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Treewidth and pathwidth have been introduced by Robertson and Seymour
as part of the graph minor project. Those parameters are very important since
many problems can be solved in polynomial time for graphs with bounded
treewidth or pathwidth. By definition, the treewidth of a tree is one, but its
pathwidth might be up to log n. A linear time centralized algorithms to com-
pute the pathwidth of a tree has been proposed in [1], but so far no dynamic
algorithm exists.

The algorithmic counter part of the notion of pathwidth is the cops and
robber game or node graph searching problem [2]. It consists in finding an
invisible and fast fugitive in a graph using the smallest set of agents. A search
strategy in a graph G can be defined as a serie of the following actions: (i) put
an agent on a node, and (ii) remove an agent from a node if all its neighbors are
either cleared or occupied by an agent. The node is now cleared. The fugitive
is caught when all nodes are cleared. The minimum number of agents needed
to clear the graph is the node search number (ns), and gives the pathwidth
(pw) [3]. More precisely, it has been proved that ns(G) = pw(G) + 1 [4].

Other graph invariants closely related to the notion of pathwidth have been
proposed (see [5] for a recent survey) such as the process number (pn) [6] and
the edge search number (es), but so far it is not known if those parameters are
strictly equivalent to pathwidth. However, we know that pw(G) ≤ pn(G) ≤
pw(G) + 1 [6] and pw(G) ≤ es(G) ≤ pw(G) + 2 [2]. A process strategy can
be defined similary to a search strategy with the extra rule that the fugitive
is forced to move at each round. Therefore, a node is also cleared when all
its neighbors are occupied by an agent (the node is surrounded). For examples,
pn(Kn) = n−1 = ns(Kn)−1, where Kn is a n-clique, and pn(Ck) = ns(Ck) = 3,
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where Ck is a cycle of length k ≥ 5. The process number is the minimum number
of agents needed.

Here we propose a distributed algorithm to compute those parameters on
trees and to update them in a forest after the addition or deletion of any edge
[7]. Only initial conditions differ from one parameter to another. It is fully
distributed, can be executed in an asynchronous environment and needs the
transmission of only a small amount of information. It uses Theorem 1 which
is also true for other parameters [6] and enforces each parameter to grow by 1,
thus implying that for any tree ns(T ), es(T ), pw(T ), and pn(T ) are less than
log

3
(n).

Theorem 1 ([8]) Let Gi, i = 1, 2, 3 be such that ns(Gi) = k > 1. The graph
G obtained by connecting each of the Gi’s to a new node v is such that ns(G) =
k + 1.

The principle of our algorithm, algoHD, is to perform a hierarchical decom-
position of the tree. Each node collects a compact view of the subtree rooted at
each of its soons, computes a compact view of the subtree it forms and sends it
to its father, thus constructing a the hierarchical decomposition. A similar idea
was used in [4] to design an algorithm computing the node search number in
linear time. However their algorithm is centralized and its distributed version
will transmit log log n times more bits than ours. So we obtained,

Lemma 1 Given a n nodes tree T , algoHD computes pn(T ), ns(T ) or es(T ),
in n steps, overall O(n log n) operations, and n − 1 messages of log

3
n + 2 bits.

We have extended our algorithm to a fully dynamic algorithm, IncHD, allow-
ing to add or remove any edge. Each update can be performed in O(D) steps,
each of time complexity O(log n), and using O(D) messages of log

3
n + 3 bits,

where D is the diameter of the tree. We have also extended our algorithms to
trees and forests of unknown sizes by using messages of size 2L(t)+4+ε, where
ε = 1 for IncHD, and L(t) ≤ pn(T ) ≤ log

3
n is the minimum number of bits

required to encode the local view of a subtree.
Finally, we have characterized the trees for which the process number (resp.

edge search number) equals the node search number and so the pathwidth.

Lemma 2 Given a tree T , pn(T ) = pw(T ) + 1 = p + 1 (resp. pn(T ) = es(T ) +
1 = p+1) iff there is a node v such that any components of T−{v} has pathwidth
at most p and there is at least three components with process number (resp. edge
search number) p of which at most two have pathwidth p.

A challenging task is now to give such characterisations for more general
classes of graphs, as well as distributed and dynamic algorithms.
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