis is
only structural. However, the abstract Fractal’s or ArchJava’s component models are
efficient and appropriate for the implementation phase.

SOFA (SOFtware Appliances) is close to Fractal. It providesa platform for de-
veloping with software components. Like in Fractal, a SOFA application is viewed
as a hierarchy of nested components. The component model is hierarchical, com-
ponents can be a primitive or a composite. A component is described by its frame
and its architecture. The frame is a component interface andthe architecture is an
abstract implementation. A frame defines provides-services and requires-services of
the component. The frame can be implemented by more than one architecture. The
architecture of a composite describes the structure of the component by instantiating
direct subcomponents and specifying the interconnectionsbetween these subcom-
ponents. The architecture reflects a particular grey-box view of the component - it
defines the configuration of an architecture. Sofa provides atext-based ADL called
Component Definition Language (CDL) which is based on OMG IDL. Communi-
cation among SOFA components can be captured formally. CDL embeds a process
algebra calledbehaviour protocolsto express the behaviour of each component. In
this algebra, every method call or a return from a method callforms an event iden-
tified by an event-token. Behaviour protocols are regular-like expressions on the set
of all event tokens, generating the set of admissible tracesof the component.

Architecture Centric Integrated Development Environments

Most ADLs works today have been undertaken with academic rather than business
goals in mind. As a result, the use of architecture languagesand tools in indus-
trial project is limited. On the fringes of ADLs, some projects aim at improving
the use of software architecture concepts in software engineering industry. For ex-
ample, ArchStudio [12] mainly developed by the Institute for Software Research

6 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

at the University of California, Irvine, is an architecture-driven software develop-
ment environment. Indeed, while most development environments, like Microsoft
Visual Studio and IBM Eclipse, are code-driven developmentenvironments, Arch-
Studio focuses on software development from the perspective of software architec-
ture. It supports the C2 architectural style [16]. A C2 architecture is a hierarchical
network of concurrent components linked together by connectors (or message rout-
ing devices) in accordance with a set of style rules. C2 communication rules require
that all communication between C2 components be achieved via message passing.
ArchStudio is extensible, it has lots of extensions to analyse, refine, or deploy an
architecture specification. ArchStudio approach is a good way to improve the use
of Software Architecture result in industrial project. With the same goal, AcmeStu-
dio [13] is a customisable editing environment and visualisation tool for software
architectural designs based on the Acme architectural description language (ADL).
Acme is an ADL that can be used as a common interchange format for architecture
design tools and as a foundation for developing new architectural design and analysis
tools. AcmeStudio allows the designer to define new Acme families and customise
the environment to work with those families by defining diagram styles.

Finally, SafArchie [14] is an abstract component model for designing a software
architecture. The SafArchie component model describes thestructure of a piece of
software in terms of components, ports, operations and bindings. A component pro-
vides some services and may require some services from othercomponents. Services
can only be accessed through explicitly declared ports. A port is a binding point on
a component that defines two sets of operations: provided operations and required
operations. These operations make the dependencies between a component and its
environment explicit. The set of operations provided by a port forms a service. An
operation represents an action performed by a component. Itis specified by its sig-
nature, which includes the name, the types of the parametersand the result of the
operation, as well as the exceptions that it may raise. A binding associates a compo-
nent’s port with a port located on another component. There may only be one binding
attached to a port. Two ports can be bound with each other onlyif the operations re-
quired by one port are provided by the other and vice-versa.

Like ArchJava, Fractal or Sofa, SafArchie is hierarchical in that a component is
either primitive or composite. A primitive component can beseen as a basic building
block in the component assembly. A composite component defines a given combi-
nation of primitive and composite components. The servicesprovided and required
by the child components of a composite component are accessible through delegated
ports, which are the only entry points of a composite component. A delegated port
of a composite component is connected to only one child component port. In Sa-
fArchie, each component interface is defined with contracts. These contracts clarify
the structure but also the external behaviour of the components, which describes the
component’s interactions with its environment. SafArchiealso provides a tool suite
called SafArchie Studio which is built as a set of modules forArgoUML. SafArchie
Studio allows the designer to describe its architecture. Itprovides some connections
with model checkers. Finally, it has a module to generate code towards ArchJava or
Fractal. Even if, the architecture style and the refinement approach are different in

1 Software Architecture Evolution 7

SafArchie Studio, the goal is the same as AcmeStudio or ArchStudio: To provide a
complete tool suite to build, deploy and refine a software architecture and to trans-
form ADLs in an effective vehicle for communication and analysis of a software
system.

Evaluation: Managing software architecture evolution

Among the different problems which are not correctly addressed by the languages
presented in this Section, the software architecture evolution is still a critical issue
for the community. Indeed, the various languages presentedin this section support
the definition of a static software architecture. From this description, tools can check
the correctness of the model. They can generate code. They can guarantee the con-
sistency between a design and an implementation. However, aconsequent problem is
that a software architecture, once implemented in the software system, is, sometimes
prohibitively, expensive to change. Worst, in all these language or associated tools,
the evolution has not been taken into account. Due to the lackof first-class that rep-
resents the evolution, the models becomes obsolete quicklyand their use is limited
to an outdated documentation of the system.

If we confront the different languages presented in this section against the evolu-
tion issue, we can notice that:

• these languages can not describe the dynamic of the system. They give a snapshot
view of the system that can become obsolete.

• these languages do not take care of external evolutions. Thearchitecture analy-
sis tools do not support incremental checks. Consequently,for each modification,
the model checker has to re-check the entire system. At the implementation level,
component-based software platforms suffer greatly from tangled code because a
lot of functions, that belong to crosscutting concerns, arespread and repeated
over different components. Consequently, the integrationor the modification of a
new concerns is difficult and error-prone. Finally, the different architecture devel-
opment environments do not provide any shortcut to easily integrate or modify a
concern which crosscuts several components in the architecture.

Following this observation, we will study in the next sections several initial solu-
tions to handle the dynamic and to manage external evolutions of a component-based
software architectures.

1.3 Dynamic software architecture description

A component-based software architecture can not be monolithic. The modularity
brought by components drives the system to be dynamic. The topology of the com-
ponents and interactions can be changed dynamically. New components and inter-
actions may be created during execution. As the dynamic changes, applied to the
architectural structure, may interact in subtle ways with the on-going computations
of the system, software architectures have to take into account these changes. As

8 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

there is no consensus between the existing approaches that support the expression of
the software architecture dynamism [17], this section argues that the dynamic issue
can be tackled in two ways: either the ADL can support an explicit specification of
the software architecture’s dynamic in which case all of thepossible evolutions of the
system are foreseen in the software architecture description, or the ADL can define a
frame for dynamic software architecture. This frame confines the potential evolution
of the software architecture.

1.3.1 Explicit specification of the software architecture dynamic

Wright

The first approach which has worked on the expression of the dynamic in a soft-
ware architecture is an extension of Wright [18]. This extension reuses the behaviour
notation of Wright to model the reconfiguration. It allows thearchitect to view the
architecture in terms of a set of possible architectural snapshots, each with its own
steady-state behaviour. Transitions between these snapshots are accounted by spe-
cial reconfiguration-triggering events. To introduce the dynamism in an architecture
description, the architect has to modify the component’s alphabet, and allow new
messages to occur in port descriptions. Through this approach, the interface of a
component is extended to describe when reconfigurations arepermitted in each pro-
tocol in which it participates. Thanks to these new events, a”reconfiguration view”
consumes these events to trigger reconfigurations. This extension allows the designer
to simulate the evolution of its software architecture. Each potential snapshot can be
checked by the model checker of Wright. This extension is especially tailored for dy-
namic software architectures. However two main problems limit its use in a concrete
system development. First, the modification of the component is really heavy for
the architect. This solution breaks the separation of concerns principle. Indeed, the
reconfiguration is expressed at the same level as the functional behaviour of the com-
ponent. Second, this approach is limited to model and to simulate dynamic systems
with a finite number of configurations.

Fractal/FScript

Fractal ADL can not capture the dynamic of the system. Indeed, Fractal ADL is an
XML configuration file used for the instantiation of the system. This file can really
be compared to the configuration file of the Spring Framework5 in which all the
Beans/Components6 are instantiated and interconnected. However, Fractal is agood
candidate for the expression of the dynamic of the system. First, its run-time model
is highly dynamic. Components or bindings can be instantiated at run-time program-
matically. The configuration of a composite can be changed. Besides, Fractal is now
associated with a scripting language, named FScript [19], used to program reconfig-
urations of Fractal components. The language and its implementation are designed to

5 http://www.springframework.org/
6 Bean for Spring and Component for Fractal

1 Software Architecture Evolution 9

offer certain guarantees on the reconfigurations, by considering them as transactions.
More precisely, the guarantees are Termination (a reconfiguration can not be infinite),
Atomicity (reconfiguration is executed either completely or not at all), Consistency
(the Fractal system resulting from a successful FScript reconfiguration is structurally
consistent) and Isolation (there are no concurrent reconfigurations). Each FScript
program can be triggered by an event occurring inside the application itself using re-
active rules modelled after theEvent-Condition-Actionparadigm (ECA). Associated
to Fractal ADL, FScript provides an interesting power of expression to model the
dynamic of the system.

ArchJava

ArchJava is really close to the implementation (see section1.2). To model the dy-
namic in ArchJava, only statically defined components can bedynamically instanti-
ated and connected. At creation time, each component records the component in-
stance that created it as its parent component. A component will eventually be
garbage collected if there are no references to the component. Dynamically cre-
ated components can be connected together at run-time. Communication integrity
requires each component to explicitly document the kinds ofarchitectural interac-
tions that are permitted between its subcomponents. A connection pattern is used to
describe a set of connections that can be declared at run-time. Whether a component
or a connection can be dynamically created, ArchJava does not support the explicit
component or connector destruction.

AADL

The AADL is a new international standard for predictable model-based engineering
of real-time and embedded software [20]. Mainly inspired byMetaH [21], its fields
of application are automotive, avionics, space and industrial control systems. AADL
is a lower-level modelling language than the different ADLspresented in the pre-
vious section. Main concepts manipulated by this language are components, ports,
threads, communication bus,etc. It models software topologies bound to execution
platform topologies. AADL is interesting for two reasons. Far-off the concern of this
chapter, it was one of the first AADL to model the quality of service in a component
based software architecture. It can model times propertiesor latency. Secondly, more
relevant for this chapter, it provides a mechanism ofmodeto model the reconfigura-
tion of statically-known systems. Indeed, each AADL component can have modes.
Modes represent alternative configurations of the component implementation. Only
one mode is active at a time. At the level of system and processa mode represents
possibly overlapping (sub-)sets of active threads and portconnections, and alterna-
tive configurations of execution platform components, as well as alternative bindings
of application components to execution platform components. As in Fractal, mode
changes are specified as a state transition diagram whose states are the modes, and
the transitions are triggered by events. Thus, AADL can model the reconfiguration
of statically-known systems.

10 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

Evaluation

If the languages presented in this section make dynamic architectures explicit, they
currently do not describe the dynamic with the same goal. TheWright extension
or AADL model the dynamic to be able to simulate the evolutionof the software
architecture to check it. Fractal and ArchJava are more dedicated to implementing
a dynamic software architecture. Among the shared features, we can observe than
these approaches are based on a limited version of the CRUD7 primitives, i.e., they
can create or destroy component or connection. However, although the separation be-
tween the reconfiguration policies and the rest of the software architecture is correct
for Fractal/FScript and AADL, these policies are completely tangled into the com-
ponents for ArchJava, and partially for Wright. If we consider the specification of
the dynamic in the real-world, we can argue that the specification of all the possible
reconfigurations is fastidious and limit the real dynamic ofthe software architecture.

1.3.2 A frame for dynamic software architecture

Contrary to an explicit specification of all the potential snapshots of the system con-
figuration, other languages try to confine the potential evolution of the software ar-
chitecture in what we call a frame for dynamic software architecture.

UML 2.0

UML 2.0 [22] permits the specification of logical components, i.e. specification level
components (e.g., business components, process components) as well as deployed
components (such as artifacts and nodes). It proposes to model the system as a hi-
erarchy of nested components that provide and require interfaces. It provides sup-
port for decomposition through the new notion ofstructured classifiers. A struc-
tured classifier is a classifier (a type) that can be internally decomposed (Classes,
Collaboration, andComponents). New constructs to support decomposition
have been introduced:Part, Connectors, andPorts. In UML 2.0, a compo-
nent is viewed as a ”self-contained unit that encapsulates state + behaviour ofa set
of classifiers”. It may have its own behaviour specification and specifies a contract
of provided/required services, through the definition of ports. To model the nested
hierarchy, a component can be seen as parts because a component is a structured
classifier. In this case, a part has type and a lower/upper bound multiplicity. Con-
sequently, a connector does not represent a connection at the instance level but a
potential connection at the type level. This kind of diagramcan be really interesting
to design a frame for software architecture. The variability of the software architec-
ture is confined with the lower and the upper bound of subcomponents. Besides, each
connection between component instances must match a connection pattern declared
in the enclosing component between component types. However, UML 2.0 provides

7 Create, Retrieve, Update, Delete

1 Software Architecture Evolution 11

usual intentional flexibility. This kind of diagram is optional, and the nested hierar-
chy can be modelled only with instances that have a fix cardinality. In this last case,
UML 2.0 does not provides any frame to confine the software architecture dynamic.

SafArchie

In the same lineage, SafArchie defines the concept of architecture type. An archi-
tecture type defines a set of possible configurations that must be respected by the
software architectures. The defined constraints deal with component interfaces and
identify relations and interactions between these component interfaces. Therefore, an
architecture type represents a static view of a software architecture. These architec-
ture types are used to check the structural and behavioural compatibilities between
components. An architecture type is composed of six main elements: component
type, composite type, bindings, port type, operation, and attribute. Designing a port
type consists of identifying a set of operations that the port should provide or re-
quire. A port type corresponds to a set of operation signatures and their gathering
together is guided by the system design. Component type defines all port types of
the component and the minimum and maximum cardinality for each one. Composite
type also identifies all the component types that it should contain and the minimum
and maximum cardinality for each one. It defines the allowed interactions between
these component types through the binding concept. A binding defines a possible
interaction between two port types belonging to one or two component types that
belong to the same component type. By this way, software architecture type is a set
of structured constraints in terms of composite type, component type, and port type.
Each typed software architecture should respect these constraints.

ACL

In [23], Tibermacine et al present an approach to preserve the architectural choices
throughout the component-based software development process. They present an Ar-
chitectural Constraint Language (ACL) as a means to formally describe architectural
choices at all the stages. This language is based on the UML’sObject Constraint
Language (OCL) [24]. ACL limits the scope of an OCL constraint to a particular
component, by slightly modify the syntax and semantics of the context part in OCL.
At the syntactic level, every constraint context should introduce an identifier. This
identifier corresponds to the name of a particular instance of the meta-class cited
in the context. At the semantic level, ACL interprets a constraint with the meaning
it would have in the context of the metaclass but limiting itsscope only to the in-
stance cited in the context. With a tiny modification of OCL, acomponent is able to
define a constraint on its own structure. In ACL, only invariants can be expressed.
Pre- and post-conditions are removed of the language. In fact, ACL can be used to
define a frame for software architecture by defining a set of invariants that has to be
respected by all the configuration of a system. The architecteffort is more important
than in UML 2.0 or SafArchie but the power of expression of ACLis better. Indeed,
in the lineage of OCL, which has proved its benefits for the comprehension and the
maintainability of models [25], ACL is easy to read for the designer.

12 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

ArchStudio

In one of the first version of ArchStudio, an effort has been done to govern runtime
change [26]. They propose a mechanism for restricting changes that compromise
system integrity. They use constraints to confine the different change that can occur
but also to constrain when particular changes may occur. They support also transac-
tions modifications. Consequently, during the course of a complex modification, the
system’s architecture may be in an invalid state before reaching a final valid state. In
the same trend as ACL, Constraints legitimately restricts certain modifications paths.

1.3.3 Evaluation

These four works tackle the issue of the software architecture dynamic with the lim-
itation of the allowed variability. The two main problems concern firstly, the lack of
connection with component-based platforms. Indeed, thesemodels could be seen as
a repository which could evaluate if an explicit evolution is permitted. But, currently,
no approach combines a scripting language to make explicit the dynamic at the plat-
form level and an architecture type or a set of constraints tocheck if the proposed
evolutions are correct from the modelling point of view. Thesecond problem con-
cerns the number of valid architectures that are defined witha set of constraints or an
architecture type. In lots of case, this number is infinite. Consequently, it is impossi-
ble to check the correctness of all of these architectures. Currently, model checkers
do not support the evaluation of an infinite architecture family.

1.4 Aspect-oriented architectures description language

1.4.1 Issue

The notion ofarchitectural view/ architectural layer/ architectural aspect8 comes
from a very natural analogy: Just like in an house architecture we have distinct
view/plan/blueprints describing distinct concerns of the same house (walls and
spaces, electric wiring, water conducts), it seems reasonable to conceive a software
architecture description as the composition of several concerns specifications (view,
aspect, plan) reflecting several perspectives (viewpoint, concern) of the same soft-
ware system. Indeed the target audiences for an architecture description are the vari-
ous stakeholders of the system. Explicitly identifying these stakeholders reflects the
multi-dimensional, multi-disciplinary nature of defininga software architecture. A
stakeholder is any person, organisation or other entity with a particular interest in the
architecture of the system. The reason to identify each stakeholder is to facilitate the
comprehension of the system and its properties.

A software architecture description already provides an implicit separation of
concerns: by describing the component configuration and thecomponent interface,

8 depending on the community

1 Software Architecture Evolution 13

they separate the dimensions of composition from interaction. Nevertheless, the sep-
aration of these dimensions are not sufficient to modulariseconcerns such as security
that crosscut the software architecture. The insufficient crosscutting concerns modu-
larity complicates software evolution. To overcome this tension, this section presents
several approaches that propose to promote Aspect-Oriented Software Development
(AOSD) principles into ADLs. Through the description of these approaches, we will
see how the improvement of the separation of concerns in a software architecture
description can ease its evolution. We will also discuss themain issue raised by the
introduction of AOSD into a software architecture.

1.4.2 Using Aspects in Architectural Description

IEEE 1471

IEEE Std 1471, namedRecommended Practice for Architectural Description of
Software-Intensive Systems[27] was the first formal standard to address what an ar-
chitectural description (AD) is. It was developed by the IEEE Architecture Working
Group between 1995 and 2000 with representation from industry, other standards
bodies and academia. In 2006, IEEE 1471 became a draft international standard
(ISO/IEC DIS 42010) and is now undergoing joint revision by IEEE and ISO.

IEEE 1471 is a conceptual framework. It establishes a set of content requirements
on an architectural description. An architecture description contains any collection
of products used to document an architecture. IEEE 1471 details how architecture
descriptions should be organised, and their information content. The three main prin-
ciples of this framework are:

• abstracting away from specific media (e.g., text, HTML, XML);
• being method-neutral: It is being used with a variety of existing and new archi-

tectural methods and techniques);
• being notation-independent: IEEE 1471 recognises that diverse notations are

needed for recording various facets of architectures.

An architecture description in IEEE 1471 is governed by a setof rules. These
rules define what it means for an AD to conform to the Standard.Even if IEEE
1471 does not provide the concept of aspect, it identifies theconcept of architectural
concerns which include: functionality, security, performance, reliability. All these
concerns are generally regarded as early aspects. Under therules of IEEE 1471,
an architectural description must explicitly identify thestakeholders of the system’s
architecture and enumerate each architectural concern. Ifan AD does not address all
identified stakeholders’ concerns, it is, by definition, incomplete.

In IEEE 1471, an AD is organised into one or more architectural views. An archi-
tectural view is defined to bea representation of a whole system from the perspective
of a related set of concerns. Each view has a governing architectural viewpoint. The
viewpoint provides the set of conventions for constructing, interpreting and analysing
a view, including the rules for determining whether it is well-formed. Each identified

14 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

stakeholder concern must be framed by at least one of the architectural viewpoints
selected for use in an AD; if not, the AD is incomplete.

With regard to this conceptual framework, we can see that this standard has iden-
tified as a key concepts the issue of the different stakeholder management and the
separation of concerns in a software architecture description. Currently, they do not
propose to use Aspect-Oriented Modelling methods to compose this view. Conse-
quently, they do not propose a clear join point model. They donot propose any
pointcut language. The composition phase is not really formalised in the standard.
This approach is not operational. However, we can really imagine to use IEEE 1471
as a framework associated to an ADL that supports AOSD.

Aspect-Oriented ADLs

Recently, to improve modularity and component reusability, several ADLs are moti-
vated by the integration of new Aspect-Oriented (AO) abstractions such as, aspects,
joinpoints, pointcuts and advices into the ADLs in order to address the modelling of
crosscutting concerns in an architecture.

As software architecture descriptions rely on a connector to express the inter-
actions between components, an equivalent abstraction must be used to express the
crosscutting interactions. An Architectural Aspect, which is composed ofaspectual
connectorandaspectual component, is a component that represents a crosscutting
concern in a component-based architecture. The traditional connector can not model
the crosscutting interaction because the semantics between a binding of two com-
ponents is different than the semantics of a binding betweenan aspect and a base
component. The first one defines usually a contract between a client and a supplier.
The second one is more invasive. Due to the obliviousness principle, the base compo-
nent must not be aware of the fact that it might be modified by anaspect component.

In order to express the crosscutting interaction, AspectualAcme [28] defines the
Aspectual Connector, an architectural connection elementthat is based on the con-
nector element but with a new kind of interface and a different semantics. The new
interface makes a distinction between the different elements playing different roles in
a crosscutting interaction,i.e., affected traditional components and aspectual compo-
nents; and captures how components are interconnected. Theinterface of an aspec-
tual component contains some base roles, some crosscuttingroles and a glue clause.

The glue clause specifies how an aspectual component affectsregular compo-
nents. There are three types of glue clause: after, before, and around. The semantics
is similar to the one of advice composition from AspectJ [5].The base roles can
be linked to ports with a pointcut description. This expression matches the different
ports affected by the aspectual component. Base role identifies the aspectual compo-
nent that affects the base components.

Similarly, Fractal Aspect Component (FAC) [29] extends theFractal ADL with
Aspect Components (AC). Aspect Components are responsiblefor specifying exist-
ing crosscutting concerns in software architecture. Each aspect component can affect
components by means of a special interception interface. Two kinds of binding be-
tween components and ACs are offered: a direct crosscut binding by declaring the

1 Software Architecture Evolution 15

component references and a crosscut binding using pointcutexpressions based on
component names, interface names and service names.

A third approach, named PRISMA [30], should be mentioned. Itintegrates
the software architecture and the AOSD approaches. Contrary to FAC or Aspectu-
alACME, PRISMA is a symmetrical approach because it does notconsider function-
ality as a kernel entity different to aspects and it does not constrain aspects to specify
non-functional requirements; functionality is also specified as an aspect. As a re-
sult, PRISMA provides a homogeneous treatment to functional and non-functional
requirements. In PRISMA, aspects are first-order citizens of software architectures
and represent a specific behaviour of a concern (e.g., safety, coordination, etc) that
crosscuts the software architecture.

1.4.3 Evaluation

An interesting analysis and comparison of Aspect-OrientedADL to complete this
section can be found in [31, 32]. Complementary to these two studies, the approaches
presented in this section illustrate that there is currently no consensus between exist-
ing approaches about the way to define an aspect in a software architecture. Among
the other differences, some approaches consider that an aspect is composed of com-
ponents, is a kind of component or a component is composed of aspects. However,
most of them agree on that the semantics of the composition has to be extended to
incorporate aspects into an ADL. As in software architecture there is a consensus that
a software connector is the element that mediates interactions between components,
several approaches modify the semantics of the connector toreflect the concepts of
AOSD in a software architecture description.

As illustrated in [33], in addition to separating the different concerns during soft-
ware development, AOSD can help to overcome many of the problems related to
software evolution. Improving the separation at the architecture level will help to co-
ordinate the different stakeholders of the system and improve the ability to modify
only one concern independently of the others. Nevertheless, integrating or modifying
a concern requires invasively modifying the ADL specification, at all points affected
by the concern. These modifications are low-level, tedious and error-prone, making
the integration of such concerns difficult. As pointed out bythe AOSD evolution
paradox [34], the evolution of a concern can break the consistency of the software
architecture. For this reason, we claim in the second part ofthis chapter that the con-
sistency of a base architecture modified by an aspect is a key issue for the software
architecture community. To illustrate the problem and evaluate an initial solution,
we propose to study in depth TranSAT: a framework for integrated stepwise new
concerns in a software architecture.

16 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

1.5 Safe integration of new concerns in a software architecture

1.5.1 Overview of TranSAT

In this section, to motivate the breaking consistency issue, we present an overview
of the TranSAT framework, through the example of a banking software architecture.
We first describe the architecture and then show how to use theTranSAT framework
to extend this architecture with an atomicity concern. Finally, we consider some of
the issues that confront an architect when specifying a crosscutting concern.

Example

Our example banking application manages the withdrawal anddeposit of money be-
tween savings and checking accounts. This application is represented by the software
architecture shown in Figure 1.1, which is specified using the SafArchie ADL (see
Section 1.2).

Fig. 1.1.Banking software architecture

Figure 1.1(a) gives the structural description of the banking architecture. The
structure is described in terms of composites (Bank, Clients), components (Ma-
nager, Savings, Checking), ports (p1 to p5), delegated ports (dp1 to dp3)
and bindings. Ports contain operations; for example, the operationswithdraw and
deposit are provided by the portsp4 andp5 respectively. A port must contain
at least one operation, must be part of exactly one component, and must be bound
to exactly one other port, in some other component. Operations are either provided
or required. Bound ports must contain compatible operations; for example, portp2
requires the operations provided by portp4. Delegated ports do not contain any

1 Software Architecture Evolution 17

operations; they define the interface of a composite, exporting the operations of the
composite’s components.

Figure 1.1(b) gives the behavioural description of one of the components,Ma-
nager. The behaviour is specified in terms of an Input/Output Automaton [35] that
describes the sequences of messages that a component may receive and emit. The
notation used in these automata is as follows. For a providedoperationop1, the
message?op1 represents the receipt of a request and the message!op1$ represents
the sending of the response.?op1 must precede!op1$, but they can be separated
by any number of messages, representing the processing ofop1. For a required
operationop2, the message!op2 represents the sending of a call and the message
?op2$ represents the receipt of the response. Sending a call is a blocking operation,
and thus!op2must always be immediately followed by?op2$. Using this notation,
the behaviour shown in Figure 1.1(b) specifies that when theManager receives a
transfer request, it makes a withdrawal from one of the two accounts and a deposit
to the other one.

Integrating an atomicity concern using the TranSAT framework

The TranSAT framework manages the integration of a new concern, represented as
an architectural aspect, into an existing architecture, referred to as abasis plan.
The software architectural aspect represents the new concern in terms of aplan, a
join point mask, and a set oftransformation rules. The plan describes the structure
and behaviour of the new concern. The join point mask defines the structural and
behavioural requirements that the basis plan must satisfy so that the new concern
can be integrated. The transformation rules specify the means of composing the new

Fig. 1.2.Architectural aspect for the atomicity concern

18 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

plan with the basis plan. Given a software architectural aspect, the architect specifies
where it should be added to the basis plan. The TranSATweaverthen checks that
the selected point in the basis plan matches the join point mask, instantiates the
transformation rules according to the architectural entities matched by the join point
mask, and executes the instantiated transformation rules to compose the new concern
into the basis plan.

As an example of the use of these constructs, we consider how to make the bank-
ing transactions atomic. This concern is crosscutting, in that it affects both theMa-
nager and the savings and checking accounts. The architectural aspect related to
atomicity is shown in Figure 1.2. The new plan correspondingto the atomicity con-
cern keeps a log of certain operations and enables these operations to be rolled back
when an error occurs. Specifically, theLog components provide operations to keep
a log and to retrieve information from this log, and theCoordinator component
triggers rollbacks when appropriate, guaranteeing the atomicity property. The join
point mask specifies that this plan can be composed in a context consisting of one
componentCm1 attached to two other componentsCm2 andCm3. Some constraints
(not shown) are also placed on the operations in the ports connecting these compo-
nents. In the banking software architecture, the join pointmask is compatible with
the integration site consisting of theManager, Savings andChecking compo-
nents. Finally, the transformation rules connect the portsof the plan to the ports of
the selected integration site, and make other appropriate adjustments. In the case of
the banking architecture, the result of the composition is shown in Figure 1.3.

Fig. 1.3.Transformed banking software architecture

1 Software Architecture Evolution 19

Issues

To specify the integration of a crosscutting concern, the architect must describe how
to modify the component structure, behaviour, and interfaces. This task is highly
error prone, as many modifications are typically required, and these modifications
can have both a local impact on the modified elements and a global impact on the
consistency of the architecture.

Typically, a component model places a number of requirements on local proper-
ties of the individual architectural elements. For example, in SafArchie, the ADL on
which TranSAT is built, it is an error to break a binding and then leave the affected
port unattached, or to remove the last operation from a port,and then leave the port
empty. The construction of the behaviour automaton associated with each component
is particularly error prone, because it must be kept coherent with the other elements
of the component and because of the complexity of the automaton structure. For ex-
ample, in SafArchie, all of the operations associated with the ports of a component
must appear somewhere in the component’s behaviour automaton. When the ADL
separates the structural and behavioural descriptions, itis easy to overlook one when
adding or removing operations from the other. An automaton must also describe a
meaningful behaviour; at a minimum that for each operation,a call precedes a return
and every call is eventually followed by a return from the given operation.

The architecture must also be globally coherent. The most difficult point raised
by this coherence issue lies mainly in the behaviour of the architecture. So that the
application can run without deadlock, it must be possible tosynchronise the be-
haviour of each component with that of all of the components to which it is bound
by its ports. Any change in the behaviour of a single component can impact the way
it is synchronised with its neighbours, which in turn can affect the ability to syn-
chronise their behaviours with those of other components inthe architecture. The
interdependencies between behaviours can make the source of any error difficult to
determine.

1.5.2 A specific language for Software Architecture Transformation

In this subsection we present the TranSAT’s transformationlanguage for specifying
the elements of an architectural aspect: plan, join point mask and transformation
rules. The component assembly shown in Figure 1.2 (a) is an example of a plan,
showing only structural information. We also present the join point mask and the
transformation rules. The use of the language is illustrated through the definition of
the atomicity aspect.

The join point mask

The join point mask describes structural and behavioural preconditions that a basis
plan must satisfy to allow the integration of the new concern. It consists of a se-
ries of declarations specifying requirements on the structure and behaviour of the
components available at the integration site.

20 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

Fig. 1.4.Join point mask definition

Figure 1.4 illustrates a join point mask suitable for use with the atomicity plan
(Figure 1.2 (a)). For readability, some of the declarationsare elided or represented
by the diagram at the top of the figure. The diagram specifies that some component
Cm1 must be connected to two other componentsCm2 andCm3. The remaining dec-
larations define a series of placeholders for operations (line 3), specify whether these
operations must be declared as provided or as required (lines 4-11) and specify that
they must be associated with the portspm1 topm4 (lines 12-15). Finally, lines 16-19
ensure that the operationopm1 is the inverse of operationopm5 in the bound port,
and similarly foropm2 andopm6, opm3 andopm7, andopm4 andopm8. Opera-
tions are inverse if they have the opposite polarity, the same name and compatible
types. In the banking architecture, these constraints would, for example, allow the
architect to select the required operationwithdraw in port p2 asopm1 and the
provided operationwithdraw in portp4 asopm5. In this example, the join point
mask does not specify any behavioural requirements. If needed, the constraints on the
behaviour of a component mask can be specified in terms of a sequence of messages.

The transformation rules

The transformation rules describe precisely how to composethe new plan with a
basis plan. They specify the various transformations to perform on the elements de-
fined in the new plan and the join point mask, as well as their application order. The
language provides two kinds of transformation primitives:computation transforma-
tion primitivesandinteraction transformation primitives. The computation transfor-
mation primitives specify the introduction of new ports andoperations in primitive
components, in order to adapt the component behaviour. The interaction transforma-
tion primitives manage the insertion and deletion of component bindings and man-

1 Software Architecture Evolution 21

age the composite content, in order to reconfigure the software architecture. Overall
TranSAT is targeted towards introducing new concerns into existing architectures
rather than removing existing functionalities. Thus, the language has been designed
to prevent transformations that remove existing behaviours.

Computation transformation primitives

Table 1.1 shows the primitives used to manage the structuraltransformation of prim-
itive component interfaces. These primitives allow the architect to create new ports
and operations, to destroy empty ports and to move an operation from one port to
another.

Port Operation

create PortPr in Cp;
OperationOr = op in Pr;
OperationOr1 = op replacesOr2;

destroy Pr.destroy(); N/A
move N/A Or.move(Pr);

Cp: ComponentRef, Pr: PortRef, Or: OperationRef,
op ::= Or | inverse(Or), N/A: Not applicable

Table 1.1.Computation transformations

Adding an operation to a port has an impact on the behaviour ofthe associated
component. When a new copy of an operation is added to a port using the opera-
tionOperation Or = op in Pr, the architect must explicitly specify how the
messages associated with the newly added operationop fit into the behaviour of the
component to which the operation is attached. The transformation of the behaviour
automaton is specified using the pattern-matching syntaxtemplate => result. Such
a rule inserts the messages associated with the new operation, op, before, after, or
around the calling or responding messages associated with some existing operation,
m. The template specifies the sequence of messages onm, possibly separated by any
sequence of messages,x. The result describes how messages associated with the new
operation,op, are interleaved with this sequence.

The following lines illustrate the use of the automaton transformation rules:

1?m → x → !m$ ⇒ ?m → ! op → ? op$ → x → !m$;
2?m → x → !m$ ⇒ ?m → (! op → ? op$ → x | x) → !m$;

In line 1, the template describes the receipt of a call tom followed by any number of
messages, followed by the sending ofm’s response. The result specifies that follow-
ing the receipt of the call tom, the component sends a call toop and waits for the
response before performing any further computation. The use of the new operation
op at runtime can also be conditional. In line 2, the transformed component either
callsop, waits for the response, and then performs the sequencex, or performsx
alone, ignoring the addedop operation.

22 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

Interaction transformation primitives

The interaction transformation primitives manage the reconfiguration of the software
architecture. As shown in Table 1.2, operators are providedto create and destroy
bindings, to create composites either at the top level or within another composite,
and to move one compositeCr1 or one componentCp into another compositeCr2.

Binding Composite Component

create
BindingBr = CompositeCr;

N/A
{Pr1, Pr2}; CompositeCr1 in Cr2;

destroy Br.destroy(); N/A N/A
move N/A Cr1.move(Cr2); Cp.move(Cr2);

Cp: ComponentRef, Cr: CompositeRef, Pr: PortRef,
Br: BindingRef, N/A: Not applicable

Table 1.2.Interaction transformations

Example

We use the atomicity example to illustrate the use of the computation and interac-
tion transformation primitives. In this example, composing the new plan requires
(i) interposing theCoordinator component between the original componentCm1
(instantiated asManager in the banking case) and the operations that are to be made
atomic, and (ii) inserting theLog components in front of the componentsCm1 and
Cm2 providing these operations (instantiated asSavings andChecking in the
banking case). Figure 1.5 shows the rules that carry out these transformations.

In the join point mask, the operations to be made atomic are specified to be in a
port that may contain other operations,e.g., portpm1 includes the operationsopm1,
opm2, and some unknown list of operations* (line 12 in Figure 1.4). So that the
atomicity concern does not have to take into account these other operations, lines 2-
11 in Figure 1.5 move the operations to become atomic into newly created ports,p18
to p21. This transformation may cause the ports matched by the joinpoint mask
to become empty. Accordingly, lines 13-16 apply thedestroy operation to these
ports, causing them to be destroyed if they are empty. When theatomicity concern is
composed into the banking software architecture, the portsmatched bypm1 to pm4
are not destroyed because they contain the operationgetBalance.

The ports of theCoordinator are then updated with references to the opera-
tions to be made atomic. For each port,p6,p7,p10, andp11, the generic operations
invoke1 andinvoke2 are replaced by the inverses of the corresponding opera-
tions in the portsp18 to p21 (lines 18-25). These transformations implicitly update
theCoordinator’s behavior automaton by replacing the messages associatedwith
theinvoke operations by the messages associated with the new operations.

To insert theLog components in front ofCm2 andCm3, new ports must be added
to Cm2 andCm3 and these ports must be instantiated with references to thelog

1 Software Architecture Evolution 23

1// Cm1 transformation
2P o r t p18 i n Cm1;
3opm1 . move (p18) ;
4opm2 . move (p18) ;
5... Similarly for the port p19 and the operation masks opm3 and opm4 of pm2
6
7// Cm2 transformation
8P o r t p20 i n Cm2;
9opm5 . move (p20) ;
10opm6 . move (p20) ;
11... Similarly for the port p21 in Cm3 and the operation masks opm7 and opm8 of pm4
12
13// Port destruction
14pm1 . d e s t r o y () ;
15pm3 . d e s t r o y () ;
16... Similarly for the ports pm2 and pm4
17
18// Coordinator transformation
19O p e r a t i o n o6a = i n v e r s e (opm1) r e p l a c e s p6 . invoke1 ;
20O p e r a t i o n o6b = i n v e r s e (opm2) r e p l a c e s p6 . invoke2 ;
21... Similarly for the operations of the port p7
22
23O p e r a t i o n o10a= i n v e r s e (opm5) r e p l a c e s p10 . invoke1 ;
24O p e r a t i o n o10b= i n v e r s e (opm6) r e p l a c e s p10 . invoke2 ;
25... Similarly for the operations of the port p11
26
27// Introduction of p16 within Cm2
28P o r t p16 i n Cm2;
29O p e r a t i o n o16 = i n v e r s e (p13 . log) i n p16 ;
30?opm5 → x → ! opm5$
31⇒ ?opm5 → x → ! o16 → ? o16$ → ! opm5$;
32?opm6 → x → ! opm6$
33⇒ ?opm6 → x → ! o16 → ? o16$ → ! opm6$;
34
35// Introduction of p17 within Cm3
36... Similarly to Cm2 for the transformation of the port p17
37
38// Component introduction
39C o o r d i n a t o r . move (Cm1 . p a r e n t) ;
40Log1 . move (Cm2 . p a r e n t) ;
41Log2 . move (Cm3 . p a r e n t) ;
42
43// Binding creation
44Bind ing b6 = {p18 , p6} ;
45B ind ing b7 = {p19 , p7} ;
46
47Bind ing b10 = {p10 , p20} ;
48B ind ing b11 = {p11 , p21} ;
49
50Bind ing b13 = {p13 , p16} ;
51B ind ing b15 = {p15 , p17} ;

Fig. 1.5.Transformation rules for the atomicity concern

operation. We focus on the transformation ofCm2, as the transformation ofCm3 is
similar. Lines 28-29 add the portp16 and copy therequire counterpart of the
Log component’slog operation into this port. Becauselog is a new operation for
Cm2, we must specify where it fits intoCm2’s behaviour. Lines 30-33 specify that
Cm2 sends a call to this new operation whenever it is about to return from either of
the operations to be made atomic.

24 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

The remaining rules transform the interaction between components. Lines 39-41
add the components of the plan to the basis plan. In these rules, for any outermost
component or composite referenced byC in the join point mask,C.parent repre-
sents the parent of the element to whichC is matched in the basis plan. As the com-
ponent model is arborescent, each component or composite has at most one parent. If
there is no parent, the enclosing transformation is not performed. Finally, lines 43-50
connect the components at the various ports. TranSAT automatically adds delegated
ports,e.g.,dp4 in Figure 1.3, as needed. This behaviour of the transformation engine
improves the genericity of the architectural aspect. Applying these transformation
rules to the join point between theManager, Savings andChecking compo-
nents shown in Figure 1.1 (a) produces the software architecture shown in Figure 1.3
(structural information only).

1.5.3 Static checking of the transformation

A goal of TranSAT is to ensure that the composition of a new concern produces a
valid software architecture. Accordingly, TranSAT statically checks various proper-
ties of the aspect at creation time and dynamically checks that the aspect is compati-
ble with the insertion context when one is designated by the architect.

Static properties and checks

Given an aspect, TranSAT first checks that its various elements are syntactically
and type correct. For example, a join point mask must declarethat a port contains
elements of typeOperation and aBinding transformation must connect two
ports. TranSAT then performs specific verifications for the plan, the join point mask,
and the transformation rules.

Plan. TranSAT requires that the plan be a valid software architecture according
to the component meta-model of SafArchie, except that it maycontain unattached
ports. For example, TranSAT checks that all bindings connect ports that contain
compatible operations and that the automata describing thebehaviours of the var-
ious components in the plan can be synchronised.

Join point mask. The variables declared by the join point mask represent the
fragments of the basis architecture that can be manipulatedby the transformation
rules. Unlike the plan, the join point mask need not be an enriched architecture spec-
ification and thus TranSAT does not check thate.g.operations are specified for all
ports or automata can be synchronised. These properties are, however, assumed to
be satisfied by the elements matched in the basis architecture. TranSAT does ver-
ify the consistency of the information that is given, for example that any automaton
provided uses operations in a manner consistent with their polarity.

Transformation rules. TranSAT ensures the safety of the transformation process
by a combination of constraints on the transformation language and verifications
performed statically on the transformation rules.

Several features of the transformation language have been designed to prevent
the architect from expressing unsafe transformations. Forexample, the SafArchie

1 Software Architecture Evolution 25

component meta-model requires the insertion of delegated ports whenever a binding
crosses a composite boundary. TranSAT introduces these delegated ports automat-
ically, relieving the architect of the burden of identifying the composites between
two ports, reducing the size of the transformation specification, and eliminating the
need to fully specify composite nesting in the join point mask. The SafArchie com-
ponent model also requires that each architectural elementhave a parent, except for
the outermost components or composites. The transformation language enforces this
constraint by combining the creation of a new element with a specification of where
this element fits into the architecture; for example,Port Pr in Cr both creates
a new portPr and attaches this port to the compositeCr. Finally, a common trans-
formation is to replace an operation in a port by another operation, which requires
updating both the port structure and the automaton of the associated component. The
transformation language combines both operations in the declarationOperation
Or1 = op replaces Or2.

Other safety properties are not built into the syntax of the transformation lan-
guage, but are checked by analysis of the transformation rules. To do so, the op-
erational semantics of the transformation language is formalised. Thanks to these
formalisation, the analysis simulates the execution of thetransformation rules on the
various elements identified by the plan and the join point mask. At the end of the
simulation, global post-conditions are checked to guarantee that the pattern will not
break the software architecture consistency. For example,a post-condition guarantee
that every element has at least one subelement except operations and join point mask
elements for which no subelements are initially specified. Asimilar analysis checks
various properties of bindings: every port is connected to some other port by a bind-
ing, the connected ports are not part of the same component, the operations of the
connected ports are compatible, etc. Another analysis checks that for each compo-
nent, the automaton and the set of operations in the various ports are kept consistent.
A more detailed description of these checks is provided in [6].

1.5.4 Dynamic checks

An architect integrates an aspect by designating a fragmentof the existing archi-
tecture to which the aspect should be applied. TranSAT checks that the fragment
matches the join point mask, to ensure that the fragment satisfies the assumptions
under which the safety of the transformation rules has been verified. However, be-
cause the join point mask does not describe the entire basis architecture, the static
checks of the different elements of the aspect are not sufficient to guarantee the cor-
rect composition of a new plan into a basis plan. Consequently, dynamic verifications
of some structural and behavioural properties of the architecture are performed dur-
ing the composition process.

The dynamic structural verification consists of checking the compatibility be-
tween the newly connected ports, according to the definitionof the port compati-
bility of SafArchie [14]. Concretely, based on transformation rules that have been
applied, the analysis builds a list containing the newly created connections as well
as the connections between ports that have been modified by the transformations.

26 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

For each of these connections, the connected ports are verified to contain compatible
operations. The other connections do not need to be checked as they are not affected
by the transformations and their correctness has been previously verified during the
analysis of the basis plan or the aspect plan.

Adding new components and behaviours to a fragment of an architecture can
change the synchronisation at the interface of the fragment, and thus have an effect
on the synchronisation of the rest of the architecture. The use of a architectural as-
pect localises the modifications to a specified fragment of the existing architecture.
The process of resynchronisation thus starts from the affected fragment and works
outward until reaching a composite for which the interface is structurally unchanged
and the new automaton is bisimilar to the one computed beforethe transformation.
The bismilarity relation ensures that the transformation has no impact on the observ-
able behaviour of the composite, and thus the resynchronisation process can safely
stop [36].

If the transformation of the architecture fails, any changes that were made must
be rejected. Before performing any transformations, TranSAT records enough infor-
mation to allow it to roll back to the untransformed version in this case.

1.5.5 Assessment

In Section 1.1, we observed that the architect who integrates a new concern without a
dedicated framework, can use the general architecture analysis tools to check the va-
lidity of the resulting architecture after the compositionis complete. This approach,
however, can give imprecise error messages, because the resulting architecture does
not reflect the transformation step that caused the problem,and can be time con-
suming, due to the automaton synchronisation that is part ofthis validation process.
In this section, we briefly describe how a composition framework like TranSAT can
address these issues.

Because the static verifications have a global view of the transformations that will
take place, they can pinpoint the transformation rules thatcan lead to an erroneous
situation. For example, if an operation is moved from a port of the join point mask,
the port may become empty, resulting in an erroneous software architecture. While
SafArchie would simply detect the empty port, TranSAT can, via an analysis of the
complete set of transformation rules, detect that there is arisk that a port contains
only one operation, that amove is performed on the operation in this port, and that a
destroy is not subsequently applied to this port. Using this information, TranSAT
can inform the architect of problems in the transformation rules, before any actual
modification of the architecture has taken place. Obtainingthis feedback early in the
composition process can reduce the overall time required tocorrectly integrate the
new concern.

Because the dynamic verifications are aware of the exact set of components that
are modified by the composition, they can target the resynchronisation of the au-
tomata accordingly. As synchronisation is expensive, reducing the amount of resyn-
chronisation required can reduce the amount of time required to integrate a new
concern, making it easier for the architect to experiment with new variants.

1 Software Architecture Evolution 27

1.5.6 Discussion and tool suite

TranSAT is really different compared to other AO-ADLs. Contrary to most AO-ADL
that try to create new first-class entities that extend the concept of Component and
Connector, TranSAT architectural aspect is a composite entity that contains a set
of components and connectors that must be inserted. Consequently, in TranSAT the
weaving is not a composition operator with a fix semantics. The transformation rules
contained in the architectural aspect description refine this semantics. TranSAT’s
use of transformations to weave aspects model raises the issue about the difference
between model weaving and model transformation. This issueis not limited to the
TranSAT approach. Indeed, in many Aspect-Oriented Modelling approaches (AOM),
a design is presented in terms of multiple user-defined views(aspects) and model
composition is often carried out to obtain a model that provides an integrated view
of the design. In this different approaches, model composition involves merging or
weaving two or more models to obtain a single model. The apparent similarities
between model weaving and model transformations have already been discussed
in [37]. As a result, even if TranSAT can not be compared directly to others AO-
ADLs, it can be classified without restriction as an AOM approach.

The TranSAT framework enriches the SafArchie tool suite to assist the architect
during the specification of the system. For TranSAT, three main static modules have
been developed. The first one permits the static checking of an architectural aspect.
The second one assists the architect to compose an architectural aspect with an ex-
isting architecture by highlighting the different join points matched by the join point
mask. Finally, the transformation engine performs the transformation to weave an
architectural aspect into an architecture.

The static checking of the architectural aspect has been developed as an if-then
clause in Drools9 and in Prolog10. The comparison of the Drools rules and the Prolog
rules shows that you find the same conditions and the same consequences. The dif-
ference is that the rule is called explicitly in Prolog whereas it is chosen by the rule
engine in Drools. Contrary to the Prolog implementation, the Drools implementation
does not output the reason of the failure of a transformationrule. Although it is possi-
ble to check the reasons of the failure, it is not handy to do sowith forward-chaining.
The time spent for the verification using the Prolog implementation is quite simi-
lar for both implementations. The rules check the initial state and the final state of
the transformation environment and perform the structure and connection analysis.
The Drools implementation relies on 39 Drools rules. The Prolog implementation is
composed of 21 Conditional Transformations11 and 18 Prolog rules.

To detect the join point that can be matched by a join point expression, a module
has been implemented in three ways with AGG12, DROOLS and Prolog. The idea
is the same for all the implementations. First we fill the knowledge base with facts
that correspond to the elements of the software architecture. Then we transform the

9 http://legacy.drools.codehaus.org/
10 http://www.swi-prolog.org/
11 http://roots.iai.uni-bonn.de/research/jtransformer/cts
12 http://tfs.cs.tu-berlin.de/agg/

28 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

join point mask into a set of rules. Finally we make the rule engine use these gener-
ated rules to find all the matching facts in the knowledge base. The main difference
between those implementations concerns the efficiency of the search. The AGG im-
plementation takes more time than the two others because of the graph matching
process. Drools arrives at the second position. The extra time for the Drools imple-
mentation comes mainly from the compilation of the Drools rules. Since the rules
are generated from the join point mask, the cost of the rules compilation can not be
reduced.

Finally, the transformation engine has been developed withtwo concurrent tech-
niques: AGG and Prolog. The AGG rules are generated from the TranSAT trans-
formation rules. There are 167 graph transformation rules created for the atomicity
composition. The host graph generated from the software architecture is composed
of 77 nodes and of 90 edges. The transformed host graph holds 115 nodes and 138
edges. There are 34 conditional transformations that perform the TranSAT transfor-
mations. The software architecture is described by 145 predicates in the knowledge
base. After the atomicity integration, the transformed software architecture is spec-
ified by 210 predicates. The atomicity integration in the reservation software archi-
tecture takes 50 times more time with AGG than with Prolog. Once again, the graph
matching is responsible for the effeciency difference.

1.6 Related work

Separation of concerns in software modelling

Our work relates in several points to the works in Aspect Oriented Modelling. In
this domain, the composition of the different concern models identified in the early
stage of the development process is an important issue when building a model with
aspects. Main works consist in being able to compose UML diagrams. For exam-
ple, France et al [38] have developed a systematic approach for composing class
diagrams in which a default composition procedure based on name matching can be
customised by user-defined composition directives. These directives constrain how
class diagrams are composed. The framework identifies automatically conflicts be-
tween models that have to be composed and it solves them thanks to the composition
directives. Composition directives address the weaving only from the structural point
of view. It considers the composition as a model transformation. Besides, it is a sym-
metric AOM approach in which they do not differentiate between aspect model and
base model. Consequently, they do not provide currently a pointcut language to man-
age the composition.

Close to model composition directives, Muller et al [39] present a means to build
an information system with parametrised models. They use a model composition op-
erator to combine models. This work focuses on the idea that model parametrisation
allows the reuse of models in multiple contexts. The need to compose parametrised
models and apply them to a system according to alternative and coherent ordering
rules is highlighted. However, as with model composition directives, their work only
supports the composition of class diagrams and can not compose dynamic diagram.
This approach does not provide aspectual composition operators and as such does
not support the composition of aspect models.

1 Software Architecture Evolution 29

In the same idea, Theme/UML extends the UML to support the specification of
symmetric concern models . A symmetric decomposition modelis one in which both
base and aspect concerns are defined in separate models at thesame level of abstrac-
tion. At the modelling level, a base concern represents behaviours that are not cross-
cutting. An aspect concern represents behaviours that are primarily crosscutting. The
Theme/UML approach introduces atheme modulethat can be used to represent a
concern at the modelling level. Themes are declaratively complete units of modular-
isation in which any of the diagrams available in the UML can be used to model one
view of the structure and behaviour the concern requires forexecution. The struc-
ture and behaviours, that are needed to execute a concern, are specified within the
theme module. In Theme/UML, a class diagram and sequence diagrams are typically
used to describe the structure and behaviours of the concernbeing modelled. Classes
and Methods defined on these diagrams describe the structureof these entities in
the scope of the concern. Sequence diagrams describe the behavioural interactions
that can occur between classes when the concern is executed.Aspect concerns are
represented as parametrised themes. These themes are parametrised with templates
that represent the join points at which behaviours in other themes are crosscut. The-
me/UML is really close of approaches like TranSAT presentedin this paper. The
main difference is on the target domain model. However, unlike TranSAT, Theme
does not guarantee currently the result of the composition even if, a first work, called
kerTheme [40], proposes to validate the composition resultthrough testing.

Klein et al [41] defines an asymmetric operator that introduces the semantic-
based weaving of scenarios. In this approach, an aspect is defined as a pair of sce-
narios, one scenario for the join point designation (the ”pointcut”), i.e., a scenario
interpreted as a predicate over the semantics of MSCs [42] satisfied by all join points
(specification of the behaviour to detect), and the second one for an advice repre-
senting the expected behaviour at the join point. Similarlyto Aspect-J, where an
aspectual behaviour can be inserted around, before or aftera join point, with this ap-
proach, an advice may indifferently complete the matched behaviour, replace it with
a new behaviour, or remove it entirely to create composed behaviour. The operator,
proposed by Klein et al, is generic enough to be re-used to compose the behavioural
part of an architectural aspect. It can be for example adapted to compose UML 2.0
sequence diagrams.

Less connected with UML, Roberto Lopez-Herrejon et al [43] proposed an ap-
proach based on algebraic foundations. Here aspects are seen as a model transfor-
mation function, or a function that maps models to models, and the effects of the
weaving process can be understood in terms of algebraic transformations. Around
this definition, theoretical properties (commutativity, associativity and identity) are
assigned to aspect compositions, and rules are generated (in ex. precedence rules for
compositions). This allows one to reason about composition, exposing its problems
and leading to a partial solution for aspect reusability andproblems that derive from
the weaving process. The transformation language proposedin TranSAT to express
the composition aims to the same goal.

The aim of the different approaches presented in this subsection is to safely com-
pose models. In considering software architecture description as a model, several

30 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

ideas can be inspired by these works to guarantee the correctness of an evolution
step in a software architecture description.

AOSD Evolution Paradox

Despite all the help provided by aspects in modularisation,AOSD paradoxically be-
comes a threat for software evolution, and consequently forsoftware reliability. This
problem is called AOSD-Evolution Paradox [34]. Managing the separation of con-
cerns at the architecture level does not solve this issue.

Indeed, if we focus in long-term behaviour of a system and we depict what can
happen when it evolves, we argue that aspects can apply in a badly way, resulting in
a system that is inconsistent and exhibits an incorrect behaviour. This problem can
be described as a consequence of the obliviousness propertyof aspects, which tries
to make all aspects transparent for the base model. Indeed the aspects have to include
a description of each place at which this crosscutting concern occurs and thus rely on
the existing structure of the system. This leads to a tight coupling between the sys-
tem and the aspects that advise it. When the system evolves, its structure changes and
every crosscutting concern in every aspect needs to be checked to avoid an undesired
behaviour, meaning that AOSD leads to software that is robust in modularisation,
but contrary to what is expected it reduces the evolvability. A special case of this
problem, called fragile pointcut[44], arises in the explicit designation of pointcut
target location by naming corresponding elements to the base model. This pointcut
becomes fragile when it unintentionally captures or missesparticular join points, af-
ter seemingly safe modifications to the base model (tight coupling between aspects
and the base model). Hence it makes the reuse difficult because non-local changes
may break pointcut semantics. This problem introduces an overhead to the program-
mer and leads to a potential failure because the programmer has to make sure the
pointcuts that he designates do not accidentally match another method.

In [45] a Model-based pointcut definition is proposed. Thesepoincuts are defined
in terms of a conceptual model of the base program, rather than referring directly to
the implementation structure. This results in joint pointsbased on conceptual prop-
erties instead of structural properties of the base programand thus leads to a low
coupling of the pointcut definition and base model. These poincuts are called view-
based pointcuts, because they use the formalism of intentional views to both express
a conceptual model of a program and keep it synchronised withthe source mode of
that program. These model-based pointcuts are useful to avoid the AOSD Evolution
paradox, and a promising approach to unveil the hard-link between aspects and base,
allowing to reason about aspects in different dimensions. In TranSAT, the join point
mask is based on the semantic of a Software architecture. Consequently, for exam-
ple, when the join point mask defines two connected components. Every component
directly or indirectly connected are matched. Furthermore, a component mask can
match indiscriminately a component or a composite. This behaviour of the join point
mask improve the architectural aspect genericity and limits the impact of a structural
change on the weaving semantics.

1 Software Architecture Evolution 31

1.7 Conclusion

Software architectures have the potential to provide a foundation for managing soft-
ware evolution. However, if many ADLs support static description of a system, most
of them currently provide no facilities for specifying architectural changes. In this
chapter, we have identified two kinds of change: runtime architectural changes called
internal software architecture evolution and changes managed by the architect called
external evolution changes. For the first kind of evolution,two subcategories have
been identified. The first one can express run-time modifications to architectures but
requires that the modifications be specified explicitly. In contrast, other ADLs can
accommodate unplanned modifications of an architecture andincorporate behaviour
not anticipated by the original developers. These works propose to define architec-
tural constraints to confine the potential evolution of the software architecture. On
the other hand, to manage external evolution, ADLs suffer from the lack of support
for modularity. This leads to a number of architectural breakdowns, such as increased
maintenance overhead, reduced reuse capability, and architectural erosion over the
lifetime of a system. As AOSD allows designer to modularise crosscutting concerns,
promoting aspect-oriented software development principles into ADLs seems to be
an attractive solution to overcome this external issue.

However, if applying AOSD to ADLs can help to overcome many ofthe problems
related to software evolution, it pervasively modifies the semantics of the composi-
tion of software components. In the second part of this chapter, we argue that the inte-
gration of new concerns in a software architecture can breakthe software architecture
consistency. Since a majority of existing ADLs have focusedon design issues, they
provide advanced static analysis and system generation mechanisms. These mecha-
nisms must be adapted to manage the new composition paradigmbetween aspects
and components. Through SafArchie and TranSAT, this chapter proposes an initial
solution to statically check that an aspect will not break the software architecture
consistency. TranSAT is based on a specific architecture transformation language to
describe the weaving. This language is carefully designed to make certain unsafe
transformations impossible to express. Besides, it allowsstatic verification of ad-
ditional coherence properties before aspect weaving or unweaving to be performed.
However, TranSAT and its transformation language are currently highly coupled with
the SafArchie semantics.

To conclude this chapter, we claim that one of the future mainsteps of soft-
ware architecture is to propose (i) a way to describe homogeneously internal and
external software evolutions. (ii) This evolution description should be associated to
a powerful analysis model in order to be able to guarantee thesoftware architecture
consistency by checking only the parts of an architecture impacted by the changes.
(iii) This approach should be generic in order to be adapted depending on the ADLs
semantics. (iv) Any changes should be represented as first-class entities in the soft-
ware architecture and it should, at least before system-deployment time, be possible
to add, remove and modify a concern with a limited effort. Theapproaches presented
in this chapter propose initial solutions to achieve these requirements. However, none
addresses the evolution issue in its entirety in considering both the software evolution
description, the analysis impact of a change and its projection on a targeted platform.

32 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

References

1. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng.26 (2000) 70–93

2. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15 (1972) 1053–1058

3. Tarr, P.L., Ossher, H., Harrison, W.H., Jr., S.M.S.: N degrees of separation: Multi-
dimensional separation of concerns. In: International Conferenceon Software Engineer-
ing. (1999) 107–119

4. Vanderperren, W.: Combining Aspect-Oriented And Component-Based Software Engi-
neering. PhD thesis, Faculty Of Science Department Of Computer Science System And
Software Engineering Lab, Bruxelles, Belgium (2004)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Ir-
win., J.: Aspect-Oriented Programming. In Akcsit, M., Matsuoka, S.,eds.: Proceedings
ECOOP. Volume 1241., Springer-Verlag (1997) 220–242

6. Barais, O., Le Meur, A.F., Duchien, L., Lawall, J.: Safe integration of new concerns in a
software architecture. In: ECBS, IEEE Computer Society (2006) 52–64

7. Magee, J.: Behavioral analysis of software architectures using ltsa. In: Proceedings of
the 21st international conference on Software engineering, IEEE Computer Society Press
(1999) 634–637

8. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon,
School of Computer Science (1997) Issued as CMU Technical Report CMU-CS-97-144.

9. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture to
implementation. In: Proceedings of the 24th International Conference on Software Engi-
neering (ICSE-02), New York, ACM Press (2002) 187–197

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open component
model and its support in java. In Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer Science., Springer (2004)
7–22ISBN: 3-540-21998-6.

11. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a hierarchical
component model. In: SERA ’06: Proceedings of the Fourth International Conference on
Software Engineering Research, Management and Applications, Washington, DC, USA,
IEEE Computer Society (2006) 40–48

12. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: An infrastructure for the rapid devel-
opment of xml-based architecture description languages. In: ICSE ’02: Proceedings of
the 24th International Conference on Software Engineering, New York, NY, USA, ACM
Press (2002) 266–276

13. Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: Discotect: A system for dis-
covering architectures from running systems. In: Proceedings of the26th International
Conference on Software Engineering, Edinburgh, Scotland (2004)

14. Barais, O., Duchien, L. In: SafArchie Studio: An ArgoUML extension to build Safe
Architectures. Springer (2005) 85100 ISBN: 0387245898.

15. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour analysis of software architectures.
In: WICSA1: Proceedings of the TC2 First Working IFIP Conferenceon Software Ar-
chitecture (WICSA1), Deventer, The Netherlands, The Netherlands, Kluwer, B.V. (1999)
35–50

16. Taylor, R.N., Medvidovic, N., Anderson, K.M., Jr., E.J.W.,Robbins, J.E., Nies, K.A.,
Oreizy, P., Dubrow, D.L.: A component- and message-based architectural style for GUI
software. IEEE Transactions on Software Engineering22 (1996) 390–406

1 Software Architecture Evolution 33

17. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management
in dynamic software architecture specifications. In: WOSS ’04: Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems, New York, NY, USA, ACM Press
(2004) 28–33

18. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software architec-
tures. In: Proceedings of the 1998 Conference on Fundamental Approaches to Software
Engineering (FASE’98), Lisbon, Portugal (1998)

19. David, P.C., Ledoux, T.: Safe dynamic reconfigurations of fractal architectures with
fscript. In: Proceeding of Fractal CBSE Workshop, ECOOP’06, Nantes, France (2006)

20. SAE, A..E.C.S.C.: Architecture Analysis & Design Language (AADL). SAE Standards
no AS5506 (2004)

21. Vestal, S.: Fixed-priority sensitivity analysis for linear compute time models. IEEE
Transactions on Software Engineering20 (1994)

22. OMG, O.M.G.: Unified Modeling Language: Superstructure. (2005) Version 2.0.
23. Tibermacine, C., Fleurquin, R., Sadou, S.: Preserving architectural choices throughout the

component-based software development process. In: WICSA, IEEE Computer Society
(2005) 121–130

24. OMG, O.M.G.: UML 2 Object Constraint Language Specification. (2006) Version 2.0.
25. Briand, L.C., Labiche, Y., Yan, H.D., Pent, M.D.: A controlled experiment on the impact

of the object constraint language in uml-based development. icsm00 (2004) 380–389
26. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution.

In: ICSE ’98: Proceedings of the 20th international conference on Software engineering,
Washington, DC, USA, IEEE Computer Society (1998) 177–186

27. Maier, M.W., Emery, D., Hilliard, R.: Ansi/ieee 1471 and systems engineering.
Syst. Eng.7 (2004) 257–270

28. Garcia, A., Chavez, C., Batista, T., Sant’Anna, C., Kulesza, U., Rashid, A., de Lucena,
C.J.P.: On the modular representation of architectural aspects. In Gruhn, V., Oquendo,
F., eds.: EWSA. Volume 4344 of Lecture Notes in Computer Science., Springer (2006)
82–97

29. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing
component-based and aspect-oriented systems. In: Proceedings ofthe 5th International
Symposium on Software Composition (SC’06). Volume 4089 of Lecture Notes in Com-
puter Science., Vienna, Austria, Springer-Verlag (2006) 259–273

30. Perez, J., Navarro, E., Letelier, P., Ramos, I.: A modelling proposal for aspect-oriented
software architectures. In: ECBS ’06: Proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06),
Washington, DC, USA, IEEE Computer Society (2006) 32–41

31. Batista, T., Chavez, C., Garcia, A., Rashid, A., Sant’Anna, C.,Kulesza, U., Filho, F.C.:
Reflections on architectural connection: seven issues on aspects and adls. In: EA ’06:
Proceedings of the 2006 international workshop on Early aspects at ICSE, New York,
NY, USA, ACM Press (2006) 3–10

32. Quintero, C.E.C., Rodrı́guez, M.P.R., de la Fuente, P., Barrio-Solórzano, M.: Architec-
tural aspects of architectural aspects. In Morrison, R., Oquendo, F., eds.: EWSA. Volume
3527 of Lecture Notes in Computer Science., Springer (2005) 247–262

33. Mens, T., Mens, K., Tourw’e, T.: Aspect-oriented software evolution. ERCIM News
(2004) 36–37

34. Tourẃe, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution paradox. In
Bergmans, L., Brichau, J., Tarr, P., Ernst, E., eds.: SPLAT: Software engineering Proper-
ties of Languages for Aspect Technologies. (2003)

34 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

35. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly2
(1989) 219–246

36. van Glabbeek, R.: The linear time - branching time spectrum I. The semantics of con-
crete, sequential processes. In J.A. Bergstra, A.P..S.S., ed.:Handbook of Process Algebra,
Elsevier (2001) 3–99

37. Baudry, B., Fleurey, F., France, R., Reddy, R.: Exploring therelationship between
model composition and model transformation. In: 7th International Workshop on Aspect-
Oriented Modeling (AOM 2005), MoDELS 2005, Montego Bay, Jamaica (2005)

38. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E.,
Georg, G.: Directives for composing aspect-oriented design class models. T. Aspect-
Oriented Software Developmentvol 3880(2006) 75–105

39. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On some properties of parameterized
model application. In Hartman, A., Kreische, D., eds.: ECMDA-FA. Volume 3748 of
Lecture Notes in Computer Science., Springer (2005) 130–144

40. Jackson, A., Klein, J., Baudry, B., Clarke, S.: Testing aspectmodels. In: Model Driven
Development and Model Driven Testing workshop at ECMDA. (2006)

41. Klein, J., H́eloûet, L., J́eźequel, J.M.: Semantic-based weaving of scenarios. In: AOSD
’06: Proceedings of the 5th international conference on Aspect-oriented software devel-
opment, New York, NY, USA, ACM Press (2006) 27–38

42. ITU: Recommendation Z.120: Message Sequence Chart (MSC).Haugen (ed.), Geneva
(1999)

43. Lopez-Herrejon, R.E., Batory, D.S., Lengauer, C.: A disciplined approach to aspect com-
position. In Hatcliff, J., Tip, F., eds.: PEPM, ACM (2006) 68–77

44. Koppen, C., Störzer, M.: PCDiff: Attacking the fragile pointcut problem. In Gybels, K.,
Hanenberg, S., Herrmann, S., Wloka, J., eds.: European Interactive Workshop on Aspects
in Software (EIWAS). (2004)

45. Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing the evolution of aspect-oriented
software with model-based pointcuts. In Thomas, D., ed.: ECOOP. Volume 4067 of Lec-
ture Notes in Computer Science., Springer (2006) 501–525

