-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Software Architecture Evolution

Olivier Barais, Anne-Francoise Le Meur, Laurence Duchien, Julia Lawall

» To cite this version:

Olivier Barais, Anne-Frangoise Le Meur, Laurence Duchien, Julia Lawall. Software Architecture
Evolution. Tom Mens and Serge Demeyer eds. Software Evolution, Springer Verlag, pp.233—262,
2008. inria-00371226

HAL Id: inria-00371226
https://hal.inria.fr /inria-00371226
Submitted on 30 Mar 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50182969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00371226
https://hal.archives-ouvertes.fr

1

Software Architecture Evolution

Olivier Baraig, Anne Frangoise Le Mety Laurence Duchieh and Julia Lawafl

1 Universig of Rennes 1/IRISA/INRIA Triskell project
Campus de Beaulieu . F - 35 042 Rennési€x - France
barais@risa.fr

2 Universié of Lille 1/ LIFL/INRIA ADAM project
Cité scientifique 59655 Villeneuve d’Ascge@ex - FRANCE
| emeur, duchien@ifl.fr

3 DIKU, University of Copenhagen
2100 Copenhagen &, Denmark
julia@iku. dk

Summary. This chapter provides an overview, comparison and detailed treatriet var-
ious state-of-the-art approaches to evolving software architecteuethermore, we discuss
one particular framework for software architecture evolution in motailde

1.1 Introduction

The role of software architecture in the engineering ofwsafe-intensive applica-
tions has become more and more important and widespreado@want based soft-
ware architecture models the structure and behaviour o$ystem, including the
software elements and the relationships between them.ctirbes a base for the
design process, a guide for the software development paoas one of the main
input to drive the integration tests. There exist curreatlpt of Architecture De-

scription Languages (ADLSs) [1], which enable the architecspecify his software
system. Indeed, during the design process, the architiées @ the ADL to create
the architecture of his system by constructing and combiiminreasingly complex
components and connectors.

Despite of the assets of these languages, most of them doowde means to
facilitate the evolution of a software system. However, of¢he primary task of
the architect is to ensure the quality of a system and itsmmoed existence .Thanks
to ADLs, building a functional architecture that containgdyobusiness concerns is
in fact relatively easy. Supporting the evolution of a seftevarchitecture is more
pervasive. The essence of the architect’s task is to négatial balance the conflict-
ing concerns of many diverse stakeholders and to anticipat@ossible evolution
of their requirements. This characterisation enforcesidiea that traditional soft-
ware architecture languages suffer from a number of keylenab that cannot be
solved without changing our point of view on the notion ofta@fre architecture.

2 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

The main problem is the lack of representation of changesoftavare architecture
description.

In this chapter, we identify two main architectural kindscbfanges in software
architectures: internal evolution and external evolutlaternal evolution models the
changes of the topology of the components and interactidosponents and inter-
actions may be created or destroyed during execution. Tihts &f evolution cap-
tures the dynamic of the system. External evolution alldwesgpecification of the
components and interactions to be changed during executioaptures the needs
for an architecture description to be adapted in order t@ cuith the evolution re-
quirements. In this chapter, we study, through severalagmhies the lacks and the
initial solutions to cope with evolution in a software ateltiiure description. This
study proposes a classification of these solutions acagtdithe supported evolu-
tion kind.

The external evolution is studied in particular through separation of con-
cerns issue in a software architecture. Indeed, separaficoncerns is tradition-
ally achieved through modularity [2] and encapsulationthé software component
paradigm provides a good support for encapsulation with#fe of information hid-
ing, it suffers however from the problems that arise withtgivanny of the dominant
decomposition [3]. Indeed, as the object-oriented parmada@mponents fail to mod-
ularise some concerns because they allow a single dimeok@@tomposition. As a
consequence, some concerns are spread over and repeatedral somponents in
the system [4]. ADLs already provide some implicit separaf concerns: by de-
scribing the component configuration and the componentfate, they separate the
dimensions of composition from interaction. Nevertheless separation of these
dimensions are not sufficient to modularise concerns sudeasity that crosscut
the software architecture. In these cases, integratingvacoacern or modifying an
existing one require pervasively modifying the ADL speeifion, at all points af-
fected by the concern. These modifications are low-leveiptes and error-prone,
making the integration of such concerns difficult.

To address the complexity of integrating a new concern andifying concern
into a software architecture, several research works aperad by Aspect-Oriented
Software Development (AOSD) [5], which aims at improving geparation of con-
cerns. In the spirit of Aspect-Oriented Programming (AQRgse approaches put the
description of each concern in a separate architecturgroehsthat can automati-
cally be integrated into an existing software architectayea weaver However, in
specifying the integration of a new concern into an existinthitecture, the coher-
ence of the result remains a key issue. Because architsattgeomplex and aspects
are invasive, many transformations caused by the compositay be needed to inte-
grate or modify a concern, making the specification of thesf@rmation highly error
prone. Although the global coherence of an architectureofi@m be checked once
the architecture is complete, these verifications are estpeas they consider the en-
tire architecture. Furthermore, the interdependenciesdsn architecture elements
may make it difficult to identify the source of an error at thaint. A second part of
the chapter is focused on the coherence issue when a sofiwdrigecture descrip-
tion changes. This issue is presented through a detailsémiaion of TranSAT [6].

1 Software Architecture Evolution 3

TranSAT proposes, through a specific language for spegifgichitectural aspects,
a solution that ensures a number of coherence propertiéslaiiguage is carefully

designed to make certain unsafe transformations impesgibéxpress, and allows
static verification of additional coherence propertiesobefaspect weaving or un-
weaving. In this approach, there remain, however, someepties that can only be

checked dynamically, when integrating a new concern intexasting architecture.

For these properties, TranSAT uses information found irctireern specification to
limit the cost of the checks, by focusing on the parts of tiohiéecture affected by the
architectural aspect, and to present error messages is td#rthe aspect elements.
Overall, this approach provides verification early in thehitecture development
process, to enable the architect to rapidly and safely iateghew concerns.

The rest of this chapter is organised as follows. The firstige@resents sev-
eral software architecture languages in order to identig/ key concepts of these
languages and their lacks. The following sections detaitise initial solutions to
cope with internal and external evolution. These sectiansige a classification
of these solutions. Section 1.5 presents the TranSAT apprioaorder to illustrate
how addressing aspects at the architectural level can balplve the AOSD evolu-
tion paradox and how an explicit specification of the weawag help to guarantee
the resulting architecture. Section 1.6 describes sona¢ekwork and finally Sec-
tion 1.7 concludes and details the remaining critical issafesoftware architecture.

1.2 Component-based software architecture: concepts anddks

A software architecture describes the structure and betaeif a software system.
In a software architecture specification, a system is reptes as a set of software
components, their connections, and their behaviouratantmns. Creating a soft-
ware architecture promotes better understanding of theersyghus facilitates the
design process. It also provides a basis for rigorous aisabfshe system design,
making possible the early detection of design errors andsfthat leads to improve-
ments in software quality and help to ensure correctness.

An architectural description language (ADL) is used to dégca software archi-
tecture. It can be a graphical or a textual language, or édechoth. The advantage of
using an ADL lies in the ability of rigorously specifying tiggobal architecture of a
system that can be thus analysed. An ADL may be associatacsgitt of tools that
offer useful analysis for architectures specified in thglage. An ADL is intended
to be both human and machine readable and provides a higlofealestraction. It is
a blueprint for the design and can support automatic geinaraf parts of software
systems.

Lots of ADLs have been developed by either academic or imdugfroups. If
the various ADLs are different in many points, the ADL comrtyigenerally agrees
that the key elements of ADLs are the components, the coorseahd the configu-
ration [1]. A component represents a computational eleméht multiple ports to
communicate with its environment. A Connector is a first €lakement to model

4 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

the interaction between components. Finally, the confiipmalescribes how com-
ponents and connectors are related into a system.

In this section, instead of providing a catalogue of ADL eweristics, we focus
on three significant directions for software architectugéridtions: (i) the specifica-
tion and the analysis of distributed software behaviolusitated with Darwin [7]
and Wright [8], (ii) the strong link with the implementatiothat may be found
in ArchJava [9], Fractal [10] and Sofa [11], and (iii) the loimg of architecture-
driven software development environment, as promoted e 3tudio [12], AcmeS-
tudio [13] and SafArchie [14]. Finally, we provide a shorafation of these works
against the evolution issue.

Architecture analysis

Some ADLs, such as Wright [8] and Darwin[7], support the siieation and anal-
ysis of relatively complex component communication protecFirst, Wright pro-
vides a formal basis for architectural description. It carubed to provide a precise,
abstract meaning to an architectural specification and &dyae a component as-
sembly. To further aid developers in the realisation andaggtion of architectural
abstractions, Wright defines a set of standard consisterctg@mpleteness checks
that can be used to increase the designer’s confidence inegigndof a system.
These checks are defined precisely in terms of Wright's upiterimodel in CSP,
and can be checked using standard model checking techasldgarwin has the
same background and the same goals than Wright. It is a foangubhge for de-
scribing software structures and network topologies. Itlel® dynamic distributed
systems. It possesses both a textual and graphical nat#tisses Finite State Pro-
cess (FSP) Languages to specify system behaviour [15]. FSRips a concise way
of describing Labelled Transition Systems (LTSSs).

System configuration and code generation

Lots of existing approaches decouple implementation caata &rchitecture, allow-
ing inconsistencies and violating architectural progsttiADLs like Fractal [10],
ArchJava [9] or Sofa [11] seamlessly unify software arattitee with implementa-
tion.

ArchJava proposes a hierarchical component model. Cormp®gan be either
primitive or composite - a composite is built of other coments, while a primi-
tive component contains no subcomponents. Components ooicate with their
environment through ports. Port contains provided or meguoperations. ArchJava
uses a type system to ensure that the implementation cosfararchitectural con-
straints in a strict technical sense known as communicattegrity. Communication
integrity means that the components in a program only conicatsalong declared
communication channels in their architecture.

Fractal is a general component model part of the OW2 consdafttids Arch-
Java, it is based on a hierarchical component model. It stgpploe definition of

4 http://www.ow2.0rg

1 Software Architecture Evolution 5

primitive and composite components, bindings betweenrterfaces provided or
required by these components, and hierarchic compositiatufing sharing). Un-
like other Java-based component models, such as ArchJagaHs not a language
extension, but a run-time library which enables the spetific and manipulation
of components and architectures. Fractal distinguisheskiwds of components:
primitives which contain the actual code, and compositeghvare only used as a
mechanism to deal with a group of components as a whole, whtkentially hiding
some of the features of the subcomponents. Primitives caimijge, standard Java
classes conforming to some coding conventions. Each Famtgonent is made of
two parts: a membrane which exposes the component’s inesrfand a cell which
can be either a user class in the case of a primitive or othrepoaents in the case
of a composite. All interactions between components passigih their controller.
Finally, the Fractal component model is language indepetndad fully modular
and extensible. Fractal provides an XML based Architeclescription Language.
It is based on three main constructs to specify componeestygrimitive templates
and composite templates. A tool can parse Fractal ADL spatifin and instantiate
the corresponding components. Contrary to Darwin or WrighthJava and Frac-
tal ADL do not provide any behaviour specification. The cosifjon analysis is
only structural. However, the abstract Fractal’'s or Arelalacomponent models are
efficient and appropriate for the implementation phase.

SOFA (SOFtware Appliances) is close to Fractal. It providgdatform for de-
veloping with software components. Like in Fractal, a SOpflecation is viewed
as a hierarchy of nested components. The component modi&rardhical, com-
ponents can be a primitive or a composite. A component isritestby its frame
and its architecture. The frame is a component interfacetlaérchitecture is an
abstract implementation. A frame defines provides-sesvital requires-services of
the component. The frame can be implemented by more thanrohigezture. The
architecture of a composite describes the structure ofdhgonent by instantiating
direct subcomponents and specifying the interconnectietween these subcom-
ponents. The architecture reflects a particular grey-bewwf the component - it
defines the configuration of an architecture. Sofa providestabased ADL called
Component Definition Language (CDL) which is based on OMG.IBbmmuni-
cation among SOFA components can be captured formally. Gblheels a process
algebra calledbehaviour protocoldo express the behaviour of each component. In
this algebra, every method call or a return from a methodfoaths an event iden-
tified by an event-token. Behaviour protocols are regular-éxpressions on the set
of all event tokens, generating the set of admissible tratdse component.

Architecture Centric Integrated Development Environments

Most ADLs works today have been undertaken with academieerahan business
goals in mind. As a result, the use of architecture languagestools in indus-
trial project is limited. On the fringes of ADLs, some prdig@im at improving
the use of software architecture concepts in software eeging industry. For ex-
ample, ArchStudio [12] mainly developed by the Institute Software Research

6 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

at the University of California, Irvine, is an architectwudgven software develop-
ment environment. Indeed, while most development envients) like Microsoft
Visual Studio and IBM Eclipse, are code-driven developnemnironments, Arch-
Studio focuses on software development from the perspeofigoftware architec-
ture. It supports the C2 architectural style [16]. A C2 amtture is a hierarchical
network of concurrent components linked together by cotmmegor message rout-
ing devices) in accordance with a set of style rules. C2 comcation rules require
that all communication between C2 components be achievedessage passing.
ArchStudio is extensible, it has lots of extensions to asmlyefine, or deploy an
architecture specification. ArchStudio approach is a goag t@ improve the use
of Software Architecture result in industrial project. Wihe same goal, AcmeStu-
dio [13] is a customisable editing environment and visagiis tool for software
architectural designs based on the Acme architecturafigésa language (ADL).
Acme is an ADL that can be used as a common interchange foonatdhitecture
design tools and as a foundation for developing new ardhitalcdesign and analysis
tools. AcmeStudio allows the designer to define new Acmelfasand customise
the environment to work with those families by defining demgrstyles.

Finally, SafArchie [14] is an abstract component model fesigning a software
architecture. The SafArchie component model describesttineture of a piece of
software in terms of components, ports, operations andrmgsdA component pro-
vides some services and may require some services fromaghgyonents. Services
can only be accessed through explicitly declared ports. Aip@ binding point on
a component that defines two sets of operations: providethtipes and required
operations. These operations make the dependencies beawammponent and its
environment explicit. The set of operations provided by & farms a service. An
operation represents an action performed by a componeastspiecified by its sig-
nature, which includes the name, the types of the paramatetshe result of the
operation, as well as the exceptions that it may raise. Aibghdssociates a compo-
nent’s port with a port located on another component. Thenganly be one binding
attached to a port. Two ports can be bound with each otheribtilg operations re-
quired by one port are provided by the other and vice-versa.

Like ArchJava, Fractal or Sofa, SafArchie is hierarchicathiat a component is
either primitive or composite. A primitive component canseen as a basic building
block in the component assembly. A composite componentekefingiven combi-
nation of primitive and composite components. The servizesided and required
by the child components of a composite component are attessiough delegated
ports, which are the only entry points of a composite comptng delegated port
of a composite component is connected to only one child compioport. In Sa-
fArchie, each component interface is defined with contraldtese contracts clarify
the structure but also the external behaviour of the commsnerhich describes the
component’s interactions with its environment. SafArcligo provides a tool suite
called SafArchie Studio which is built as a set of modulesfgoUML. SafArchie
Studio allows the designer to describe its architectungrdtides some connections
with model checkers. Finally, it has a module to generate ¢odiards ArchJava or
Fractal. Even if, the architecture style and the refinemppt@ach are different in

1 Software Architecture Evolution 7

SafArchie Studio, the goal is the same as AcmeStudio or Atahi&: To provide a
complete tool suite to build, deploy and refine a softwardigecture and to trans-
form ADLs in an effective vehicle for communication and arséd of a software
system.

Evaluation: Managing software architecture evolution

Among the different problems which are not correctly adseesby the languages
presented in this Section, the software architecture &eolus still a critical issue
for the community. Indeed, the various languages presenttds section support
the definition of a static software architecture. From tlasatiption, tools can check
the correctness of the model. They can generate code. Theyuzaantee the con-
sistency between a design and an implementation. Howegensequent problem is
that a software architecture, once implemented in the soéwystem, is, sometimes
prohibitively, expensive to change. Worst, in all thesgylsage or associated tools,
the evolution has not been taken into account. Due to thedhfikst-class that rep-
resents the evolution, the models becomes obsolete quacklytheir use is limited
to an outdated documentation of the system.

If we confront the different languages presented in thisise@gainst the evolu-
tion issue, we can notice that:

e these languages can not describe the dynamic of the syshaygive a snapshot
view of the system that can become obsolete.

e these languages do not take care of external evolutionsaidigtecture analy-
sis tools do not support incremental checks. Consequéanitlgach modification,
the model checker has to re-check the entire system. At thiementation level,
component-based software platforms suffer greatly framgleed code because a
lot of functions, that belong to crosscutting concerns, gnead and repeated
over different components. Consequently, the integratidhe modification of a
new concerns is difficult and error-prone. Finally, theeliént architecture devel-
opment environments do not provide any shortcut to eadiégirate or modify a
concern which crosscuts several components in the artlviéec

Following this observation, we will study in the next seo8several initial solu-
tions to handle the dynamic and to manage external evokitiba component-based
software architectures.

1.3 Dynamic software architecture description

A component-based software architecture can not be mbiwliThe modularity
brought by components drives the system to be dynamic. Tgadgy of the com-
ponents and interactions can be changed dynamically. Newpopents and inter-
actions may be created during execution. As the dynamicgdwrapplied to the
architectural structure, may interact in subtle ways whid dn-going computations
of the system, software architectures have to take intowatdhese changes. As

8 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

there is no consensus between the existing approachesifigatréthe expression of
the software architecture dynamism [17], this section esghat the dynamic issue
can be tackled in two ways: either the ADL can support an eit@pecification of
the software architecture’s dynamic in which case all oftbssible evolutions of the
system are foreseen in the software architecture desaipir the ADL can define a
frame for dynamic software architecture. This frame cofitve potential evolution
of the software architecture.

1.3.1 Explicit specification of the software architecture gnamic
Wright

The first approach which has worked on the expression of tihardic in a soft-
ware architecture is an extension of Wright [18]. This exiemseuses the behaviour
notation of Wright to model the reconfiguration. It allows #rehitect to view the
architecture in terms of a set of possible architecturapshats, each with its own
steady-state behaviour. Transitions between these sotapaste accounted by spe-
cial reconfiguration-triggering events. To introduce tlyaamism in an architecture
description, the architect has to modify the componenphabet, and allow new
messages to occur in port descriptions. Through this apprdae interface of a
component is extended to describe when reconfigurationsesneitted in each pro-
tocol in which it participates. Thanks to these new eventseeonfiguration view”
consumes these events to trigger reconfigurations. Tresgxin allows the designer
to simulate the evolution of its software architecture.lEpotential snapshot can be
checked by the model checker of Wright. This extension is&afhetailored for dy-
namic software architectures. However two main problemg Iis use in a concrete
system development. First, the modification of the compbienreally heavy for
the architect. This solution breaks the separation of amscgrinciple. Indeed, the
reconfiguration is expressed at the same level as the funattiehaviour of the com-
ponent. Second, this approach is limited to model and tolsimalynamic systems
with a finite number of configurations.

Fractal/FScript

Fractal ADL can not capture the dynamic of the system. IndEeatctal ADL is an
XML configuration file used for the instantiation of the systeThis file can really
be compared to the configuration file of the Spring FrameWwarkwhich all the
Beans/Componerftare instantiated and interconnected. However, Fractafjesod
candidate for the expression of the dynamic of the systerst, s run-time model
is highly dynamic. Components or bindings can be instagdiat run-time program-
matically. The configuration of a composite can be changedidgs, Fractal is now
associated with a scripting language, named FScript [k8Jddo program reconfig-
urations of Fractal components. The language and its imgaidgition are designed to

5 http://www.springframework.org/
5 Bean for Spring and Component for Fractal

1 Software Architecture Evolution 9

offer certain guarantees on the reconfigurations, by cerisiglthem as transactions.
More precisely, the guarantees are Termination (a recawafiigimn can not be infinite),
Atomicity (reconfiguration is executed either completefynot at all), Consistency
(the Fractal system resulting from a successful FScrigtréguration is structurally
consistent) and Isolation (there are no concurrent recarigpns). Each FScript
program can be triggered by an event occurring inside thécapipn itself using re-
active rules modelled after thevent-Condition-Actioparadigm (ECA). Associated
to Fractal ADL, FScript provides an interesting power of regsion to model the
dynamic of the system.

ArchJava

ArchJava is really close to the implementation (see sedti@h To model the dy-
namic in ArchJava, only statically defined components cadymamically instanti-
ated and connected. At creation time, each component re¢bedcomponent in-
stance that created it as its parent component. A componiinewentually be
garbage collected if there are no references to the compobgnamically cre-
ated components can be connected together at run-time. Gpitetion integrity
requires each component to explicitly document the kindarohitectural interac-
tions that are permitted between its subcomponents. A abiomepattern is used to
describe a set of connections that can be declared at ren-¥ithether a component
or a connection can be dynamically created, ArchJava daesupport the explicit
component or connector destruction.

AADL

The AADL is a new international standard for predictable eidohsed engineering
of real-time and embedded software [20]. Mainly inspiredistaH [21], its fields
of application are automotive, avionics, space and indlstontrol systems. AADL
is a lower-level modelling language than the different AQiresented in the pre-
vious section. Main concepts manipulated by this languageamponents, ports,
threads, communication bustc It models software topologies bound to execution
platform topologies. AADL is interesting for two reasonarfoff the concern of this
chapter, it was one of the first AADL to model the quality of\dee in a component
based software architecture. It can model times propestikgency. Secondly, more
relevant for this chapter, it provides a mechanisrmofdeto model the reconfigura-
tion of statically-known systems. Indeed, each AADL comgrancan have modes.
Modes represent alternative configurations of the compangsiementation. Only
one mode is active at a time. At the level of system and progessde represents
possibly overlapping (sub-)sets of active threads and qgarhections, and alterna-
tive configurations of execution platform components, ab agalternative bindings
of application components to execution platform composiess in Fractal, mode
changes are specified as a state transition diagram whass ate the modes, and
the transitions are triggered by events. Thus, AADL can rhduereconfiguration
of statically-known systems.

10 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal
Evaluation

If the languages presented in this section make dynamidtactiires explicit, they
currently do not describe the dynamic with the same goal. Whight extension
or AADL model the dynamic to be able to simulate the evolutidrthe software
architecture to check it. Fractal and ArchJava are morecdésti to implementing
a dynamic software architecture. Among the shared fegtwesan observe than
these approaches are based on a limited version of the CRtiDitives, i.e., they
can create or destroy component or connection. Howeveguah the separation be-
tween the reconfiguration policies and the rest of the soéwsachitecture is correct
for Fractal/FScript and AADL, these policies are completaingled into the com-
ponents for ArchJava, and partially for Wright. If we consitlee specification of
the dynamic in the real-world, we can argue that the spetificaf all the possible
reconfigurations is fastidious and limit the real dynamithef software architecture.

1.3.2 A frame for dynamic software architecture

Contrary to an explicit specification of all the potentiahpshots of the system con-
figuration, other languages try to confine the potential@imh of the software ar-
chitecture in what we call a frame for dynamic software aetiure.

UML 2.0

UML 2.0 [22] permits the specification of logical componens. specification level
components (e.g., business components, process comgpasniell as deployed
components (such as artifacts and nodes). It proposes telrtigdsystem as a hi-
erarchy of nested components that provide and requirefactss. It provides sup-
port for decomposition through the new notion sifuctured classifiersA struc-
tured classifier is a classifier (a type) that can be inteyritdcomposedd asses,
Col | abor at i on, andConponent s). New constructs to support decomposition
have been introducedPar t , Connect or s, andPort s. In UML 2.0, a compo-
nent is viewed as asklf-contained unit that encapsulates state + behaviowar st
of classifiers. It may have its own behaviour specification and specifiesraract
of provided/required services, through the definition oftpoTo model the nested
hierarchy, a component can be seen as parts because a comoasstructured
classifier. In this case, a part has type and a lower/uppencdowltiplicity. Con-
sequently, a connector does not represent a connectiore atdtance level but a
potential connection at the type level. This kind of diagrean be really interesting
to design a frame for software architecture. The varighditthe software architec-
ture is confined with the lower and the upper bound of subcarapts. Besides, each
connection between component instances must match a dmmpattern declared
in the enclosing component between component types. Howegid 2.0 provides

" Create, Retrieve, Update, Delete

1 Software Architecture Evolution 11

usual intentional flexibility. This kind of diagram is optial, and the nested hierar-
chy can be modelled only with instances that have a fix calitinhn this last case,
UML 2.0 does not provides any frame to confine the softwarbitecture dynamic.

SafArchie

In the same lineage, SafArchie defines the concept of aothitetype. An archi-

tecture type defines a set of possible configurations that beusespected by the
software architectures. The defined constraints deal withponent interfaces and
identify relations and interactions between these compiinterfaces. Therefore, an
architecture type represents a static view of a softwareitexture. These architec-
ture types are used to check the structural and behavioomnapatibilities between

components. An architecture type is composed of six maimetts: component
type, composite type, bindings, port type, operation, atribate. Designing a port
type consists of identifying a set of operations that the pbould provide or re-

quire. A port type corresponds to a set of operation sigeatand their gathering
together is guided by the system design. Component typeedeéith port types of

the component and the minimum and maximum cardinality foheme. Composite
type also identifies all the component types that it shoulttaio and the minimum

and maximum cardinality for each one. It defines the allowredractions between
these component types through the binding concept. A bindefines a possible
interaction between two port types belonging to one or twmponent types that
belong to the same component type. By this way, softwaretantbre type is a set
of structured constraints in terms of composite type, campbtype, and port type.
Each typed software architecture should respect thesdraonis.

ACL

In [23], Tibermacine et al present an approach to preseweatthitectural choices
throughout the component-based software developmenegsotThey present an Ar-
chitectural Constraint Language (ACL) as a means to fosnukcribe architectural
choices at all the stages. This language is based on the UBMtjsct Constraint
Language (OCL) [24]. ACL limits the scope of an OCL consttdma particular
component, by slightly modify the syntax and semantics efdbntext part in OCL.
At the syntactic level, every constraint context shouldddtice an identifier. This
identifier corresponds to the name of a particular instaridhe meta-class cited
in the context. At the semantic level, ACL interprets a coaist with the meaning
it would have in the context of the metaclass but limitingst®pe only to the in-
stance cited in the context. With a tiny modification of OClcanponent is able to
define a constraint on its own structure. In ACL, only invatsacan be expressed.
Pre- and post-conditions are removed of the language. thA&l can be used to
define a frame for software architecture by defining a setwafriants that has to be
respected by all the configuration of a system. The archétifott is more important
than in UML 2.0 or SafArchie but the power of expression of AGlbetter. Indeed,
in the lineage of OCL, which has proved its benefits for the pahension and the
maintainability of models [25], ACL is easy to read for thesidmer.

12 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal
ArchStudio

In one of the first version of ArchStudio, an effort has beenadtm govern runtime
change [26]. They propose a mechanism for restricting obmtigat compromise
system integrity. They use constraints to confine the diffechange that can occur
but also to constrain when particular changes may occuy $hpport also transac-
tions modifications. Consequently, during the course ofraptex modification, the
system’s architecture may be in an invalid state beforeniega final valid state. In
the same trend as ACL, Constraints legitimately restrietsain modifications paths.

1.3.3 Evaluation

These four works tackle the issue of the software architeatynamic with the lim-
itation of the allowed variability. The two main problemsncern firstly, the lack of
connection with component-based platforms. Indeed, tivesiels could be seen as
a repository which could evaluate if an explicit evolutisrpermitted. But, currently,
no approach combines a scripting language to make expleidynamic at the plat-
form level and an architecture type or a set of constrainthexk if the proposed
evolutions are correct from the modelling point of view. T8exond problem con-
cerns the number of valid architectures that are definedangiét of constraints or an
architecture type. In lots of case, this number is infiniten§€quently, it is impossi-
ble to check the correctness of all of these architecturage@tly, model checkers
do not support the evaluation of an infinite architectureifiam

1.4 Aspect-oriented architectures description language

1.4.1 Issue

The notion ofarchitectural view architectural layer/ architectural aspect comes
from a very natural analogy: Just like in an house architectwe have distinct
viewplarn/blueprints describing distinct concerns of the same house (walls and
spaces, electric wiring, water conducts), it seems reddena conceive a software
architecture description as the composition of severateors specificationvigw,
aspect plan) reflecting several perspectives (viewpoint, concernheftsame soft-
ware system. Indeed the target audiences for an archiéedéscription are the vari-
ous stakeholders of the system. Explicitly identifyinggbeatakeholders reflects the
multi-dimensional, multi-disciplinary nature of definirgsoftware architecture. A
stakeholder is any person, organisation or other entitly svpparticular interest in the
architecture of the system. The reason to identify eactebtaler is to facilitate the
comprehension of the system and its properties.

A software architecture description already provides aplicit separation of
concerns: by describing the component configuration andahgonent interface,

8 depending on the community

1 Software Architecture Evolution 13

they separate the dimensions of composition from intesactievertheless, the sep-
aration of these dimensions are not sufficient to modulagseerns such as security
that crosscut the software architecture. The insufficiemdscutting concerns modu-
larity complicates software evolution. To overcome thissien, this section presents
several approaches that propose to promote Aspect-OdiSatware Development
(AOSD) principles into ADLs. Through the description of seeapproaches, we will
see how the improvement of the separation of concerns inteva@f architecture
description can ease its evolution. We will also discusaithé issue raised by the
introduction of AOSD into a software architecture.

1.4.2 Using Aspects in Architectural Description
IEEE 1471

IEEE Std 1471, name®ecommended Practice for Architectural Description of
Software-Intensive Systeli2¥] was the first formal standard to address what an ar-
chitectural description (AD) is. It was developed by the EEErchitecture Working
Group between 1995 and 2000 with representation from ingusther standards
bodies and academia. In 2006, IEEE 1471 became a draft &tienal standard
(ISO/IEC DIS 42010) and is now undergoing joint revision BE and 1SO.

IEEE 1471 is a conceptual framework. It establishes a satntent requirements
on an architectural description. An architecture desiatiptontains any collection
of products used to document an architecture. IEEE 147Jisiétawv architecture
descriptions should be organised, and their informationiertt. The three main prin-
ciples of this framework are:

abstracting away from specific media (e.g., text, HTML, XML)
being method-neutral: It is being used with a variety of éxgsand new archi-
tectural methods and techniques);

e Dbeing notation-independent: IEEE 1471 recognises thairskv notations are
needed for recording various facets of architectures.

An architecture description in IEEE 1471 is governed by ao$etiles. These
rules define what it means for an AD to conform to the Standaxetn if IEEE
1471 does not provide the concept of aspect, it identifiesdheept of architectural
concerns which include: functionality, security, perfamae, reliability. All these
concerns are generally regarded as early aspects. Undeuldseof IEEE 1471,
an architectural description must explicitly identify tsi@keholders of the system’s
architecture and enumerate each architectural concean.AD does not address all
identified stakeholders’ concerns, it is, by definition,dmplete.

In IEEE 1471, an AD is organised into one or more archite¢ttieavs. An archi-
tectural view is defined to beerepresentation of a whole system from the perspective
of a related set of concernkEach view has a governing architectural viewpoint. The
viewpoint provides the set of conventions for constructintgrpreting and analysing
a view, including the rules for determining whether it is lfflermed. Each identified

14 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

stakeholder concern must be framed by at least one of théeothral viewpoints
selected for use in an AD; if not, the AD is incomplete.

With regard to this conceptual framework, we can see thatstiindard has iden-
tified as a key concepts the issue of the different stakehot@magement and the
separation of concerns in a software architecture degmmipCurrently, they do not
propose to use Aspect-Oriented Modelling methods to comfius view. Conse-
guently, they do not propose a clear join point model. Theyndb propose any
pointcut language. The composition phase is not really &ised in the standard.
This approach is not operational. However, we can reallygimato use IEEE 1471
as a framework associated to an ADL that supports AOSD.

Aspect-Oriented ADLs

Recently, to improve modularity and component reusab#igyeral ADLs are moti-
vated by the integration of new Aspect-Oriented (AO) alzsioas such as, aspects,
joinpoints, pointcuts and advices into the ADLs in orderddiess the modelling of
crosscutting concerns in an architecture.

As software architecture descriptions rely on a conneataxpress the inter-
actions between components, an equivalent abstractiohbaussed to express the
crosscutting interactions. An Architectural Aspect, whis composed cdspectual
connectorand aspectual componenis a component that represents a crosscutting
concern in a component-based architecture. The tradittmmamector can not model
the crosscutting interaction because the semantics betwdénding of two com-
ponents is different than the semantics of a binding betveaeaspect and a base
component. The first one defines usually a contract betweéard and a supplier.
The second one is more invasive. Due to the obliviousnessipte, the base compo-
nent must not be aware of the fact that it might be modified bgsgpect component.

In order to express the crosscutting interaction, Aspégtunae [28] defines the
Aspectual Connector, an architectural connection elerthentis based on the con-
nector element but with a new kind of interface and a diffesamantics. The new
interface makes a distinction between the different eléaygiaying different roles in
a crosscutting interactionge., affected traditional components and aspectual compo-
nents; and captures how components are interconnectedntBnface of an aspec-
tual component contains some base roles, some crossauttsgand a glue clause.

The glue clause specifies how an aspectual component affepitar compo-
nents. There are three types of glue clause: after, befodeai@und. The semantics
is similar to the one of advice composition from AspectJ [Bje base roles can
be linked to ports with a pointcut description. This expi@ssnatches the different
ports affected by the aspectual component. Base role faentiie aspectual compo-
nent that affects the base components.

Similarly, Fractal Aspect Component (FAC) [29] extends Enactal ADL with
Aspect Components (AC). Aspect Components are resporisibdpecifying exist-
ing crosscutting concerns in software architecture. Eapke component can affect
components by means of a special interception interface.kimds of binding be-
tween components and ACs are offered: a direct crosscuingiiyy declaring the

1 Software Architecture Evolution 15

component references and a crosscut binding using poietqressions based on
component names, interface names and service names.

A third approach, named PRISMA [30], should be mentionedntégrates
the software architecture and the AOSD approaches. CygrtoafAC or Aspectu-
alACME, PRISMA is a symmetrical approach because it doesmasider function-
ality as a kernel entity different to aspects and it does onstrain aspects to specify
non-functional requirements; functionality is also sfiedi as an aspect. As a re-
sult, PRISMA provides a homogeneous treatment to functiand non-functional
requirements. In PRISMA, aspects are first-order citizérsofiware architectures
and represent a specific behaviour of a concern (e.g., safedydination, etc) that
crosscuts the software architecture.

1.4.3 Evaluation

An interesting analysis and comparison of Aspect-Orie®Bd. to complete this
section can be found in [31, 32]. Complementary to these tudies, the approaches
presented in this section illustrate that there is curyamilconsensus between exist-
ing approaches about the way to define an aspect in a softnaiéeature. Among
the other differences, some approaches consider that antasggomposed of com-
ponents, is a kind of component or a component is composesipefcss. However,
most of them agree on that the semantics of the compositisrichbe extended to
incorporate aspects into an ADL. As in software architexthere is a consensus that
a software connector is the element that mediates interechetween components,
several approaches modify the semantics of the connecteflézt the concepts of
AOSD in a software architecture description.

As illustrated in [33], in addition to separating the ditet concerns during soft-
ware development, AOSD can help to overcome many of the pnablrelated to
software evolution. Improving the separation at the aechitre level will help to co-
ordinate the different stakeholders of the system and iugpthe ability to modify
only one concern independently of the others. Neverthdigtegrating or modifying
a concern requires invasively modifying the ADL specifioatiat all points affected
by the concern. These modifications are low-level, tediowsearor-prone, making
the integration of such concerns difficult. As pointed outtbg AOSD evolution
paradox [34], the evolution of a concern can break the ctersiy of the software
architecture. For this reason, we claim in the second pdhi®thapter that the con-
sistency of a base architecture modified by an aspect is askeg ifor the software
architecture community. To illustrate the problem and eatd an initial solution,
we propose to study in depth TranSAT: a framework for integtastepwise new
concerns in a software architecture.

16 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal
1.5 Safe integration of new concerns in a software architeate
1.5.1 Overview of TranSAT

In this section, to motivate the breaking consistency isagepresent an overview
of the TranSAT framework, through the example of a bankirfnse architecture.

We first describe the architecture and then show how to usereSAT framework

to extend this architecture with an atomicity concern. l§nave consider some of
the issues that confront an architect when specifying asctdsng concern.

Example

Our example banking application manages the withdrawabapdsit of money be-
tween savings and checking accounts. This applicatiopresented by the software
architecture shown in Figure 1.1, which is specified usirggShfArchie ADL (see
Section 1.2).

?p1.transfer

Savings
:Account

Ip3.withdraw

Manager
:TransferManager

Clients Ip2.withdraw

Checking Ip1 transfer$?p3.withdraw$
:Account
?p2.withdraw$
pt: Ip2.deposit
provide void transfer (int amount, Accountld c¢1, Accountld c2)
P2, p3: Ip3.deposit e
require Transactionld withdraw (int amount, Accountld c); e
require Transactionld deposit (int amount, Accountld c); 2p2.deposit$
require int getBalance(Accountld c); ‘pe.dep
p4,p5:

?p3.deposit$
provide Transactionld withdraw (int amount, Accountld c);

provide Transactionld deposit (int amount, Accountld c);
provide int getBalance(Accountld c);

(b) Excerpt of the behavior
of the Manager

(a) Banking software architecture

Fig. 1.1.Banking software architecture

Figure 1.1(a) gives the structural description of the baglarchitecture. The
structure is described in terms of compositear{k, Cl i ent s), componentsNa-
nager, Savi ngs, Checki ng), ports p1 to p5), delegated portsdpl to dp3)
and bindings. Ports contain operations; for example, tlegaijpnswi t hdr awand
deposi t are provided by the porg4 andp5 respectively. A port must contain
at least one operation, must be part of exactly one comppaedtmust be bound
to exactly one other port, in some other component. Opersitioe either provided
or required. Bound ports must contain compatible operatifor example, porp2
requires the operations provided by pprt. Delegated ports do not contain any

1 Software Architecture Evolution 17

operations; they define the interface of a composite, exypthe operations of the
composite’s components.

Figure 1.1(b) gives the behavioural description of one efdcbmponentsya-
nager . The behaviour is specified in terms of an Input/Output Awttan [35] that
describes the sequences of messages that a component reisg @atd emit. The
notation used in these automata is as follows. For a provigestationopl, the
messag@opl represents the receipt of a request and the messgyES represents
the sending of the responsgopl must precedé opl$, but they can be separated
by any number of messages, representing the processinglf For a required
operationop2, the messagkop?2 represents the sending of a call and the message
?0p2$ represents the receipt of the response. Sending a call izkibg operation,
and thud op2 must always be immediately followed Bpp2$. Using this notation,
the behaviour shown in Figure 1.1(b) specifies that wherVrgager receives a
transfer request, it makes a withdrawal from one of the twapants and a deposit
to the other one.

Integrating an atomicity concern using the TranSAT framewak

The TranSAT framework manages the integration of a new concepresented as
an architectural aspectinto an existing architecture, referred to abasis plan
The software architectural aspect represents the new goircéerms of aplan, a
join point maskand a set ofransformation rulesThe plan describes the structure
and behaviour of the new concern. The join point mask definestructural and
behavioural requirements that the basis plan must satisthat the new concern
can be integrated. The transformation rules specify thexsiehcomposing the new

Atomicity
Log1
 pm3 Cm2
pml™ bm1
Coordinator Cml
:Coordinator me%
pm4 Cm3

p6, p7 : Mask ThreeBoundComponents{

provide Object invoke1(Object [] params);

provide Object invoke2(Object [] params);
p8, p9: }

require Object seekLog(Transactionld id);
p10, p11: . .

require Object invoke1(Object [] params); (b) Join point mask

require Object invoke2(Object [] params);
p12,p14:

provide Object seekLog(Transactionld id);
p13,p15:

provide void Log(Object o, Transactionld id);

(a) Plan for the atomicity concern (c) Transformation rules

Fig. 1.2.Architectural aspect for the atomicity concern

18 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

plan with the basis plan. Given a software architecturatessphe architect specifies
where it should be added to the basis plan. The Trangéaverthen checks that

the selected point in the basis plan matches the join poirgkmastantiates the

transformation rules according to the architectural erstinatched by the join point
mask, and executes the instantiated transformation mlgsnhpose the new concern
into the basis plan.

As an example of the use of these constructs, we considerdimalte the bank-
ing transactions atomic. This concern is crosscuttinghat it affects both théva-
nager and the savings and checking accounts. The architectysattiselated to
atomicity is shown in Figure 1.2. The new plan correspondintipe atomicity con-
cern keeps a log of certain operations and enables thesatiopsrto be rolled back
when an error occurs. Specifically, theg components provide operations to keep
a log and to retrieve information from this log, and ®&eor di nat or component
triggers rollbacks when appropriate, guaranteeing theiaity property. The join
point mask specifies that this plan can be composed in a dorgesisting of one
componenCiml attached to two other componei@s? andCnB. Some constraints
(not shown) are also placed on the operations in the portsemimg these compo-
nents. In the banking software architecture, the join poiatk is compatible with
the integration site consisting of tiManager , Savi ngs andChecki ng compo-
nents. Finally, the transformation rules connect the pofrthe plan to the ports of
the selected integration site, and make other approprifitstanents. In the case of
the banking architecture, the result of the compositiom&s in Figure 1.3.

Savings

:Account

Coordinator
:Coordinator

Manager
:TransferManager

Checking

:Account

Clients

p2, p3:
require int getBalance(Accountld c);
p4, p5:
provide int getBalance(Accountld c);
p16, p17:
require void log(Object o, Transactionld id);
p18, p19:
require Transactionld withdraw (int amount, Accountld c);
require Transactionld deposit (int amount, Accountld c);
p20, p21:
provide Transactionld withdraw (int amount, Accountld c);
provide Transactionld deposit (int amount, Accountld c);

Fig. 1.3.Transformed banking software architecture

1 Software Architecture Evolution 19
Issues

To specify the integration of a crosscutting concern, tiohiggct must describe how
to modify the component structure, behaviour, and integad his task is highly
error prone, as many modifications are typically required] these modifications
can have both a local impact on the modified elements and algloipact on the

consistency of the architecture.

Typically, a component model places a number of requiresn@miocal proper-
ties of the individual architectural elements. For examiplé&afArchie, the ADL on
which TranSAT is built, it is an error to break a binding andriHeave the affected
port unattached, or to remove the last operation from a pad,then leave the port
empty. The construction of the behaviour automaton aswsatwith each component
is particularly error prone, because it must be kept colievéh the other elements
of the component and because of the complexity of the automsdtucture. For ex-
ample, in SafArchie, all of the operations associated withgorts of a component
must appear somewhere in the component’s behaviour automathen the ADL
separates the structural and behavioural descriptioisé@sy to overlook one when
adding or removing operations from the other. An automatostralso describe a
meaningful behaviour; at a minimum that for each operatiorall precedes a return
and every call is eventually followed by a return from thesgivoperation.

The architecture must also be globally coherent. The mdftwdt point raised
by this coherence issue lies mainly in the behaviour of tichitecture. So that the
application can run without deadlock, it must be possiblaynchronise the be-
haviour of each component with that of all of the componeatwtich it is bound
by its ports. Any change in the behaviour of a single compboan impact the way
it is synchronised with its neighbours, which in turn careeffthe ability to syn-
chronise their behaviours with those of other componentbénarchitecture. The
interdependencies between behaviours can make the sduaog error difficult to
determine.

1.5.2 A specific language for Software Architecture Transfomation

In this subsection we present the TranSAT’s transformdtioguage for specifying
the elements of an architectural aspect: plan, join poindkrend transformation
rules. The component assembly shown in Figure 1.2 (a) is ampbe of a plan,
showing only structural information. We also present tha jmoint mask and the
transformation rules. The use of the language is illustr#tteough the definition of
the atomicity aspect.

The join point mask

The join point mask describes structural and behavioudqnrditions that a basis
plan must satisfy to allow the integration of the new concédrironsists of a se-
ries of declarations specifying requirements on the atnecand behaviour of the
components available at the integration site.

20 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

/pm3 Cm2
[bm1
Cm1
PT2__bm2
pmé4 Cm3
1 Mask ThreeBoundComponents{
2 .. //Component and port
declarations corres-
-ponding to the diagram
3 OperationMask opm1, opm2, 12 pm1.operations = {opm1, opm2, *};
opm3, opm4, opm5, opm6, 13 pm2.operations = {opm3, opm4, *};
opm7, opm8; 14 pm3.operations = {opm5, opm6, *};
+

15 pmé4.operations = {opm7, opm8,

opm1.polarity = require;

opm2.polarity = require; 16 opm1 = inverse(opm5);
opma3.polarity = require; 17 opm2 = inverse(opm6);
opm4.polarity = require; 18 opm3 = inverse(opm?7);

19 4 =i 8);
opmb.polarity = provide; opm inverse(opm8);

opmé6.polarity = provide; 20 .. //Binding declarations}
opm?7.polarity = provide;
opm8.polarity = provide;

F RO o s

= o

Fig. 1.4.Join point mask definition

Figure 1.4 illustrates a join point mask suitable for usehwite atomicity plan
(Figure 1.2 (a)). For readability, some of the declaratiareselided or represented
by the diagram at the top of the figure. The diagram specifigssitime component
Cmil must be connected to two other componéit® andCn8. The remaining dec-
larations define a series of placeholders for operations @), specify whether these
operations must be declared as provided or as required @iridl) and specify that
they must be associated with the pgrtel to pn# (lines 12-15). Finally, lines 16-19
ensure that the operatiapmml is the inverse of operatioopn® in the bound port,
and similarly foropm2 andopn®, opn8 andopn¥, andopn¥% andopnB. Opera-
tions are inverse if they have the opposite polarity, theesaame and compatible
types. In the banking architecture, these constraints dydal example, allow the
architect to select the required operatigint hdr aw in port p2 asopml and the
provided operatiomi t hdr awin portp4 asopnb. In this example, the join point
mask does not specify any behavioural requirements. Ifegiete constraints on the
behaviour of a component mask can be specified in terms ofteeeeq of messages.

The transformation rules

The transformation rules describe precisely how to complsenew plan with a
basis plan. They specify the various transformations téoparon the elements de-
fined in the new plan and the join point mask, as well as theitiegtion order. The
language provides two kinds of transformation primitivesmputation transforma-
tion primitivesandinteraction transformation primitiveS’he computation transfor-
mation primitives specify the introduction of new ports agkrations in primitive
components, in order to adapt the component behaviour.nteeaction transforma-
tion primitives manage the insertion and deletion of congmtrbindings and man-

1 Software Architecture Evolution 21

age the composite content, in order to reconfigure the soétasahitecture. Overall
TranSAT is targeted towards introducing new concerns inistiag architectures
rather than removing existing functionalities. Thus, #weguage has been designed
to prevent transformations that remove existing behasgiour

Computation transformation primitives

Table 1.1 shows the primitives used to manage the strudtaraformation of prim-
itive component interfaces. These primitives allow thenaect to create new ports
and operations, to destroy empty ports and to move an operixttm one port to
another.

Port Operation
OperationOr = opin Pr;
OperationOr; = opreplacesOr,;
destroy |Pr.destroy(); N/A

move |N/A Or.movegr);

create PortPr in Cp;

Cp: ComponentRef, Pr: PortRef, Or: OperationRef,
op::=Or | inverseQr), N/A: Not applicable
Table 1.1.Computation transformations

Adding an operation to a port has an impact on the behaviotheofssociated
component. When a new copy of an operation is added to a porg tisé opera-
tionOperati on O = op in Pr,the architect must explicitly specify how the
messages associated with the newly added operafidit into the behaviour of the
component to which the operation is attached. The transtthom of the behaviour
automaton is specified using the pattern-matching sytetaplate => result Such
a rule inserts the messages associated with the new opemtipbefore, after, or
around the calling or responding messages associated avita existing operation,
m The template specifies the sequence of messagesmssibly separated by any
sequence of message&s,The result describes how messages associated with the new
operationop, are interleaved with this sequence.

The following lines illustrate the use of the automaton $farmation rules:

m— x — Im$ = ?m — lop — ?20p$— x — Im$; 1
m— x — Imé$ = ?m— (lop — ?0p$— x | x) — Im$; 2

In line 1, the template describes the receipt of a cathfollowed by any number of
messages, followed by the sendingndg response. The result specifies that follow-
ing the receipt of the call toy the component sends a calldp and waits for the
response before performing any further computation. Tleeofishe new operation
op at runtime can also be conditional. In line 2, the transfatremponent either
callsop, waits for the response, and then performs the sequenoe performsx
alone, ignoring the addezp operation.

22 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

Interaction transformation primitives

The interaction transformation primitives manage the néigoiration of the software
architecture. As shown in Table 1.2, operators are providecteate and destroy
bindings, to create composites either at the top level dniviainother composite,
and to move one composi@ ; or one componertpinto another compositér 5.

Binding Composite Component
Binding Br = CompositeCr;
create {Pr1, Pra}; CompositeCry in Cra; N/A
destroy |Br.destroy(); N/A N/A
move |N/A Cry.move(Cry); Cp.move(Crs);

Cp: ComponentRef, Cr: CompositeRef, Pr: PortRef,
Br: BindingRef, N/A: Not applicable

Table 1.2.Interaction transformations

Example

We use the atomicity example to illustrate the use of the edatjpn and interac-
tion transformation primitives. In this example, compgsihe new plan requires
(i) interposing theCoor di nat or component between the original compon@mi.
(instantiated abhnager in the banking case) and the operations that are to be made
atomic, and (ii) inserting theog components in front of the componer@si and
Cn2 providing these operations (instantiatedSas/i ngs and Checki ng in the
banking case). Figure 1.5 shows the rules that carry out ttnessformations.

In the join point mask, the operations to be made atomic azeifspd to be in a
port that may contain other operatioesy, portpni includes the operatiorepni,
opn?2, and some unknown list of operations(line 12 in Figure 1.4). So that the
atomicity concern does not have to take into account thése aperations, lines 2-
11in Figure 1.5 move the operations to become atomic intdynewated port5p18
to p21. This transformation may cause the ports matched by thepoint mask
to become empty. Accordingly, lines 13-16 apply thest r oy operation to these
ports, causing them to be destroyed if they are empty. Wheattimicity concern is
composed into the banking software architecture, the poatshed bypnil to pnéd
are not destroyed because they contain the opergtomal ance.

The ports of theCoor di nat or are then updated with references to the opera-
tions to be made atomic. For each ppf, p7, p10, andp11, the generic operations
i nvokel andi nvoke?2 are replaced by the inverses of the corresponding opera-
tions in the portp18 to p21 (lines 18-25). These transformations implicitly update
theCoor di nat or ’s behavior automaton by replacing the messages assouwidted
thei nvoke operations by the messages associated with the new operatio

To insert the_og components in front oEn2 andCnB, new ports must be added
to C2 and CnB and these ports must be instantiated with references tb dalge

1 Software Architecture Evolution

/I Cm1 transformation

Port pl8 in Cmil;

opml.move(pl8);

opm2.move(pl8);

... Similarly for the port p19 and the operation masks opm3 g4 of pm2

/I Cm2 transformation

Port p20 in Cm2;

opm5.move(p20);

opmé6. move (p20);

... Similarly for the port p21 in Cm3 and the operation masks dpmd opm8 of pm4

/I Port destruction

pml.destroy ();

pm3. destroy ();

... Similarly for the ports pm2 and pm4

/I Coordinator transformation

Operation o6a = inverse (opml) replaces p6.invokel;
Operation 06b = inverse (opm2) replaces p6.invoke2;
... Similarly for the operations of the port p7

Operation ol0a= inverse (opm5) replaces pl0.invokel;
Operation 0l10b= inverse (opm6) replaces pl0.invoke2;
... Similarly for the operations of the port p11

/I Introduction of p16 within Cm2
Port pl6 in Cm2;
Operation 016 = inverse(pl13.log) in pl6;
?0pm5 — x — lopm5$

= ?o0pm5 — X — 1016 — ?016$ — !opm5$;
?0pm6 — X — !opm6$

= ?0pm6 — X — !016 — ?016$ — !opm6$;

/I Introduction of p17 within Cm3
... Similarly to Cmz2 for the transformation of the port p17

/I Component introduction
Coordinator.move(Cml. parent);
Logl.move(Cm2. parent);
Log2.move (Cm3. parent);

/I Binding creation
Binding b6 = {p18, p6};
Binding b7 = {p19, p7};

Binding b10 = {pl10, p20};
Binding b1l ={pl11l, p21};

Binding b13 ={pl13, plé6};
Binding b15 ={p15, pl7};

©oO~NOOTAWNRE

Fig. 1.5.Transformation rules for the atomicity concern

operation. We focus on the transformation@i?2, as the transformation @n8 is
similar. Lines 28-29 add the poptl6 and copy the equi r e counterpart of the
Log component’d og operation into this port. Becaus®g is a new operation for
Cn2, we must specify where it fits int@mR2’s behaviour. Lines 30-33 specify that
Cn2 sends a call to this new operation whenever it is about tandtom either of
the operations to be made atomic.

24 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

The remaining rules transform the interaction between @omapts. Lines 39-41
add the components of the plan to the basis plan. In thess, foleany outermost
component or composite referencedztig the join point maskC. par ent repre-
sents the parent of the element to whieks matched in the basis plan. As the com-
ponent model is arborescent, each component or compositg hzost one parent. If
there is no parent, the enclosing transformation is nobperéd. Finally, lines 43-50
connect the components at the various ports. TranSAT atitcatip adds delegated
ports,e.g.,dp4 in Figure 1.3, as needed. This behaviour of the transfoona&tngine
improves the genericity of the architectural aspect. Apgythese transformation
rules to the join point between thédanager , Savi ngs andChecki ng compo-
nents shown in Figure 1.1 (a) produces the software ar¢hieeshown in Figure 1.3
(structural information only).

1.5.3 Static checking of the transformation

A goal of TranSAT is to ensure that the composition of a newceom produces a
valid software architecture. Accordingly, TranSAT statig checks various proper-
ties of the aspect at creation time and dynamically checstitle aspect is compati-
ble with the insertion context when one is designated by tbleitect.

Static properties and checks

Given an aspect, TranSAT first checks that its various elésnare syntactically
and type correct. For example, a join point mask must detkarea port contains
elements of type&per ati on and aBi ndi ng transformation must connect two
ports. TranSAT then performs specific verifications for tlepthe join point mask,
and the transformation rules.

Plan. TranSAT requires that the plan be a valid software architecaccording
to the component meta-model of SafArchie, except that it saytain unattached
ports. For example, TranSAT checks that all bindings conpects that contain
compatible operations and that the automata describingpehaviours of the var-
ious components in the plan can be synchronised.

Join point mask. The variables declared by the join point mask represent the
fragments of the basis architecture that can be manipulatetie transformation
rules. Unlike the plan, the join point mask need not be arcled architecture spec-
ification and thus TranSAT does not check thaj. operations are specified for all
ports or automata can be synchronised. These propertich@vever, assumed to
be satisfied by the elements matched in the basis archikecttanSAT does ver-
ify the consistency of the information that is given, for exae that any automaton
provided uses operations in a manner consistent with tiodgrigy.

Transformation rules. TranSAT ensures the safety of the transformation process
by a combination of constraints on the transformation lagguand verifications
performed statically on the transformation rules.

Several features of the transformation language have besigreed to prevent
the architect from expressing unsafe transformations.eikample, the SafArchie

1 Software Architecture Evolution 25

component meta-model requires the insertion of delegaigtd whenever a binding
crosses a composite boundary. TranSAT introduces theegatetl ports automat-
ically, relieving the architect of the burden of identifgithe composites between
two ports, reducing the size of the transformation spetiioaand eliminating the
need to fully specify composite nesting in the join point kndaghe SafArchie com-
ponent model also requires that each architectural elehst a parent, except for
the outermost components or composites. The transformiaiiguage enforces this
constraint by combining the creation of a new element withecHication of where
this element fits into the architecture; for exam@tert Pr in Cr both creates
a new portPr and attaches this port to the composgite Finally, a common trans-
formation is to replace an operation in a port by another atpmr, which requires
updating both the port structure and the automaton of trecéged component. The
transformation language combines both operations in tbidgionOper at i on
O, = op replaces Os.

Other safety properties are not built into the syntax of ta@gformation lan-
guage, but are checked by analysis of the transformati@s.rlo do so, the op-
erational semantics of the transformation language is dtis®d. Thanks to these
formalisation, the analysis simulates the execution ofrtwesformation rules on the
various elements identified by the plan and the join pointknas the end of the
simulation, global post-conditions are checked to guaeittat the pattern will not
break the software architecture consistency. For exaragdest-condition guarantee
that every element has at least one subelement exceptiopsrand join point mask
elements for which no subelements are initially specifiedimiilar analysis checks
various properties of bindings: every port is connectedtaeother port by a bind-
ing, the connected ports are not part of the same compotengperations of the
connected ports are compatible, etc. Another analysiskshbat for each compo-
nent, the automaton and the set of operations in the various are kept consistent.
A more detailed description of these checks is provided]n [6

1.5.4 Dynamic checks

An architect integrates an aspect by designating a fragofetite existing archi-

tecture to which the aspect should be applied. TranSAT chdtit the fragment
matches the join point mask, to ensure that the fragmerdfigstithe assumptions
under which the safety of the transformation rules has beeifiad. However, be-

cause the join point mask does not describe the entire badigecture, the static
checks of the different elements of the aspect are not siititdo guarantee the cor-
rect composition of a new plan into a basis plan. Consequetythamic verifications

of some structural and behavioural properties of the achite are performed dur-
ing the composition process.

The dynamic structural verification consists of checking tdompatibility be-
tween the newly connected ports, according to the definiifotihe port compati-
bility of SafArchie [14]. Concretely, based on transforioatrules that have been
applied, the analysis builds a list containing the newlyated connections as well
as the connections between ports that have been modifiedebtyathsformations.

26 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

For each of these connections, the connected ports areedadfcontain compatible
operations. The other connections do not need to be cheskbéwyare not affected
by the transformations and their correctness has beenopigyiverified during the
analysis of the basis plan or the aspect plan.

Adding new components and behaviours to a fragment of artectlre can
change the synchronisation at the interface of the fragneewt thus have an effect
on the synchronisation of the rest of the architecture. Teeaf a architectural as-
pect localises the modifications to a specified fragment ®@fetkisting architecture.
The process of resynchronisation thus starts from the tefiesitagment and works
outward until reaching a composite for which the interfacstiucturally unchanged
and the new automaton is bisimilar to the one computed béfier¢ransformation.
The bismilarity relation ensures that the transformatias o impact on the observ-
able behaviour of the composite, and thus the resynchitiorisprocess can safely
stop [36].

If the transformation of the architecture fails, any chanthet were made must
be rejected. Before performing any transformations, TAn®cords enough infor-
mation to allow it to roll back to the untransformed versiarthis case.

1.5.5 Assessment

In Section 1.1, we observed that the architect who integiateew concern without a
dedicated framework, can use the general architecturgsisébols to check the va-
lidity of the resulting architecture after the compositisrtomplete. This approach,
however, can give imprecise error messages, because thgngsrchitecture does
not reflect the transformation step that caused the proldewh,can be time con-
suming, due to the automaton synchronisation that is pahisfalidation process.
In this section, we briefly describe how a composition framéwike TranSAT can
address these issues.

Because the static verifications have a global view of thesfcamations that will
take place, they can pinpoint the transformation rules ¢hatlead to an erroneous
situation. For example, if an operation is moved from a pbthe join point mask,
the port may become empty, resulting in an erroneous sadtaarhitecture. While
SafArchie would simply detect the empty port, TranSAT cda,an analysis of the
complete set of transformation rules, detect that thereriskathat a port contains
only one operation, thatrmove is performed on the operation in this port, and that a
dest r oy is not subsequently applied to this port. Using this infatiorg TranSAT
can inform the architect of problems in the transformatioles, before any actual
modification of the architecture has taken place. Obtaithirgyfeedback early in the
composition process can reduce the overall time requirexne@ctly integrate the
new concern.

Because the dynamic verifications are aware of the exacf sengponents that
are modified by the composition, they can target the resymisation of the au-
tomata accordingly. As synchronisation is expensive, ceduthe amount of resyn-
chronisation required can reduce the amount of time reduveintegrate a new
concern, making it easier for the architect to experimetit wew variants.

1 Software Architecture Evolution 27
1.5.6 Discussion and tool suite

TranSAT is really different compared to other AO-ADLs. Qamy to most AO-ADL
that try to create new first-class entities that extend threept of Component and
Connector, TranSAT architectural aspect is a compositiéyetiat contains a set
of components and connectors that must be inserted. Comsygjun TranSAT the
weaving is not a composition operator with a fix semantice ffansformation rules
contained in the architectural aspect description refiie shmantics. TranSAT’s
use of transformations to weave aspects model raises the dsut the difference
between model weaving and model transformation. This igsuet limited to the
TranSAT approach. Indeed, in many Aspect-Oriented Mauhipproaches (AOM),
a design is presented in terms of multiple user-defined vi@aspects) and model
composition is often carried out to obtain a model that gtesian integrated view
of the design. In this different approaches, model comositivolves merging or
weaving two or more models to obtain a single model. The appasimilarities
between model weaving and model transformations havedrbaen discussed
in [37]. As a result, even if TranSAT can not be compared diyeio others AO-
ADLs, it can be classified without restriction as an AOM aguto.

The TranSAT framework enriches the SafArchie tool suitessist the architect
during the specification of the system. For TranSAT, thre@rstatic modules have
been developed. The first one permits the static checking afehitectural aspect.
The second one assists the architect to compose an arahdteaspect with an ex-
isting architecture by highlighting the different join pts matched by the join point
mask. Finally, the transformation engine performs thedfiemmation to weave an
architectural aspect into an architecture.

The static checking of the architectural aspect has beeglajged as an if-then
clause in Drool%and in ProlodP. The comparison of the Drools rules and the Prolog
rules shows that you find the same conditions and the samequoasces. The dif-
ference is that the rule is called explicitly in Prolog whesét is chosen by the rule
engine in Drools. Contrary to the Prolog implementatioe,Emools implementation
does not output the reason of the failure of a transformatits Although it is possi-
ble to check the reasons of the failure, it is not handy to deigoforward-chaining.
The time spent for the verification using the Prolog impletagan is quite simi-
lar for both implementations. The rules check the initiatestand the final state of
the transformation environment and perform the structade@nnection analysis.
The Drools implementation relies on 39 Drools rules. Thddgramplementation is
composed of 21 Conditional Transformatibhand 18 Prolog rules.

To detect the join point that can be matched by a join pointesgion, a module
has been implemented in three ways with ABA@ROOLS and Prolog. The idea
is the same for all the implementations. First we fill the kiemlge base with facts
that correspond to the elements of the software architeciiren we transform the

9 http://legacy.drools.codehaus.org/

10 http://www.swi-prolog.org/

11 http://roots.iai.uni-bonn.de/research/jtransformer/cts
12 hitp:/itfs.cs.tu-berlin.de/agg/

28 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

join point mask into a set of rules. Finally we make the rulgiea use these gener-
ated rules to find all the matching facts in the knowledge bake main difference

between those implementations concerns the efficiencyeadelarch. The AGG im-

plementation takes more time than the two others becaudeeajraph matching

process. Drools arrives at the second position. The extra fbr the Drools imple-

mentation comes mainly from the compilation of the Droolesu Since the rules
are generated from the join point mask, the cost of the rudegpdation can not be

reduced.

Finally, the transformation engine has been developedtwithconcurrent tech-
niques: AGG and Prolog. The AGG rules are generated from thaSAT trans-
formation rules. There are 167 graph transformation ruleated for the atomicity
composition. The host graph generated from the softwatdtaoture is composed
of 77 nodes and of 90 edges. The transformed host graph hbfiaddes and 138
edges. There are 34 conditional transformations that partbe TranSAT transfor-
mations. The software architecture is described by 145igatas in the knowledge
base. After the atomicity integration, the transformedwsafe architecture is spec-
ified by 210 predicates. The atomicity integration in thesreation software archi-
tecture takes 50 times more time with AGG than with Prologc®again, the graph
matching is responsible for the effeciency difference.

1.6 Related work

Separation of concerns in software modelling

Our work relates in several points to the works in Aspect @gd Modelling. In
this domain, the composition of the different concern medgéntified in the early
stage of the development process is an important issue wiikinig a model with
aspects. Main works consist in being able to compose UMLrdiag. For exam-
ple, France et al [38] have developed a systematic appraaotomposing class
diagrams in which a default composition procedure basedaomermatching can be
customised by user-defined composition directives. Thesettyes constrain how
class diagrams are composed. The framework identifies atiwaily conflicts be-
tween models that have to be composed and it solves themshattke composition
directives. Composition directives address the weavirgfoom the structural point
of view. It considers the composition as a model transfoionaBesides, it is a sym-
metric AOM approach in which they do not differentiate betweaspect model and
base model. Consequently, they do not provide currentlyreqgd language to man-
age the composition.

Close to model composition directives, Muller et al [39]g®et 2@ means to build
an information system with parametrised models. They usedehtomposition op-
erator to combine models. This work focuses on the idea tloaehparametrisation
allows the reuse of models in multiple contexts. The neediopnse parametrised
models and apply them to a system according to alternatidecaherent ordering
rules is highlighted. However, as with model compositiardiives, their work only
supports the composition of class diagrams and can not cegrmghmamic diagram.
This approach does not provide aspectual composition tiperand as such does
not support the composition of aspect models.

1 Software Architecture Evolution 29

In the same idea, Theme/UML extends the UML to support theiipation of
symmetric concern models . A symmetric decomposition misd&he in which both
base and aspect concerns are defined in separate modelsatbéevel of abstrac-
tion. At the modelling level, a base concern representsvetis that are not cross-
cutting. An aspect concern represents behaviours thatiananily crosscutting. The
Theme/UML approach introducestleme modul¢hat can be used to represent a
concern at the modelling level. Themes are declarativatyete units of modular-
isation in which any of the diagrams available in the UML carulsed to model one
view of the structure and behaviour the concern requiregXfecution. The struc-
ture and behaviours, that are needed to execute a concerspeeified within the
theme module. In Theme/UML, a class diagram and sequengeadia are typically
used to describe the structure and behaviours of the cobeérg modelled. Classes
and Methods defined on these diagrams describe the strugfttihese entities in
the scope of the concern. Sequence diagrams describe theidngtal interactions
that can occur between classes when the concern is exedgeect concerns are
represented as parametrised themes. These themes arepeeanwvith templates
that represent the join points at which behaviours in othemies are crosscut. The-
me/UML is really close of approaches like TranSAT presentethis paper. The
main difference is on the target domain model. However kenliranSAT, Theme
does not guarantee currently the result of the compositien #, a first work, called
kerTheme [40], proposes to validate the composition rékrdugh testing.

Klein et al [41] defines an asymmetric operator that intreduthe semantic-
based weaving of scenarios. In this approach, an aspectiredeas a pair of sce-
narios, one scenario for the join point designation (therffput”), i.e., a scenario
interpreted as a predicate over the semantics of MSCs [#4i&fied by all join points
(specification of the behaviour to detect), and the secomdfonan advice repre-
senting the expected behaviour at the join point. SimiléohAspect-J, where an
aspectual behaviour can be inserted around, before oragjitér point, with this ap-
proach, an advice may indifferently complete the matchddbieur, replace it with
a new behaviour, or remove it entirely to create composedwbetr. The operator,
proposed by Klein et al, is generic enough to be re-used tgposmthe behavioural
part of an architectural aspect. It can be for example adapteompose UML 2.0
sequence diagrams.

Less connected with UML, Roberto Lopez-Herrejon et al [4@]pmsed an ap-
proach based on algebraic foundations. Here aspects areaseemodel transfor-
mation function, or a function that maps models to models, the effects of the
weaving process can be understood in terms of algebraisftramations. Around
this definition, theoretical properties (commutativitgsaciativity and identity) are
assigned to aspect compositions, and rules are generatexi (recedence rules for
compositions). This allows one to reason about composiérposing its problems
and leading to a partial solution for aspect reusability prablems that derive from
the weaving process. The transformation language proposB@nSAT to express
the composition aims to the same goal.

The aim of the different approaches presented in this stibséds to safely com-
pose models. In considering software architecture desmni@s a model, several

30 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

ideas can be inspired by these works to guarantee the awesscof an evolution
step in a software architecture description.

AOSD Evolution Paradox

Despite all the help provided by aspects in modularisa#@SD paradoxically be-
comes a threat for software evolution, and consequentlydfiware reliability. This
problem is called AOSD-Evolution Paradox [34]. Managing Heparation of con-
cerns at the architecture level does not solve this issue.

Indeed, if we focus in long-term behaviour of a system and em@a what can
happen when it evolves, we argue that aspects can apply idlaway, resulting in
a system that is inconsistent and exhibits an incorrect\ieta This problem can
be described as a consequence of the obliviousness praferspects, which tries
to make all aspects transparent for the base model. Indeedpects have to include
a description of each place at which this crosscutting congecurs and thus rely on
the existing structure of the system. This leads to a tighpting between the sys-
tem and the aspects that advise it. When the system evolyssiitture changes and
every crosscutting concern in every aspect needs to be eti¢alavoid an undesired
behaviour, meaning that AOSD leads to software that is toiousrodularisation,
but contrary to what is expected it reduces the evolvabifitgpecial case of this
problem, called fragile pointcut[44], arises in the explitesignation of pointcut
target location by naming corresponding elements to the baxlel. This pointcut
becomes fragile when it unintentionally captures or miggeticular join points, af-
ter seemingly safe modifications to the base model (tighplog between aspects
and the base model). Hence it makes the reuse difficult becauslocal changes
may break pointcut semantics. This problem introduces arhead to the program-
mer and leads to a potential failure because the programasetchmake sure the
pointcuts that he designates do not accidentally matcthanatethod.

In [45] a Model-based pointcut definition is proposed. Thasiacuts are defined
in terms of a conceptual model of the base program, ratherréfarring directly to
the implementation structure. This results in joint poimésed on conceptual prop-
erties instead of structural properties of the base prograththus leads to a low
coupling of the pointcut definition and base model. Theseqgs are called view-
based pointcuts, because they use the formalism of inteaitidgews to both express
a conceptual model of a program and keep it synchronisedthétisource mode of
that program. These model-based pointcuts are useful id v AOSD Evolution
paradox, and a promising approach to unveil the hard-limkéen aspects and base,
allowing to reason about aspects in different dimensian3r&anSAT, the join point
mask is based on the semantic of a Software architecturesegoently, for exam-
ple, when the join point mask defines two connected compenErery component
directly or indirectly connected are matched. Furthermareomponent mask can
match indiscriminately a component or a composite. Thigbiglur of the join point
mask improve the architectural aspect genericity anddithie impact of a structural
change on the weaving semantics.

1 Software Architecture Evolution 31

1.7 Conclusion

Software architectures have the potential to provide adation for managing soft-

ware evolution. However, if many ADLs support static dgsiooin of a system, most

of them currently provide no facilities for specifying aitgttural changes. In this

chapter, we have identified two kinds of change: runtimeitactural changes called
internal software architecture evolution and changes eshay the architect called
external evolution changes. For the first kind of evolutiomp subcategories have
been identified. The first one can express run-time modifinatio architectures but
requires that the modifications be specified explicitly. émttast, other ADLs can

accommodate unplanned modifications of an architecturénaodporate behaviour

not anticipated by the original developers. These workp@se to define architec-
tural constraints to confine the potential evolution of tbéwgare architecture. On

the other hand, to manage external evolution, ADLs suffenfthe lack of support

for modularity. This leads to a number of architectural koeavns, such as increased
maintenance overhead, reduced reuse capability, andestthial erosion over the

lifetime of a system. As AOSD allows designer to modularigesscutting concerns,

promoting aspect-oriented software development priesipito ADLs seems to be

an attractive solution to overcome this external issue.

However, if applying AOSD to ADLs can help to overcome manthefproblems
related to software evolution, it pervasively modifies thenantics of the composi-
tion of software components. In the second part of this @rapie argue that the inte-
gration of new concerns in a software architecture can btfeakoftware architecture
consistency. Since a majority of existing ADLs have focusedlesign issues, they
provide advanced static analysis and system generatiohanestns. These mecha-
nisms must be adapted to manage the new composition pardwdityneen aspects
and components. Through SafArchie and TranSAT, this chaptposes an initial
solution to statically check that an aspect will not break sloftware architecture
consistency. TranSAT is based on a specific architectunsfmamation language to
describe the weaving. This language is carefully designemhdke certain unsafe
transformations impossible to express. Besides, it allstatic verification of ad-
ditional coherence properties before aspect weaving oeaming to be performed.
However, TranSAT and its transformation language are otlyreighly coupled with
the SafArchie semantics.

To conclude this chapter, we claim that one of the future nsa@ps of soft-
ware architecture is to propose (i) a way to describe homegesly internal and
external software evolutions. (ii) This evolution destiop should be associated to
a powerful analysis model in order to be able to guarantesdftavare architecture
consistency by checking only the parts of an architectuggairted by the changes.
(iif) This approach should be generic in order to be adapeggedding on the ADLs
semantics. (iv) Any changes should be represented as lfist-entities in the soft-
ware architecture and it should, at least before systertegeent time, be possible
to add, remove and modify a concern with a limited effort. @pproaches presented
in this chapter propose initial solutions to achieve thesgiirements. However, none
addresses the evolution issue in its entirety in consigéyath the software evolution
description, the analysis impact of a change and its pliojecin a targeted platform.

32 O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal
References
1. Medvidovic, N., Taylor, R.N.: A classification and comparison femrark for software

10.

11.

12.

13.

14.

15.

16.

architecture description languages. IEEE Trans. Softw. E6¢2000) 70-93

. Parnas, D.L.: On the criteria to be used in decomposing systems inide@so Commun.

ACM 15(1972) 1053-1058

. Tarr, P.L., Ossher, H., Harrison, W.H., Jr., S.M.S.: N degrof separation: Multi-

dimensional separation of concerns. In: International Conferencoftware Engineer-
ing. (1999) 107-119

. Vanderperren, W.: Combining Aspect-Oriented And Componese8&oftware Engi-

neering. PhD thesis, Faculty Of Science Department Of Computer ciyrstem And
Software Engineering Lab, Bruxelles, Belgium (2004)

. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., LopesL@ingtier, J.M., Ir-

win., J.: Aspect-Oriented Programming. In Akcsit, M., Matsuokag8s,: Proceedings
ECOOP. Volume 1241., Springer-Verlag (1997) 220-242

. Barais, O., Le Meur, A.F., Duchien, L., Lawall, J.: Safe integratbnew concerns in a

software architecture. In: ECBS, IEEE Computer Society (2006) 52—6

. Magee, J.: Behavioral analysis of software architectures usingliis@roceedings of

the 21st international conference on Software engineering, IEEEpG@mSociety Press
(1999) 634—637

. Allen, R.: A Formal Approach to Software Architecture. PhD thesan€gie Mellon,

School of Computer Science (1997) Issued as CMU Technical REpMUI-CS-97-144.

. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connectingwsre architecture to

implementation. In: Proceedings of the 24th International Conferem@oéiware Engi-
neering (ICSE-02), New York, ACM Press (2002) 187-197

Bruneton, E., Coupaye, T., Leclercq, M.,&una, V., Stefani, J.B.. An open component
model and its support in java. In Crnkovic, I., Stafford, J.A., SihpH.W., Wallnau,
K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer Scie8peinger (2004)
7-221SBN: 3-540-21998-6

Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing adxdfeatures in a hierarchical
component model. In: SERA '06: Proceedings of the Fourth Intemaltidonference on
Software Engineering Research, Management and Applications,ivgémh, DC, USA,
IEEE Computer Society (2006) 40-48

Dashofy, E.M., van der Hoek, A., Taylor, R.N.: An infrastwre for the rapid devel-
opment of xml-based architecture description languages. In: IC3Efbceedings of
the 24th International Conference on Software Engineering, New, YorkUSA, ACM
Press (2002) 266-276

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: Disct: A system for dis-
covering architectures from running systems. In: Proceedings dl@tieInternational
Conference on Software Engineering, Edinburgh, Scotland (2004)

Barais, O., Duchien, L. In: SafArchie Studio: An ArgoUML extiemsto build Safe
Architectures. Springer (2005) 85100 ISBN: 0387245898.

Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour aisaysoftware architectures.
In: WICSAL: Proceedings of the TC2 First Working IFIP ConferenceSoftware Ar-
chitecture (WICSAL), Deventer, The Netherlands, The Netherlandsyet, B.V. (1999)
35-50

Taylor, R.N., Medvidovic, N., Anderson, K.M., Jr., E.J.\Robbins, J.E., Nies, K.A.,
Oreizy, P., Dubrow, D.L.: A component- and message-basedtectiral style for GUI
software. IEEE Transactions on Software Engineefia1996) 390—406

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

1 Software Architecture Evolution 33

Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.:uAvay of self-management
in dynamic software architecture specifications. In: WOSS ’'04: Pringse of the 1st
ACM SIGSOFT workshop on Self-managed systems, New York, NYAJUSCM Press
(2004) 28-33

Allen, R., Douence, R., Garlan, D.: Specifying and analyzingdyin software architec-
tures. In: Proceedings of the 1998 Conference on Fundamentabagies to Software
Engineering (FASE’98), Lisbon, Portugal (1998)

David, P.C., Ledoux, T.: Safe dynamic reconfigurations oftédaarchitectures with
fscript. In: Proceeding of Fractal CBSE Workshop, ECOOP’'06,tB&rrance (2006)
SAE, A..E.C.S.C.: Architecture Analysis & Design Language DAA SAE Standards
n° AS5506 (2004)

Vestal, S.: Fixed-priority sensitivity analysis for linear compute timelele |IEEE
Transactions on Software Engineeri2@(1994)

OMG, O.M.G.: Unified Modeling Language: Superstructure. 820@rsion 2.0.
Tibermacine, C., Fleurquin, R., Sadou, S.: Preserving arthigdchoices throughout the
component-based software development process. In: WICSA E@mputer Society
(2005) 121-130

OMG, O.M.G.: UML 2 Object Constraint Language Specificatio0@) Version 2.0.
Briand, L.C., Labiche, Y., Yan, H.D., Pent, M.D.: A controllegberiment on the impact
of the object constraint language in uml-based development. 0652004) 380-389
Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-basextime software evolution.
In: ICSE '98: Proceedings of the 20th international conference dtw&re engineering,
Washington, DC, USA, IEEE Computer Society (1998) 177-186

Maier, M.W., Emery, D., Hilliard, R.: Ansi/ieee 1471 andtems engineering.
Syst. Eng7 (2004) 257-270

Garcia, A., Chavez, C., Batista, T., Sant'‘Anna, C., KuleszaRdshid, A., de Lucena,
C.J.P.: On the modular representation of architectural aspects.utm@y., Oquendo,
F., eds.: EWSA. Volume 4344 of Lecture Notes in Computer Scienpeinger (2006)
82-97

Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A ehddr developing
component-based and aspect-oriented systems. In: Proceeditgs5th International
Symposium on Software Composition (SC'06). Volume 4089 of Lectwtesdlin Com-
puter Science., Vienna, Austria, Springer-Verlag (2006) 259-273

Perez, J., Navarro, E., Letelier, P., Ramos, I.: A modellinggsal for aspect-oriented
software architectures. In: ECBS '06: Proceedings of the 13th Ang&k International
Symposium and Workshop on Engineering of Computer Based Syste@BS06),
Washington, DC, USA, IEEE Computer Society (2006) 32—41

Batista, T., Chavez, C., Garcia, A., Rashid, A., Sant'’AnnaKG@lgsza, U., Filho, F.C.:
Reflections on architectural connection: seven issues on aspectsllandra EA '06:
Proceedings of the 2006 international workshop on Early aspectsSH, INew York,
NY, USA, ACM Press (2006) 3-10

Quintero, C.E.C., Rotjuez, M.P.R., de la Fuente, P., Barrio-&akno, M.: Architec-
tural aspects of architectural aspects. In Morrison, R., Oquendeds:: EWSA. Volume
3527 of Lecture Notes in Computer Science., Springer (2005) 247—-26

Mens, T., Mens, K., Tourw’e, T.: Aspect-oriented softwareletion. ERCIM News
(2004) 36-37

Tourve, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolutmagox. In
Bergmans, L., Brichau, J., Tarr, P., Ernst, E., eds.: SPLAT\w&wme engineering Proper-
ties of Languages for Aspect Technologies. (2003)

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

O. Barais, A.-F. Le Meur, L. Duchien, J. Lawal

Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. IGQVarterly2
(1989) 219-246

van Glabbeek, R.: The linear time - branching time spectrum |. Timeusics of con-
crete, sequential processes. In J.A. Bergstra, A.P..S.SHauldbook of Process Algebra,
Elsevier (2001) 3-99

Baudry, B., Fleurey, F., France, R., Reddy, R.: Exploring réflationship between
model composition and model transformation. In: 7th Internationakgfap on Aspect-
Oriented Modeling (AOM 2005), MoDELS 2005, Montego Bay, Jamai€9§)

Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Biem&h, BMcEachen, N., Song, E.,
Georg, G.: Directives for composing aspect-oriented design claselmo T. Aspect-
Oriented Software Developmewt| 3880(2006) 75-105

Muller, A., Caron, O., Cag; B., Vanwormhoudt, G.: On some properties of parameterized
model application. In Hartman, A., Kreische, D., eds.: ECMDA-FAlwhe 3748 of
Lecture Notes in Computer Science., Springer (2005) 130-144

Jackson, A., Klein, J., Baudry, B., Clarke, S.: Testing aspectels. In: Model Driven
Development and Model Driven Testing workshop at ECMDA. (2006)

Klein, J., Helowet, L., Bz&quel, J.M.: Semantic-based weaving of scenarios. In: AOSD
'06: Proceedings of the 5th international conference on Aspectiedesoftware devel-
opment, New York, NY, USA, ACM Press (2006) 27—-38

ITU: Recommendation Z.120: Message Sequence Chart (M8@ugen (ed.), Geneva
(1999)

Lopez-Herrejon, R.E., Batory, D.S., Lengauer, C.: A discgaliapproach to aspect com-
position. In Hatcliff, J., Tip, F., eds.: PEPM, ACM (2006) 68—77

Koppen, C., Strzer, M.: PCDiIff: Attacking the fragile pointcut problem. In Gybels, K.
Hanenberg, S., Herrmann, S., Wloka, J., eds.: European ttiter&/orkshop on Aspects
in Software (EIWAS). (2004)

Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing thdutian of aspect-oriented
software with model-based pointcuts. In Thomas, D., ed.: ECOOPM@UO67 of Lec-
ture Notes in Computer Science., Springer (2006) 501-525

