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Comparison of three Algorithms for solving the Convergent Demand
Responsive Transportation Problem

Rémy Chevrier, Philippe Canalda, Pascal Chatonnay and Didier Josselin

Abstract— Led by computer science and geography labo-
ratories, this paper presents three algorithms for solving the
Convergent Demand Responsive Transport Problem (CDRTP).
Two of them are exact: the first one is based on a dynamic
programming algorithm to enumerate exhaustively the sprawl-
ing spanning trees and the second one is based on a depth first
search algorithm. The third one is stochastic and uses a steady
state genetic algorithm. These approaches address the problems
of scalability and flexibility, are compared and discussed.

I. INTRODUCTION

The research deals with Demand Responsive Transport
(DRT). In USA DRT is defined by the Federal Transit
Administration and the Transit Cooperative Research Pro-
gram (TCRP [22]) as ’Passenger cars, vans or small buses
operating in response to calls (...) to pick up the passengers
and transport them to their destinations. A demand response
operation is characterized by: (a) The vehicles do not operate
over a fixed route or on a fixed schedule except, perhaps,
on a temporary basis to satisfy a special need; and (b)
typically, the vehicle may be dispatched to pick up several
passengers at different pick-up points before taking them to
their respective destinations and may even be interrupted en
route to these destinations to pick up other passengers’.

In Europe, the definition is a little different and broader:
’DRT is an intermediate form of transport, somewhere be-
tween bus and taxi wich covers a wide range of transport ser-
vices ranging from less formal community transport through
to area-wide service networks’ (Ambrosino et al. [1]) There
exist indeed many spatial organizations of the DRT services.
We propose in this paper to tackle the specific Convergent
Demand Responsive Transportation Problem (CDRTP). This
is a relevant issue in the sense that numerous mobilities
and individual destinations correspond to recurrent particular
sites and places of interest: airports, centres of towns...

In France, this kind of DRT involves many urban and
suburban territories. The actual purpose is to provide more
efficient transport systems to save service expenses, traveled
distances and pollutant emission. DRT may respond to these
aims, due to its capacity to adapt to the demand. CDRT is
indeed often provided to serve clients during the edge times
hours (very early or very late in the day), on areas missing
transportation services to complete the regular supply. It
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also can be connected to the core of the network through
intermodal nodes to group the flows and therefore increase
the global transportation service efficiency.

In our case, users have to book their seats at least 4
hours before the vehicles departure. This allows to process an
asynchronous optimization (cars and drivers allocation, paths
design) every day. Neither the sequence of the stops and
the time schedule nor the shape of the routes are previously
known. That is why this service can be considered as a DRT.

A fruitful partnership between a Transport Authority
(Communauté d’Agglomération du Pays de Montbéliard,
140000 inhabitants), a private carrier (Compagnie des Trans-
ports de Montbéliard) and researchers from laboratories in
Geography and Computer Science, joined in the TADvance
group, provided the design of this convergent DRT whose
concrete implementation is foreseen next year.

To be the less expensive possible and to respond to the
users demand, a CDRT system has to consider fit-to-use
and rigorously built data. In our study, we handle different
geographical data: a finite set of stops where the clients can
be picked up, a set of clients (transport requests) assigned
to the stops, a topological network modeled using a graph
with valued edges and finally one (or several) point(s) to
converge, for only deliveries. Other constraints of service
quality must be considered: the maximal duration of the
route, the maximal delay at any pick-up point and the margin
of time required at the convergence point (i.e. to get the
following departure if needed).

The optimization consists in finding each day the minimal
number of vehicles used, travelled kilometers, and occupa-
tion rate of the vehicles. This leads to an interesting property
of grouping passengers in the same vehicules and induces
some social impacts due to the quality of such transport
service. Indeed, the number of passengers remaining rather
low, DRT facilitates a new kind of mobilities and relationship
(reasonible size of vehicles, flexibility, comfort).

In this paper, we endeavour to show the relevance of
different methods for solving the Convergent DRT Problem
joining a reliable fitness and an acceptable efficiency of
the method used. The CDRTP is specific in the way the
destination point is fixed, allowing to keep under control the
complexity in a certain room.

Such a problem has in fact multiple aspects. Given that
the solving complexity grows exponentially according to the
graph density, we propose three algorithms, each of them
adapted to a complexity range. We do not present here neither
the previous stage for designing the service according to
user needs, nor the final step concerning users management
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(information delivery and booking) and service operating (ef-
fective implementation of the paths and associated vehicles).
We rather focus on two methodological aspects. Theoretical
aspects of our research are not presented in this paper neither.

We first present an outline of major related works to
CDRTP, by focusing on exact or approximate solving meth-
ods, describing and assessing the criteria and the targeted
objectives. Thereafter we explain the methodology used
and detail/compare three algorithms solving the combina-
tive problem (two exact and a genetic one), all based on
common data-processing objects: Convergence Graphs (CG)
and Sprawling Spanning Trees (SST ). We end on a few
experimental results and conclude on further works.

II. RELATED WORK

The CDRT problem is a parent to the np-complete TSP, for
which various solutions exist. In its simplest configuration
the CDRT problem is also linked to the Vehicle Routing
Problem with Time Windows (VRPTW) [19]. In these two
problems, the vehicles capacity can be taken into account,
but also time windows in specific pick-up points on the
territory. However, it is necessary to consider the delivery
points with associated constraints. Finally, in a more complex
DRT configuration, the problem can be associated to the Dial
A Ride Problem (DARP). We shall be then interested in a
generalization of the TSP, which corresponds more to the
actual DRT, carrying clients to the destination point linked
to the regular transport network. A generalization of this
problem is the N-TSP, that we solved with N vehicles by
partitioning, or spanning a territory into N smaller territories.
The exact methods are not used because of their unsuffi-
cient robustness. Indeed the major drawback remains the
scalability. Thus approximated methods are preferred, like
approximation schemes [21].

Another variant of the generalized TSP is the Pickup
& Delivery TSP ([20], [5]), where goods and passengers
are picked up and dropped off to precise destinations. For
that problem various forms also exist, for which different
approaches are proposed [17] to solve this problem: the k-
PDP. Other TSP forms combine the N-TSP to the k-PDP, for
example the k-PD N-TSP [14], which generalizes the TSP
and takes into account the capacity k of one vehicle.

Unfortunately these approaches do not take into account
neither the number N of vehicles, nor any QoS. Indeed,
a more general solution of the DRT problem requires to
consider the human and material resources [16]. Software so-
lutions exist, that must better respond to constraints imposed
by the users requests, and include the available resources.
Some proposals consider hazards (is a vehicle broken down?)
and adapt routes in consequence.

The genetic approaches are preferred to Branch & Bound
approaches when we address the problem of the scalabil-
ity or when the knowledge of a problem and its solving
are unsatisfactory. With these approaches, multi-objective
evaluation functions could be considered. They apply strate-
gies for solving np-difficult problems [12], especially those

in relation to transportation. Some works propose a real-
time approach for optimizing vehicles networks ([9],[13]).
Crossover and mutation operators reduce the number of used
vehicles, without penalizing clients or increasing travel times.

About spanning trees, various approaches exist. We can
cite the works of Raidl and Julstrom ([2],[11],[3]), who
use evolutionary algorithms to encode spanning trees in
undirected graph problems.

Our contribution follows previous works [7], that describes
a CDRT system using the ∞-PD TSP with n pick-up points
≥ m deliveries = 1 and solving simultaneously the N-
TSP. The actual operational systems suffer from a lack of
robustness (scalability) and flexibility. Indeed, they fail in
proposing a simultaneous convergence to several points, by
solving the ∞-PD TSP with n ≥ m ≥ 1 for a single vehicle
and always by solving simultaneously the N-TSP.

III. EXACT AND APPROXIMATE SOLVING METHODS

We propose three solutions for solving the CDRTP. The
first ones are exact and the third one is stochastic. The
first exact approach is based on a dynamic programming
algorithm to enumerate the exhaustive set of solutions. The
second one is based on a depth first search algorithm to
enumerate the exhaustive set of optimal solutions. The last
one is stochastic and based on a genetic algorithm, that
allows the evolution of a population of solutions to the
optimal solutions set. Our algorithms handle input matrices
and adjacencies lists as well. These three methods lay on
a common data modelling. According to a set of demands
matched to a transport network including stops, we are able
to build a Convergent Graph (CG) from all the requests
to the convergent point (cf. example figure 1). The CG is
directed, acyclic and transitive and enhances a total order of
nodes. From this CG, we generate a large set of Sprawling
Spanning Trees (SST) that supports the underlying logical
structure of the generic CDRT problem. From a one-pass
run on the graph, we can demonstrate that all valid solutions
are computable and take the form of SST (cf. [18]). CGs and
SSTs construction and properties has already been described
in a recent publication ([6]).
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Fig. 1. Convergence graph with 8 vertices and two of its SST

A. Dynamic programming algorithm

We present now the functioning of the dynamic program-
ming algorithm (DPA) solving the convergent N-TSP, with
a case study and improvements obtained on various mono-
convergent transitive graphs.
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1) Description: The proposed DPA is based on a classical
sequential iterative algorithm. First, we obtain the minimal
nodes of the graph (i.e. nodes having no predecessor), and
also the convergent nodes (i.e. nodes having no successor).
From minimal nodes we create the first sprawling spanning
tree (SST), which is composed of as many partial sprawling
spanning trees (PSST) as many minimal nodes in the graph.
So, at this step, we build a PSST made up with a minimal
node and we add this PSST to the first SST.

The second part of the algorithm manages all the edges
of the graph. For each node, neither minimal nor convergent
(the destination point), we compute the list of edges, incident
to node n. For example, on the figure 1 node 4 has two
incident edges : (1, 4) and (2, 4). With the list ledges of
incident edges to node n, we can extend PSST, whose final
node corresponds to the first node of the edge.

When the list of nodes is processed, we pass to convergent
nodes, that we simply add as the final nodes of each PSST.
We have now the complete list of SST of the CG.

2) Implementation: We now examinate the DPA and also
the input data.

a) Definitions:
sst : sprawling spanning tree
psst : partial sprawling spanning tree
listMinimalNodes : list of minimal nodes
convergentNode : convergent node of the DAG
listSst : list of SST we build
listPsst : list of PSST of one SST

b) Algorithm:
1) listMinimalNodes ← GetMinimalNodes()
2) convergeNode ← GetConvergeNode()
3) For each node n of listMinimalNodes do

a) psst ← Build a new PSST with node n

b) Add( sst, psst )

4) Add( listSst, sst )
5) For each node n neither minimal nor convergent do

a) clear(listEdges)

i) ComposeEdges( listEdges, n )
ii) For each sst of listSst do

A) psst ← Build a new PSST with node n

B) Add( sst, psst )

b) ExtendSst( listSst, listEdges )

6) For each sst of listSst do
a) For each psst of sst do

i) Add( psst, convergentNode )

c) Data representation: We choose the adjacencies list
to represent data, where each vertice v of a graph G indicates
all one-hop successors.

3) Case study: We apply the DPA to the DAG of the
figure 1 and we build the exhaustive list of SST, step by
step as described in table I.

B. Depth first search algorithm

Since the solutions set size grows very quickly, we need a
much lighter algorithm. Indeed the DPA keeps the exhaustive
set of solutions to compute the next set while iterating the
following node. Hence, there is a combinatorial explosion
and the memory is saturated.

To fix this problem, we propose a depth first search
algorithm (DFA) which computes directly the optimal solu-
tions. The DFA provides two major advantages; on the one

Current node Incident edges SST
0,1,2 none (0,1,2)
3 (0,1,2,3);

(0,3) (0,3,1,2);
(1,3) (0,1,3,2)

4 (0,1,2,3,4); ((0,3),1,2,4);
(0,(1,3),2,4);

(1,4) ((0),(1,4),(2),(3));
((0,3),(1,4),2);

(2,4) (0,1,(2,4),3); ((0,3),1,(2,4));
(0,(1,3),(2,4))

etc... ... ...
convergence (i, 7), i ∈ [0, 6] A set of 71 solutions.
node:7 Among them, three SST

have the least of PSST:
((0,3,6,7);(1,4,7);(2,5,7));
((0,3,7);(1,4,6,7);(2,5,7));
((0,3,7);(1,4,7);(2,5,6,7))

TABLE I

STEPS OF THE DPA APPLIED ON THE DAG OF FIGURE 1

hand, it needs a little and constant memory consumption
(it writes directly the solutions on the disk), on the other
hand it converges directly to the optimal solutions. Hence,
we are able to exhaustively enumerate the optimal solutions
(in terms of SST branches) ordered in travelled times or
distances, or to store the optimal solution only. N.B. We
use the same input data, as explained in (III-A.2.c).

pkp 0 1 2 3 4 5 6
nv 0 1 2 0 1 2 1

TABLE II

REPRESENTATION OF A SOLUTION TO THE DAG OF FIGURE 1

1) Implementation:
a) Chosen representation: We define a solution as an

uni-dimensional array, where each cell represents a pick-
up point and where the value of this cell identifies the
vehicle serving this point. So, the table size corresponds to
the number of pick-up points (nbpkp) minus the convergent
point, i.e. nbgenes = nbpkp − 1. Table II gives a solution of
the picking-up of the CG of figure 1. It corresponds to SST
((0, 3, 7); (1, 4, 6, 7); (2, 5, 7)). Vehicles are indexed from 0
to nbv − 1 where nbv is the number of required vehicles to
solve the CDRTP.

b) Definitions:
CurSolution : current solution to evaluate
BestSolution : best solution found during the process
index : node index
nbNodes : number of nodes in the graph
VS : useable vehicles set
LVP : Last Vehicles positions (node id)
IsSSTok() : function determining whether a SST is right or
not
Cost() : function giving the time or distance cost of a SST
f() : function called recursively on new node

c) Algorithm: f (CurSolution, index, nbNodes, BestSolution, LVP)

1) if index > nbNodes then

a) if Cost(CurSolution) < Cost(BestSolution) then
b) BestSolution ← CurSolution
c) endif
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2) else
a) VS(index) ← {CurSolution[index]|i ∈ Pred{index}}
b) for k from 1 to card(VS(index)) do

i) CurSolution(index) ← VS(index)(k)
ii) if IsSSTok(CurSolution,index)=true then

• if Cost(CurSolution,index) < Cost(BestSolution) then
– LastVehiclePosition(CurSolution(index)) ← index
– f (CurSolution,index+1,nbNodes,BestSolution, LVP)

• endif
iii) endif

3) endif

2) Case study: Let the DFA proceed on the example of
figure 1 (cf. table III). In this case, the heuristic qualify-
ing a good solution is the vehicles number, that we aim
to minimize. By default, we initialize each node with a
different vehicle number, so that the first best solution is
((0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)).

Current vehicles VS SST Correct
node arrangement or better?
init 0 1 2 a b c d better
3 0 1 2 0 b c d (0,1,2,3) ((0,3),(1),(2)) better
4 0 1 2 0 0 c d (0,1,2,3) ((0,3,4),(1),(2)) false
4 0 1 2 0 1 c d (1,2,3) ((0,3),(1,4),(2)) ok
5 0 1 2 0 1 0 d (0,1,2,3) ((0,3,5),(1,4),(2)) false
5 0 1 2 0 1 1 d (1,2,3) ((0,3),(1,4,5),(2)) false
5 0 1 2 0 1 2 d (2,3) ((0,3),(1,4),(2,5)) ok
6 0 1 2 0 1 2 0 (0,1,2,3) ((0,3,6),(1,4),(2,5)) ok
6 0 1 2 0 1 2 1 (1,2,3) ((0,3),(1,4,6),(2,5)) ok
6 0 1 2 0 1 2 2 (2,3) ((0,3),(1,4),(2,5,6)) ok
6 0 1 2 0 1 2 3 (3) ((0,3),(1,4),(2,5),(6)) worse
5 0 1 2 0 1 3 d (3) ((0,3),(1,4),(2),(5)) worse
4 0 1 2 0 2 c d (2,3) ((0,3),(1),(2,4)) ok
5 0 1 2 0 2 0 d (0,1,2,3) ((0,3,5),(1),(2,4)) false
5 0 1 2 0 2 1 d (1,2,3) ((0,3),(1,5),(2,4)) false
5 0 1 2 0 2 2 d (2,3) ((0,3),(1),(2,4,5)) false
5 0 1 2 0 2 3 d (3) ((0,3),(1),(2,4),(5)) worse
4 0 1 2 0 3 c d (3) ((0,3),(1),(2),(4)) worse

etc... ... ... ... ...

TABLE III

STEPS OF THE DFA APPLIED ON THE DAG OF FIGURE 1

C. Heuristic approach

Because of the combinatorial explosion, we develop meth-
ods to approximate solutions in an acceptable computation
time. The solution we propose is a genetic algorithm based
on the steady state genetic algorithm (SSGA). This one
creates a population by cloning the initial genome. At each
generation, it creates a temporary population, adds it to the
already existing population, then removes the less interesting
individuals (those whose fitness is the smallest) to get back
to the initial size of population.

1) Objective definition: Let us define a standard solution
and above all, what is a good solution in our study. First,
we see the representation we have chosen. We see next how
we initialize the population. Then we will see the objective
function of our problem.

a) Representation of a solution: We keep the repre-
sentation used in the case of the DFA. Indeed, a solution
chromosome is also represented as an uni-dimensional array,
where each cell (pick-up point) corresponds to a gene, and
the gene value corresponds to the vehicle index serving this
point. So, table II represents also a solution chromosome to
the CDRT problem of the figure 1.

b) Initialization of the population: The number of
vehicles cannot be greater than the number of pick-up points
(nbpkp) and there are at least as many vehicles (nbv) as
initial pick-up points (pkpstart), i.e. minimal nodes of the
CG: nbpkp ≥ nbv ≥ nbpkpstart

. We randomly initialize
1000 individuals by assigning a vehicle number among [0,
nbpkp]. Thus the start population has a number of not viable
individuals (i.e. wrong solutions). Then the crossover and
the objective contribute to improve the solutions. N.B: for
each chosen solution, there will be necessarily a different
vehicle for each initial pick-up points. So, it may appear more
interesting to arrange the table so that the minimal nodes are
located ”at the left” of the table. That is, each minimal node
from 0 to k is respectively served by a vehicle numbered
from 0 to k: ∀pkpmini

, nvi
= i, i ∈ N

c) Objective: If the nodes are correctly ordered, a
good solution consists in checking that the chromosome
responds to the following condition: ∀i, j, i < j, gene(i) =
gene(j) ⇒ ∃(i, j) ∈ E, Hpkpi

+ti→j ≤ Hpdrj
, where Hpkpi

is the picking up time for the point i. The chromosome
fitness increases when it satisfies this condition, favouring
the solutions requiring less vehicles, that is, a good solution
minimizes the number of PSST. In the contrary, the chromo-
some fitness is reduced relatively to the error rate (another
solution consists to give fitness 0).

d) Crossover operator: Given that we have a different
vehicle for each initial pick-up point, all chromosomes start
with the same common subsequence S. So, to cross two
individuals, it is not necessary to span this subsequence S.
The crossover must occur at least from the first gene located
over S. Let gS be the first gene located over the common
subsequence S.

Our crossover operator is parent of the PMX operator [8]
and generates two children from two parents. The crossover
is simply completed [10] by choosing two random cross
points and by swapping sequences of the parents. For exam-
ple, in the case of chromosomes P1 and P2 (cf. table IV), we
choose a first random number k, gS ≤ k ≤ n, corresponding
to the start of the sequence to swap. We choose a second
random number l, k < l ≤ n. Then we create two
children C1 and C2 from parents P1 and P2 by swapping
the sequences (kl)P1 and (kl)P2 (cf. tables IV and V).

0 1 . . . i j k l m n
0 1 . . . i x z w y v

0 1 . . . i j k l m n
0 1 . . . i w v y z x

TABLE IV

PARENTS CHROMOSOMES P1 AND P2

0 1 . . . i j k l m n
0 1 . . . i x v y y v

0 1 . . . i j k l m n
0 1 . . . i w z w z x

TABLE V

CHILDREN CHROMOSOMES C1 AND C2
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e) Mutation operator: Mutation aims at bringing di-
versity into the current population. It is a random process,
completed from gene gS. So, we assign a random value to
a randomly chosen gene, modulo the number of vehicles in
chromosome C, so that we do not increase the number of
required vehicles: ∀gene(i) ≥ gS , gene(i) ≤ gene(|C| − 1)
and gene(i) ← (gene(i) + valrnd)%nbvch

.
Let us apply the mutation to chromosome I (table VI); if

we randomly choose gene k, and we add the random value
vrnd = 2 to gene(k), gene(k) ← gene(k) + vrnd, we get
gene(k) = z. After having applied modulo z, z = nbvI

, we
get (gene(k) ← gene(k)%z) = 0.

0 1 . . . i j k l m n
0 1 . . . i x x w y v

0 1 . . . i j k l m n
0 1 . . . i x 0 w y v

TABLE VI

EXAMPLE OF MUTATION OF GENE k OF INDIVIDUAL I

IV. EXPERIMENTAL RESULTS

We compare the algorithms described above and we pro-
ceed the computation of the SST on various CG of increasing
sizes (hand-made and randomly generated). We programmed
our algorithms in C++ on a PC (2.4GHz with 4GB of
memory) running Linux Debian with kernel 2.6. Table VII
presents the computation times obtained and highlights the
interest of the exhaustive method for CDRT problems with
size smaller than 17 pick-up points. Let us note some
elements of the k − PD N − TSP complexity. When
the QoS constraints and the total order of the graph nodes
are not taken into account, the complexity corresponds to
generating all combinations of features in a set of n features
(O(2n−1

×n!)). By bounding the paths computation, we can
limit complexity between O(2n) and O(2an), with a > 1
and n ≥ 5. For example, if we have a CG G with 7
nodes |G| = 7, the complexity equals to 203. Thus, for
a great number of nodes, we need to use another kind
of algorithms, such as meta-heuristic algorithms and more
especially genetic algorithms.

The genetic application is programmed with the Genetic
Algorithm library (GAlib) developped by the MIT [15]. We
use an initial population size of 1000 indivuals randomly
initialized with a crossover rate pcross = 1.0. Each result for
one mutation rate is an average data completed on a series of
100 processes. This algorithm provides a set of representative
solutions of good quality, in an acceptable computation time.
The convergence speed, with the pertinence of the operators
and an appropriate parameterizing, allows to consider appli-
cations of size close to several dozens of nodes.

We are interested in the effects of the variation of the
mutation rate pmut. We vary pmut from 0.0001 to 0.9 on
a population of 1000 individuals, by solving the CDRT
problem on CG with 20, 30, 40 vertices. Table VIII presents
results obtained from these graphs, |S| is the average number

of different solutions and Dbs indicates the average per-
centage of the different sub-optimal solutions obtained on
these graphs. Globally, by increasing the mutation rate, we
increase the number of various solutions. From a mutation
rate pmut 
 0.1, there is no more significant increase of the
number of distinct solutions. Moreover, the more important
the graph density, the stronger the mutation rate, if we expect
a solution quickly. Indeed, it is only from a mutation rate
around 0.1, that the whole solutions are sub-optimal, whereas
in the case of smaller graphs (20, 30 nodes), the population
has large sets of sub-optimal solutions with weaker mutation
rates (pmut ≤ 0.05).

We are now interested in the convergence speed and we
want to know from which generation the first sub-optimal
solution appears. Generally, the more the mutation rate in-
creases, the faster we get a sub-optimal solution (cf. figure 2).
The first sub-optimal solution occurring has to be correlated
with the number of nodes and the edges density. Thus, for
small dimension problems like graphs with 20, 25 nodes,
we get an optimal solution very quickly (before around 30
generations in average) for a mutation rate pmut < 0.05. But,
as soon as we increase a little bit the nodes and edges density
(30 nodes), the first sub-optimal solution appears very later
for a similar mutation rate (around 600 generations). In the
case of the 30 nodes graph, it requires a mutation rate
pmut ≥ 0.05 to find a sub-optimal solution before 200
generations! The algorithm may find a sub-optimal solution
to the 30 nodes graph problem in around 30 generations with
a stronger mutation rate only (pmut ≥ 0.3).

Our research group made a recent survey in France and
recorded about 650 DRTs. This can give us an idea of
how useful can be our algorithms. We are indeed able to
know, for about 100 of them that are CDRT, the number of
clients that requested a trip for the same time [4]. A large
part of these DRTs only serves about 10 clients per round.
For those, the exact solutions provided by the DPA or the
DFA could be sufficient. Other services manage less than
20 clients, allowing to use the DFA algorithm. However,
sometimes for these services and often for a few efficient

Number Number CPU time CPU time CPU time
of node of edges with DPA with DFA with GA

8 18 0 0 4.56
12 41 0.01 0.01 5.56
13 44 0.04 0.02 5.82
14 54 0.31 0.12 6.21
16 73 8.17 2.15 6.64
23 176 - 950.65 10.74
25 247 - - 11.79
30 391 - - 15.35
40 743 - - 27.65
50 1156 - - 65.88
60 1693 - - 90.71
70 2305 - - 116.94
80 3011 - - 161.06
90 3821 - - 215.83

100 4825 - - 268.98
200 19569 - - 1602.02

TABLE VII

COMPUTATION TIMES OF SST
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pmut CG20 CG30 CG40

|S| Dbs |S| Dbs |S| Dbs

0.0001 29.0 90 103.3 80 8.9 0
0.0005 43.9 80 144.5 30 72.4 0
0.001 26.0 70 194.5 30 34.3 0
0.005 101.9 100 394.0 70 355.7 0
0.01 165.1 100 696.4 70 586.6 0
0.05 619.8 100 971.4 100 832.7 30
0.1 767.0 90 980.7 90 793.3 80
0.2 852.0 100 981.1 100 848.0 90
0.3 863.4 100 977.1 100 857.5 100
0.4 882.2 100 981.0 100 869.1 100
0.5 887.2 100 981.7 100 873.4 100
0.6 896.0 100 983.1 100 896.1 100
0.7 907.2 100 981.7 100 905.1 100
0.8 918.1 100 984.9 100 918.9 100
0.9 925.1 100 987.4 100 935.5 100

TABLE VIII

VARIATION OF NUMBER OF DIFFERENT SOLUTIONS
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Fig. 2. Average generations of appearing of the first sub-optimal solution

CDRT, the number of clients exceeds 30. The GA, despite a
decreasing efficiency, remains the best solution for that range
of services.

V. CONCLUSION AND FUTURE WORK

This paper presents three algorithms, two exact ones and
an heuristic one. Both of them constitute the cornerstone
of a CDRT solution by solving the problem of scalability.
Moreover these algorithms, which solve various kinds of
the general P&D TSP, provide flexibility to the system.
The implementation provides pragmatic solutions to np-
complete CDRT problem. The efficiency of these algorithms
is obtained thanks to constructed objects (transitive graph),
and computed objects (SST that represent the solutions
integrating the QoS constraints). The total order on the nodes
of a convergent graph implies the efficiency experimentally
observed on an one-step run of the DPA ∞-PD N-TSP, and
the fast convergence of our parameterized SSGA.

According to the graph density and thus to the solving
complexity, we can choose the most appropriate solving
method, so that our system is still able to satisfy the users
requests and the carriers constraints. Our further works will
intend to adapt the system by choosing the appropriate
algorithm solving a CDRT operating in real-time conditions
and assess the corresponding complexity.

Tested experiments lead us to pursue on two ways. First,
DPA and DFA face to the scalability problem. So we are

able to improve these algorithms by integrating heuristics
like capacity or travel times and to develop the flexibility
of our solutions. Second, we can improve the GA for larger
flows and refine the solutions with a new set of constraints.
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