
HAL Id: hal-00372164
https://hal.archives-ouvertes.fr/hal-00372164

Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Oriented Convergent Mutation Operator for Solving
a Scalable Convergent Demand Responsive Transport

Problem
Rémy Chevrier, Philippe Canalda, Pascal Chatonnay, Didier Josselin

To cite this version:
Rémy Chevrier, Philippe Canalda, Pascal Chatonnay, Didier Josselin. An Oriented Convergent Mu-
tation Operator for Solving a Scalable Convergent Demand Responsive Transport Problem. Service
Systems and Service Management, 2006, Troyes, France. pp.959-964. �hal-00372164�

https://hal.archives-ouvertes.fr/hal-00372164
https://hal.archives-ouvertes.fr


An Oriented Convergent Mutation Operator for Solving a Scalable Convergent
Demand Responsive Transport Problem
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ABSTRACT

This paper presents a method for solving the convergence demand responsive transport problem, by using a stochastic
approach based on a steady state genetic algorithm for enumerating a set of optimizing sprawling spanning trees, which
constitute the best solutions to this problem. Specificallydesigned to speed up the convergence to optimal solutions, we
introduce an oriented convergent mutation operator, allowing multi-objective considerations. So this solution laysthe first
stakes for considering real-time solving of such a problem.Led by computer science and geography laboratories, this study
is provided with a set of experimental results evaluating the approach.
Keywords: Demand-Responsive Transport, Genetic Algorithm, Convergent Mutation Operator, Scalability, Real-Time

1. Introduction

The research deals with some arriving transportation
services to be deployed combining regular transportation
lines with Demand Responsive Transport (DRT). Indeed,
the individual mobility demand leads to transport systems
more and more reactive and efficient, tending to real-time
processing. The transport supply must also respond to
accurate customers.
Therefore, it becomes nowadays of primer interest to
address several dimensions of the DRT economical and
social efficiency. This may concern for instance the quality
of service (QoS), the technological requirements due to
pervasive systems, spatial partitioning for routing, flows
management, vehicles and drivers allocation, optimal path
finding, etc. We claim that these dimensions should be
tackled in a global way, a non-efficiency of one of them
restricting a global efficiency.
For instance, various relevant criteria can be raised. Some
are related to geographical organization: territorial areas to
be served, population density, number of mobility requests,
spatial distribution of the clients, penetration rate of the
service, target population. Some depend on the operating
system itself: the stop points location, the access time to
the service, its functioning (regular, demand-responsive,
enabling pick-up and delivery, convergent or not...),
vehicle types and capacities, line frequencies. Others allow
to calculate specific clues, such as economical ratios.
If we focus on the subsequent objectives, we could define
a list of combined tasks : minimizing the distances, costs
and the number of vehicles, optimizing their capacity
and their location on the served territory, optimizing the
line frequencies and driver allocation, maximizing the
QoS (minimizing the lost times, respecting the service
agreements, comfort).
The experiment of our innovating transportation
supply involves Transport Authorities (Communauté
d’Agglomération du Pays de Montbéliard) and private
carriers (Compagnie des Transports de Montbéliard), and
also researchers from several laboratories in Geography

and Computer Science, joined together in the TADvance
pluridisciplinary group. The DRT concepts are developed
within such an operational context. The partners share
a common purpose whose implementation and tests are
foreseen next year.
More precisely, we propose a solution for the Convergent
DRT Problem (CDRTP) which is linked to different
alternatives of the Pick-Up & Delivery N-Traveling
Salesman Problem (P&D N-TSP) and integrable to
assisted booking or operating systems. Actually, the
CDRTP solving is not fast enough, indeed someone has
to book his seat some hours before. So, in order to face
the scalability problem, we propose a solution alternative
to exact methods requiring too big computation times for
a few requests. This stochastic solution is based on a
genetic algorithm, which allows us to consider real-time
CDRTP solving. This paper relates to a part of the
research. We endeavour to show the methodological and
operational relevance of a robust and flexible Convergent
DRT (CDRT). Moreover, by using a genetic algorithm, we
expect to provide a solution for solving a multi-objective
scalable real-time CDRTP. Linked to the problem size
(scalability), the real-time approach has to be considered
with small problems (around 30,40 requests), and in the
cases of larger problems (around 100 requests), a dynamic
approach with the same multi-criteria optimization
replaces the previous one.
In a first section, we present an outline of major related
works to CDRTP, by focusing on exact or approached
solving methods, describing the criteria and objectives to
be taken into account, and enhancing their contributions
and limits. Thereafter we explain the methodology used
and exhibit the data-processing objects useful for the
P&D N-TSP solving. We define and build the graph of
convergence (CG), the associated total order, detail certain
important properties and Sprawling Spanning Trees (SST).
In the following section, we propose a mutation oriented
genetic solution for solving the multi-objective CDRTP.
Then we analyze the experimental projects, conclude and
give a few prospective related works to be developed by
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the TADvance group in order to reduce the complexity of
coming CDRT supply.

2. The Convergent DRT problem

The Convergence Demand Responsive Transport (CDRT)
consists in picking up a group of users, who have requested
a trip and in carrying them to several specific points on
the territory at a given hour. For example, the conference
auditors, once they have arrived in the conference place
could need to be served with a CDRT. Indeed, they all
booked hotels more or less close to the conference place,
and they have to arrive few minutes before the beginning of
the conference. So, considering they first have expressed
their wish, it is possible to calculate the path(s) of one
(or several) vehicle(s), that is convergent to the conference
place and responds to the whole set of requests by grouping
the passengers. The optimization consists in finding the
minimal number of vehicles used and travelled kilometers,
and in the occupation rate of the vehicles.
On a more general point of view, the CDRT is an interesting
way to serve attractive places of interest. It is often used
during the edge times hours (very early or very late in the
day) to complete the regular transport supply or on areas
with a lack of services. The principal constraint is that
users have to book their seat. This allows to process an
asynchronous optimization (cars, drivers and paths) every
day.
To be the less expensive possible and to respond to the
users demand, a CDRT system has to work with fit-to-use
and rigorously built data. The proposed paths have to be
defined in terms of cost, and also service. For example,
clients must not have the impression that they do not
converge to the destination point. In our study, the available
data are: the road network and its use conditions, the set of
transport requests for a given time, the maximal duration
of the route, the maximal delay at the pick-up point, and
the margin of time necessary before the event time (i.e. we
arrive 5 minutes before the conference begins).
Such a problem has indeed multiple aspects. We do
not see here neither the previous stage for designing
the service according to user needs, nor the final step
concerning users management (information delivery and
booking) and service operating (effective implementation
of the paths and associated vehicles). We shall focus
on two methodological aspects. First, the data used by
the optimization algorithm enable to build a point-to-point
matrix of times and distances from a road network, from
which we identify and build a Convergence Graph (CG)
to the convergent point. This CG is directed, acyclic and
transitive. Secondly, we shall exhibit the underlying logical
structure of the generic CDRT problem : the Sprawling
Spanning Trees (SST). From a one-pass run on the graph,
we can demonstrate that all valid solutions are computable
and take the form of SST (cf. [14]).

3. Related work

The CDRT problem is a parent to the np-complete TSP,
for which various solutions exist in accordance to the
use cases. In its simplest configuration the CDRT
problem is also linked to the Vehicle Routing Problem
with Time Windows (VRPTW) [15]. In these two
problems, the vehicles capacity can be taken into account,

but also time windows in specific pick-up points on
the territory. However, it is necessary to consider the
delivery points with associated constraints. Finally, in
a more complex DRT configuration, the problem can be
associated to the Dial A Ride Problem (DARP). We shall
be then interested in a generalization of the TSP, which
corresponds more to the actual DRT set up, carrying clients
to the destination point linked to the regular transport
network. A generalization of this problem is the N-TSP,
that we solved with N vehicles by partitioning, or spanning
a territory into N smaller territories. The exact methods
are not used because of their unsufficient robustness.
Indeed the major drawback remains the scalability. Thus
approximated methods are preferred, like approximation
schemes proposed by Arora [18].
Another variant of the generalized TSP is the Pickup &
Delivery TSP ([17], [3]), where goods and passengers are
picked up and led to precise destinations. For that problem
various forms also exist, to which different approaches are
proposed [13] solving the generalization of this problem:
thek-PDP. Other TSP forms combine the N-TSP to thek-
PDP, for example thek-PD N-TSP [10], which generalizes
the TSP and takes into account the capacityk of one
vehicle. Unfortunately these approaches do not take into
account neither the number N of vehicles, nor any QoS.
Indeed, a more general solution of the DRT problem
requires to consider the human and material resources [12].
Indeed, software solution exist, that must better respond to
constraints imposed by the users requests, and include the
available resources. Some proposals consider hazards (is a
vehicle broken down?) and adapt turns in consequence.
The genetic approaches are preferred to Branch & Bound
approaches when we address the problem of the scalability
or when the knowledge of a problem and its resolutions
are unsatisfactory. With these approaches, multi-objective
evaluation functions could be apprehended. They apply
strategies for solving np-difficult problems [8], especially
those in relation to the transportation. Some works propose
a real-time approach for optimizing vehicles networks
([5],[9]). Crossover and mutation operators reduce the
number of used vehicles, without penalizing clients or
increasing travel times.
About spanning trees, various approaches exist. We can
cite the works of Raidl and Julstrom ([1],[7],[2]), who
use evolutionary algorithms to encode spanning trees in
undirected graph problems.
Our contributions depend on previous works [16], that
describe a CDRT system using the∞-PD TSP withn pick-
up points≤ m deliveries= 1 and solving simultaneously
the N-TSP. The actual operational systems suffer from a
lack of robustness (scalability) and flexibility. Indeed, they
fail in proposing a simultaneous convergence to several
points of a territory, by solving the∞-PD TSP with
n ≥ m ≥ 1 for a single vehicle and always by solving
simultaneously the N-TSP.

4. Data representation

With a Geographical Information System, we build a point-
to-point accessibility graph. By fixing the convergentpoint,
we determine the vector of the departures scheduling for
each graph vertex, and then the directed acyclic graph,
that is the convergence graph (CG). We show then some
properties of the CG.
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4.1. Convergence graph

Let be a section of a road network, we determine the
theorical time necessary to travel it. Theorical Time
per Section (TTS) equals to the length of this section
multiplied by the maximal speed authorized on the section:
TTS = lengthsection × speedmax. We determine next
the ”roughness” (the difficulty to move) of each section. In
a first time, the physical roughness (Rp) due to physical
parameters of the section, like the winding, the gradient,
the quality of surface. Then we compute the roughness of
usage (Ru) due to intensity of section usage in function of
the hours of usage. Hence, we compute the theorical time
of travel (TTT) from one point to another in the graph.
We noteMttp the matrix of theorical times of travel:
Mttp = Mttt + Mrp + Mru, whereMttt: the amount,
along the smallest paths, of the theorical times per section;
Mrp: the amount, along the smallest paths, of the theorical
times due to the physical roughness ;Mru: the amount,
along the smallest paths, of the theorical times due to the
roughness of usage.
The data used to determineMttp, though their good
quality, do not allow to build an exact representation of
the reality. We add a fourth term to the amount building
Mttp. This term, denotedM∆, allows to introduce a
correction reflecting the observed reality. If the three terms
Mttt, Mrp and Mru are positive and represent times,
the last termM∆ could be positive, null or negative in
function of observed gaps:Mttp = Mttt + Mrp +
Mru + M∆, with Mttp the incidence matrix of the point-
to-point accessibility graph (PPAG). In our case, each point
represents a pick-up point and can be reached by any other
point. PPAG is a complete directed graph.
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Fig. 1: Convergence graph and two SST

The CG is transitive. That is, if A and B are connected and,
B and C are connected, so A and C are connected. That
could be shown on the following manner: ifA andB are
connected (HdB−HdA > Mttp(A, B)) andB andC are
connected (HdC − HdB > Mttp(B, C)), by summing
these two expressions we haveHdC − HdB + HdB −
HdA > Mttp(A, B) + Mttp(B, C). But Mttp(A, B) +
Mttp(B, C) is the upper bound ofMttp(A, C). Indeed
it is possible to pass byB to go to C from A, but it is
also possible to find a smaller path. So, we find:HdC −
HdA > Mttp(A, B) + Mttp(B, C) ≥ Mttp(A, C), that
corresponds to the expression ”A is connected to C”. That
proves the transitivity.
The CG is acyclic. An acyclic graph has no path passing
twice a same vertex. So, we must prove, whateverA and
B it exists a path fromA to B, whereas it exists an edge
from A to B. Let us suppose it exists a path fromB to
A and by transitivity it exists an edge fromB to A, so: A
andB are connected:HdB − HdA > Mttp(A, B), and
B andA are connected:HdA − HdB > Mttp(B, A).

By construction, we know allMttp values are positive. So
HdB−HdA > 0 and the opposite valueHdA−HdB < 0.
That refutes that this value is greater than an element of
Mttp, which is greater than 0. So, these two inequalities
cannot be verified simultaneously. Hence the CG is acyclic.

4.2. Total order of the nodes

Besides the adjacencies list, the CG uses the total order of
the nodes. For example, if we initialize a CGG = (E, V )
whereV = c, 2, 3, 4, 5, c the convergence node, andE =
(4, c), (4, 2), (4, 3), (5, c), (5, 2), (5, 3), (2, c), (2, 3), (3, c)
(E is the set of directed edges). The terninating paths set
is empty, and the partial paths set either. The optimization
consists in computing the total order of the vertices, on the
one hand by defining the partial order of dependance and
on the other hand, by refering to the decreasing order of
the TTT to the convergence node. So, to compute the total
order (Ot), we need to:
1. initializeOt = {} andCG = G ;
2. determine the minimal elements of the CG. We sort then
these elements in a decreasing TTT order and we add these
sorted elements toOt(G)+ = Ot(CG) ;
3. computeCG = CG−MinimalElements(CG) ;
4. iterate step 4.2 until the CG is empty.
Finally we getOt(G) = {4, 5, 2, 3, c}.

5. Genetic algorithm

To solve CDRT problem, we propose a solution based on a
genetic algorithm, that allows the evolution of a population
of solutions to optimal solutions. Our algorithm is based on
a steady state genetic algorithm, which creates a population
by cloning the start genome. Each generation, it creates
a temporary population, adds it to the already existing
population, then removes the less interesting individuals
(those whose fitness is the smallest) to get back to the initial
size of population. This algorithm takes in input a graph
described as an adjacencies list.

5.1. Objective definition

Let us define a standard solution and above all, what
is a good solution in our study. First, we will see
the representation we choose and how we initialize the
beginning population. Then we will see the objective
function of our problem.

Chosen representation We define a chromosome
solution as an uni-dimensional array, where each cell
(locus) represents a pick-up point and where the value of
this cell (gene) indicates the number of the vehicle serving
this point. So, the number of genes of the chromosome
corresponds to the number of pick-up points (nbpkp)
minus the convergent point, i.e.nbgenes = nbpkp − 1.
Chromosome presented on table 1 gives a solution of the
picking-up of the CG of figure 1. It corresponds to SST
((0, 3, 7); (1, 4, 6, 7); (2, 5, 7)). Vehicles are indexed from
0 to nbv − 1 wherenbv is the number of required vehicles
to solve the CDRT problem.

pick-up point 0 1 2 3 4 5 6
vehicle number 0 1 2 0 1 2 1

Tab. 1: A chromosome solution of CG of figure 1
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Initialization of the population The number of vehicles
cannot be greater than the number of pick-up points and
there are at least as many vehicles as initial pick-up points:
nbpkp ≥ nbvehicles ≥ nbpkpstart

We randomly initialize 1000 individuals by assigning
a vehicle number among [0,nbpkp]. Thus the start
population has a number of not viable individuals (i.e.
wrong solutions). Then the crossover and the objective
contribute to improve the solutions.
N.B. for each chosen solution, there will be necessarily
a different vehicle for each initial pick-up point (i.e. the
minimal nodes). So, it could appear more interesting
to arrange the table so that minimal nodes are located
”on the left” of the table, according to the total order
of the nodes. That is, each minimal node from 0 tok
is respectively served by a vehicle number from 0 tok:
∀pkpminimali , nvehiclei

= i, i ∈ N

Objective If nodes are correctly arranged, a good solution
consists in checking the chromosome, that responds to the
condition:

∀i, j, i < j, gene(i) = gene(j) (1)

∃(i, j) ∈ E, Hpkpi
+ ti→j ≤ Hpkpj

(2)

(1)⇒ (2) (3)

The fitness of a chromosome increases when it satisfies this
condition. In an underlying manner, this favours solutions,
that require the lesser number of vehicles, that is, a good
solution minimizes the number of PSST. In the contrary,
when a chromosome do not satisfy the objective condition,
its fitness is reduced relatively to the error rate (another
solution consists to give fitness 0).

Crossover operator Given that we have a different
vehicle for each initial pick-up point, all chromosomes start
with the same common subsequenceS. So, to cross two
individuals, it is not necessary to span this subsequence
S. The crossover must happen at least from the first gene
located overS. Let glS be the first gene located over the
common subsequenceS.
Our crossover operator is parent of the PMX operator
proposed by Goldberg [4]. This operator generates two
children from two parents. The crossover is simply [6]
completed by choosing two random cross points and by
swaping sequences of the parents. For example, in the case
of chromosomes P1 end P2 (cf. table 2), we choose a first
random numberk, glS ≤ k ≤ n, corresponding to the
start of the sequence to swap. We choose a second random
numberl, k < l ≤ n. Then we create two children C1
and C2 from parents P1 and P2 by swaping the sequences
(kl)P1 and(kl)P2 (cf. table 3).

0 1 . . . i j k l m n
0 1 . . . i x z w y v

0 1 . . . i j k l m n
0 1 . . . i w v y z x

Tab. 2: Parents chromosomes P1 and P2

6. Mutation operator

Mutation aims at bringing diversity into the current
population. It is a random process realized from geneglS .
So, we assign a random value to a randomly chosen gene,

0 1 . . . i j k l m n
0 1 . . . i x v y y v

0 1 . . . i j k l m n
0 1 . . . i w z w z x

Tab. 3: Children chromosomes C1 and C2

modulo the number of vehicles in chromosomeC, so that
we do not increase the number of required vehicles:

∀gene(i) ≥ glS , gene(i) ≤ gene(|C| − 1), (4)

gene(i)← (gene(i) + valrnd)%nbvch
(5)

Let us apply the mutation to chromosomeI (table 4) ; if
we randomly choose genek, and we add the random value
vrnd = 2 to gene(k), gene(k)← gene(k) + vrnd, we get
gene(k) = z. After having appliedmodulo z, z = nbvI

,
we get (gene(k) ← gene(k)%z) = 0. Although the
SSGA tends the population to converge quickly to one pool
of optimal solutions, the mutation operator increases the
convergence more significantly.
So, with such a mutation mechanism, we always minimize
or stabilize a criteria defined in the objective. Hence
if we consider different objectives, a good solution will
be a compromise of the best solutions, maximizing or
minimizing the criteria at best.

0 1 . . . i j k l m n
0 1 . . . i x x w y v

0 1 . . . i j k l m n
0 1 . . . i x 0 w y v

Tab. 4: Example of mutation of genek of individualI

7. Realizations and experiments

We proceed to the computation of the SST on various CG
with increasing sizes, by using the SSGA described above.
We have programmed this SSGA in C++ on a PC (2.4GHz
with 4GB of memory) running Linux Debian with kernel
2.6. Table 5 presents the obtained computation times and
reveals the interest of the exhaustive method for CDRT
problems of size smaller than 17 pick-up points. Let us note
some elements of thek−PD N−TSP complexity. When
the QoS constraints and the total order of the graph nodes
are not taken into account, the complexity corresponds to
generating all combinations of letters in a set ofn letters
(O(2n−1 × n!)). By bounding the paths computation, we
can limit complexity betweenO(2n) and O(2an), with
a > 1 and n ≥ 5. For example, if we have a CGG
with 7 nodes|G| = 7, the complexity equals to 203. Thus,
for a great number of nodes, we need to use another kind
of algorithms, such as meta-heuristic algorithms and more
especially genetic algorithms. From a size greater than 40
nodes, it is laborious to realize a hand-made test, so we
generate random convergent CG from a 50 nodes size to
1000 nodes size.
The application is programmed with theGenetic Algorithm
library (GAlib) developped by the MIT [11]. We use a
constant crossover ratepcross = 1.0. Each result for one
mutation rate is an average data realized on a 100 processes
serial. This algorithm provides a set of representative
solutions of good quality, in an acceptable computation
time. The convergence speed, with the pertinency of
the operators and an appropriate parameterizing, allows
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to consider real-time applications for a size of problems
closed to several dozens of nodes.

Number of nodes Number of edges CPU time

8 18 4.56
12 41 5.56
13 44 5.82
14 54 6.21
16 73 6.64
23 176 10.74
25 247 11.79
30 391 15.35
40 743 27.65
50 1156 65.88
60 1693 90.71
70 2305 116.94
80 3011 161.06
90 3821 215.83
100 4825 268.98
200 19569 1602.02

Tab. 5: Computation times (seconds) of SST

7.1. Study of variation of mutation rate

We vary the mutation ratepmut from 0.0001 to 0.9 on
a population of 1000 individuals, by solving the CDRT
problem on CG with 20, 30, 40 vertices. In table 6,|S| is
the average number of different solutions andDbs indicates
the average percentage of optimal solutions obtained on
these graphs. Globally, by increasing the mutation rate, we
increase the number of various solutions. From a mutation
rate pmut ≃ 0.1, there is no more significative increase
of the number of distinct solutions. Moreover, the more
important the graph density is, the stronger the mutation
rate must be if we expect a solution as soon as possible.
Indeed, it is only from a mutation rate around 0.1, that
the whole part of solutions are optimal, whereas in the
cases of smaller graphs (20, 30 nodes) the population has
great sets of optimal solutions with weaker mutation rates
(pmut ≤ 0.05).
We converge quickly to SST minimizing the vehicles
number, the travelled distances and the economic cost. The
crossover and mutation operators, and also fitness lead us to
affirm that, from a generation having perhaps only one SST,
this one is sufficient if we hope to generate all solutions
with the same number of vehicles or reducing it. A
mutation rate equals to 1, that favours the representation of
the best solutions in the population lead to the convergence,
speeded up 7 times on examples with 40 nodes. That is
why 6 generations are sufficent for the steady state genetic
algorithm compared to another version of incremental
genetic algorithm. A good parameterizing leading to the

pmut CG20 CG30 CG40

|S| Dbs |S| Dbs |S| Dbs

0.0001 29.0 90 103.3 80 8.9 0
0.0005 43.9 80 144.5 30 72.4 0
0.001 26.0 70 194.5 30 34.3 0
0.005 101.9 100 394.0 70 355.7 0
0.01 165.1 100 696.4 70 586.6 0
0.05 619.8 100 971.4 100 832.7 30
0.1 767.0 90 980.7 90 793.3 80
0.2 852.0 100 981.1 100 848.0 90
0.3 863.4 100 977.1 100 857.5 100
0.4 882.2 100 981.0 100 869.1 100
0.5 887.2 100 981.7 100 873.4 100
0.6 896.0 100 983.1 100 896.1 100
0.7 907.2 100 981.7 100 905.1 100
0.8 918.1 100 984.9 100 918.9 100
0.9 925.1 100 987.4 100 935.5 100

Tab. 6: Variation of number of different solutions

best solutions is still to be identified.
N.B. If we parameterize the algorithm with a null crossover
ratepcross = 0 and we use the mutation only (a strong rate
pmut = 1.0), the population converges quickly toward the
optimal solutions pool. Here, the mutation is sufficient to
evolve the population.
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Fig. 2: Number of different solutions in varying mutation
rate on CG with{20,30,40} nodes

7.2. Study of convergence speed

We are now interested in the convergence speed and we
want to know from which generation the first optimal
solution appears. Generally, the more the mutation rate
increases, the faster we have an optimal solution (cf.
figure 3). The first optimal solution appearing is to
correlate with the number of nodes and the edges density.
Thus, for small dimensions problems like graphs with 20,
25 nodes we get an optimal solution very quickly (before
around 30 generations in average) for a mutation rate
pmut < 0.05. But, as soon as we increase a little bit
the nodes and edges density (30 nodes), the first optimal
solution appears very later for a similar mutation rate
(around 600 generations). In the case of the 30 nodes
graph, it requires a mutation ratepmut ≥ 0.05 to find an
optimal solution before 200 generations! The algorithm
may find an optimal solution to the 30 nodes graph problem
in around 30 generations with a stronger mutation rate only
(pmut ≥ 0.3).
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Fig. 3: Average generations of appearing of the first
optimal solution

7.3. Convergence to local pools

As DeJong explained in his first works (cf. [4]),using
a steady state algorithm tends to gather the solutions
to a localized pool among the optimal solutions pools,
according to a random factor. By defining more heuristics,
we reduce the set of optimal solutions, but also the number
of optimal solutions pools. Although the following CG is
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unrealistic of a CDRT problem, we consider it with and
without constraints (travel times or distances) on edges to
illustrate this particular point:

without constraints with constraints
0: 2 3 4 5 6 7 8 9 0: 2/2 3/3 4/4 5/3 6/5 7/6 8/7 9/8
1: 3 4 5 6 7 8 9 1: 3/2 4/1 5/3 6/3 7/7 8/7 9/8
2: 5 7 8 9 2: 5/1 7/4 8/4 9/6
3: 5 6 7 8 9 3: 5/1 6/2 7/5 8/4 9/5
4: 6 8 9 4: 6/2 8/3 9/6
5: 7 8 9 5: 7/4 8/3 9/4
6: 8 9 6: 8/1 9/4
7: 9 7: 9/2
8: 9 8: 9/2
9 9

If we do not consider edges values, we have three pools of
solutions, as follows:
1. ((0,3,5,7,9);(1,4,6,8,9);(2,9)), ((0,3,5,8,9);(1,4,6,9);(2,7,9)), ((0,3,5,9);-

(1,4,6,8,9);(2,7,9)), ((0,3,6,9);(1,4,8,9);(2,5,7,9)), ((0,3,7,9);(1,4,6,8,9);(2,5,9)),

((0,3,7,9);(1,4,6,9);(2,5,8,9)), ((0,3,8,9);(1,4,6,9);(2,5,7,9)), ((0,3,9);(1,4,6,8,9);-

(2,5,7,9))

2. ((0,2,5,7,9);(1,4,6,8,9);(3,9)), ((0,2,5,7,9);(1,4,6,9);(3,8,9)), ((0,2,5,7,9);-

(1,4,8,9);(3,6,9)), ((0,2,5,7,9);(1,4,9);(3,6,8,9)),((0,2,5,8,9);(1,4,6,9);(3,7,9)),

((0,2,5,9);(1,4,6,8,9);(3,7,9)), ((0,2,7,9);(1,4,6,8,9);(3,5,9)), ((0,2,7,9);(1,4,6,9);-

(3,5,8,9)), ((0,2,8,9);(1,4,6,9);(3,5,7,9)), ((0,2,9);(1,4,6,8,9);(3,5,7,9))

3. ((0,2,5,7,9);(1,3,6,8,9);(4,9)), ((0,2,5,7,9);(1,3,6,9);(4,8,9)), ((0,2,5,7,9);-

(1,3,8,9);(4,6,9)), ((0,2,5,7,9);(1,3,9);(4,6,8,9)),((0,2,5,8,9);(1,3,7,9);(4,6,9)),

((0,2,5,9);(1,3,7,9);(4,6,8,9)), ((0,2,7,9);(1,3,5,8,9);(4,6,9)), ((0,2,7,9);(1,3,5,9);-

(4,6,8,9)), ((0,2,9);(1,3,5,7,9);(4,6,8,9))

For this CG, the thousand of solutions will be grouped on
one of these set of solutions, which could appear during an
evolution. However, if we add a new heuristic consisting
in minimizing the amount of the edges values of one SST,
we have only one pool of optimal solutions (smaller than
previous pools in term of solutions count):
((0,2,5,7,9);(1,4,6,8,9);(3,9)), ((0,2,7,9);(1,4,6,8,9);(3,5,9)), ((0,2,9);(1,4,6,8,9);-

(3,5,7,9))

8. Conclusion and future work

This paper presents a mutation oriented genetic algorithm
designed for solving the CDRTP. This algorithm aims at
providing pragmatic solutions and flexibility to the system.
Laying on methodically built objects (transitive graph,
SST), the genetic algorithm takes the QoS constraints
into account, and foresees also the implementation of the
different criteria in a multi-objective approach.
The convergent mutation operator allows to balance
solutions for serving at best the requests, according to
different heuristics to take into account.
The tested experiments and results lead us to pursue our
work by integrating new heuristics like capacity or time
windows, and hence by continuing to develop a multi-
objective approach. We want also to give the system more
flexibility and to improve the algorithm to process greater
floods, but always by willing to keep the real-time solving
of the problem.
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en convergence. InIEEE International Conference on
Sciences of Electronic, Technologies of Information
and Telecommunication, SETIT, pages 146–154,
2004.

[17] J. Renaud, F. F. Boctor, and J. Ouenniche. A heuristic
for the pickup and delivery traveling salesman
problem.Comput. Oper. Res., 27(9):905–916, 2000.

[18] S. Arora. Polynomial time approximation schemes
for Euclidean traveling salesman and other geometric
problems.Journal of the ACM, 45(5):753–782, 1998.

ha
l-0

03
72

16
4,

 v
er

si
on

 1
 - 

31
 M

ar
 2

00
9


