
HAL Id: inria-00374834
https://hal.inria.fr/inria-00374834

Submitted on 9 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfaction-based Query Load Balancing
Jorge-Arnulfo Quiane-Ruiz, Philippe Lamarre, Patrick Valduriez

To cite this version:
Jorge-Arnulfo Quiane-Ruiz, Philippe Lamarre, Patrick Valduriez. Satisfaction-based Query Load Bal-
ancing. Cooperative Information Systems (CoopIS), Aug 2006, Montpellier, France. �inria-00374834�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50180012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00374834
https://hal.archives-ouvertes.fr

Satisfaction-Based Query Load Balancing

Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, and Patrick Valduriez

INRIA and LINA
Université de Nantes

2 rue de la houssinière, 44322 Nantes Cedex 3, France
{Jorge.Quiane,Philippe.Lamarre}@univ-nantes.fr,Patrick.Valduriez@inria.fr

Abstract. We consider the query allocation problem in open and large
distributed information systems. Provider sources are heterogeneous, au-
tonomous, and have finite capacity to perform queries. A main objective
in query allocation is to obtain good response time. Most of the work to-
wards this objective has dealt with finding the most efficient providers.
But little attention has been paid to satisfy the providers interest in
performing certain queries. In this paper, we address both sides of the
problem. We propose a query allocation approach which allows providers
to express their intention to perform queries based on their preference
and satisfaction. We compare our approach to both query load balancing
and economic approaches. The experimentation results show that our ap-
proach yields high efficiency while supporting the providers’ preferences
in adequacy with the query load. Also, we show that our approach guar-
antees interesting queries to providers even under low arrival query rates.
In the context of open distributed systems, our approach outperforms
traditional query load balancing approaches as it encourages providers
to stay in the system, thus preserving the full system capacity.

1 Introduction

We consider dynamic distributed systems, providing access to large number
heterogeneous, autonomous information sources. We assume that information
sources play basically two roles: consumers that generate requests1, and providers
which perform requests and generate informational answers.

Providers can be heterogeneous in terms of capacity, competence and data.
Heterogeneous capacity means that some providers are more powerful than oth-
ers and can treat more requests per unit time. Heterogeneous competence means
that some providers may treat some query types that others cannot, and vice
versa. Data heterogeneity means that requests are performed differently by dif-
ferent providers, i.e. the same request performed by different providers may
return different results. We also consider that requests are heterogeneous, i.e.,
some requests consume more providers’ resources than others.

Providers, on the other hand, are autonomous over their resources and data
management. Thus, they can express their preferences to perform queries through

1 We will indifferently use the terms request and query throughout this paper.

an intention value. Such preferences may represent, for example, their strate-
gies, their topics of interest, the response time, or the combination of two or all
of them. The providers’ intentions might be the result of merging the prefer-
ences with others factors, such as the query load or reputation/quality of the
consumers.

Providers’ preferences are rather static (i.e. long term) and do not change
much while their intentions are more dynamic (i.e. short-term). For example, a
given provider may prefer some request, but at some time, for some reason (e.g.
over- utilized) does not intend to perform it. In other words, preferences only
depend on requests while intentions take into account the context and load.

One of the problems that has been thoroughly investigated in the area of
query allocation is query load balancing (QLB). The main objective of QLB is
to maximize overall system performance (throughput and response times) by
balancing the query load among providers. However, even if performance is very
good, providers may be not satisfied with the system and may leave it. Thus,
the system should fulfill providers’ expectations in order to preserve full system
capacity.

This problem is quite important in open information systems where providers
can leave the system at will. When a provider is no longer satisfied with the
system, the only way to express unsatisfaction it is to leave. In order to achieve
stability, our goal is to maximize performance while ensuring over time that
providers are satisfied enough to stay in the system.

In this paper, to address this problem, we propose a QLB approach which
allows providers to express their intention and takes care of their satisfaction.
We also develop a model that allows providers to know whether the system is
fulfilling their expectations. We provide an experimental validation which com-
pares our approach with both query load balancing and economic approaches.
The experimental results show that our approach yields high efficiency while
supporting the providers’ preferences in adequacy with the query load.

The rest of the paper is organized as follows. Section 2 gives a motivating sce-
nario. Section 3 defines precisely the problem we address. Section 4 presents our
QLB approach. Section 5 defines the metrics used for validating our approach.
Section 6 presents our experimental validation. Section 7 discusses related work.
Finally, Section 8 concludes.

2 Motivating Scenario

We illustrate the problem we consider in this paper by means of a pharmaceutical
application example. Consider a large distributed information system gathering
thousands of pharmaceutical companies with the goal of selling their products.

By promotions or simply strategies, providers2 may have more interest in
selling some specific products than others. Thus, each provider stores locally
its preferences for performing requests and may change them at will. In fact,

2 Which represent pharmaceutical companies

Table 1. Providers set that are able to deal with the request.

Providers Utilization Preference

p1 0.15 No
p2 0.43 No
p3 0.78 Yes
p4 0.85 No
p5 1.1 Yes

any system with competitive companies meets this schema. Now, consider a
simple scenario where a given consumer requests the system for a given product,
specifying some specific parameters, such as the product’s name and product’s
presentation. Suppose that in order to obtain a good tradeoff between product’s
price and quality, the consumer asks for two results.

First, the system needs to identify the providers that are capable to deal with
the request. This can be done using a matchmaking technique (for example [18]).
Second, the system must obtain their availability and preferences for dealing with
such a request. This can be done following the architecture in [8] for example.

Assume, then, that the resulting list contains 5 providers with their utiliza-
tion and preferences (see Table 1). Assume that the respective pharmaceutical
companies (column 1) of this list in ascending utilization order (column 2) are:
p1, p2, p3, p4, and p5. Assume that p1, p2, and p4 are not interested on serving
the request (column 3) for their own reasons.

In this case, the system needs to allocate the request to the two most ca-
pable providers, such that the providers’ preference is respected. Current QLB
approaches3 would fail in such a scenario since neither p1 nor p2 want to deal
with the request. The only two options that satisfy the providers’ preference are
p3 and p5, but allocating the query to them may hurt response time.

This example illustrates the conflict between providers’ preference and uti-
lization in query allocation. However, considering allocation alone is not very
meaningful. What is more important is that a given provider may be globally
satisfied with the allocation process, even though it is sometimes overloaded or
does not get queries it wants. This can be checked by making regular assessment
over some k last queries. The entire treatment of this scenario encompasses dif-
ferent aspects. First, query planning processes may be required. This problem is
addressed in different ways in the literature [13]. We do not consider it in this
paper, and we can indifferently assume that it is done by the consumer or any
other site. Second, the system must support matchmaking techniques in order
to find the relevant providers for performing requests. Such matchmaking tech-
niques have been proposed by several groups [9, 12, 18]. So, we simply assume
there exists one in our system. In addition, we do not consider either the way
in which providers obtain their preferences values since it is out of the scope of
this paper and orthogonal to the query allocation problem.

3 Whose aim is to allocate queries to the less utilized providers.

3 Satisfactory Query Load Balancing Problem

In this section, we make precise the problem we consider. The system consists
of a set of consumers C and of a set of providers P which can join and leave
the system at will. It is possible to have C ∩ P 6= Ø. Consumers issue queries
in a tuple format q = < c, t, d, n > such that, q.c ∈ C is the identifier of the
consumer that has issued the query, q.t ∈ T is the query type and T the set of
query types that the system can support, q.d is the description of the task to be
realized, and q.n ∈ N

∗ is the number of providers to which the consumer wishes
to allocate its query.

Definition 1. Feasible Query

Let Tp ⊆ T be the query types that the provider p ∈ P can treat. Given a query q
with q.t ∈ T , issued by the consumer q.c ∈ C, let Pq denote the set of providers
which can deal with q, where Pq = {p : (p ∈ P \{q.c}) ∧ (q.t ∈ Tp)}. Then, a
query q is said to be feasible if and only if Pq 6=Ø.

We only consider the arrival feasible queries which are defined in Definition 1.
Each feasible query q has a cost , costp(q) > 0, that represents the treatment
units that q consumes at p. Query allocation of some feasible query q among the
providers which are able to deal with q is defined as a vector (see Definition 2).

Definition 2. Query Allocation

Allocation of query q amongst the providers in Pq is a vector4 All−→oc of length
||Pq|| such that: ∀p ∈ Pq,

All−→oc [p]=
1 if provider p gets the query
0 otherwise

with
∑

p∈Pq
All−→oc [p] ≤ q.n

In the following, the set of provider such that All−→oc [p] = 1 will also be

noted P̂q. Each provider p ∈ P has a finite capacity5, capp > 0, for performing
feasible queries. We then define the provider’s utilization as in Definition 3.

Definition 3. Provider Utilization
Ut(p) denotes the utilization of a given provider p ∈ P at time t, which is the
capacity portion utilized by the queries that p is treating

Ut(p) =

X

q∈Qp

costp(q)

capp

where Qp denotes the set of queries that have been allocated to p but have not
already been treated at time t (i.e. the pending queries).

4 All−→ocq when there is an ambiguity on q.
5 Capacity means the number of treatment units that a provider can have per time

unit.

Providers are free to express their intention for performing each arrival fea-
sible query q, denoted by Ip(q), where q.t ∈ Tp, Ip(q) ∈] − ∞, 1]. Expressing
intention may be the result of merging, for example, their preferences, strategies,
and utilization. If the intention value is positive, the greater it is, the greater the
desire for performing queries. If the intention value is negative, the smaller it is,
the greater the refusal for performing queries. Providers’ refusal can go down to
−∞ because their utilization can grow up, theoretically, to +∞.

The overall aim of the system is to allocate each feasible query q of a set of
arrival feasible queries Q to providers in Pq by taking into account the providers’
utilization, preferences, and satisfaction.

4 Satisfaction-Based Query Allocation

In this section, we present our query allocation approach based on satisfaction,
called Satisfaction-based Query Load Balancing SbQLB. We first present the
providers characteristics on which SbQLB is based and then present the SbQLB
approach.

4.1 Providers Characterization

In this section, we present what the providers can perceive from the system. We
focus on three principal characteristics: the satisfaction with the system (Sat-
isfaction), their adequation to the system (Adequation), and their satisfaction
with the query allocation method (Allocation Satisfaction).

Let us first introduce some notations to describe how a provider can perceive

the system. We assume that each provider maintains a vector
−−→
PP k

p of its k
last preferences for performing the queries that have been proposed to it by
the system6. This set of proposed queries is noted PQk

p. By convention, ∀q ∈

PQk
p,

−−→
PP k

p[q] ∈ [−1..1]. Finally, SQk
p denotes the set of queries that have been

served by p among PQk
p (SQk

p ⊂ PQk
p).

Satisfaction This notion denotes the satisfaction degree that the providers
have from their obtained queries. That is, if they serve queries that they want
in general. Providers obtain their satisfaction only from queries that they treat,
which allows them to know if they are accomplishing their objectives in the
system. We define the provider satisfaction as the average of the preferences
that a provider p ∈ P had to their received queries among the k last incoming
feasible queries. In other words,

δs(p) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

X

q∈SQk
p

−→
PP

k
p[q]

2||SQk
p||

+ 1
2

if ||SQk
p|| > 0

0 otherwise

(1)

6 Note that k may be different for each provider depending on it’s storage capacity,
or strategy. For the sake of simplicity, we have assumed here that they all use the
same k.

Adequation The Adequation characteristic denotes the adequation degree of a
provider to the system. It is based on the preferences that the provider had to-
wards all the feasible queries proposed by the system. In other words, a provider
is adequate to the system whether it receives interesting queries from the system.
This notion can only be used by providers in those information systems where
they can see feasible queries to pass even if they do not finally serve them. This
is the case of our utilized system architecture [8]. We define the adequation of a
given provider p as the average of its k last preferences for performing queries,

δa(p) =

X

q∈PQk
p

−→
PP

k
p[q]

2k
+

1

2
(2)

Allocation Satisfaction The allocation satisfaction denotes the satisfaction
degree that a provider has from the query allocation method. It allows a provider
to know if the allocation method is doing a good job for it. That is, if the
system tries to give them, in average, interesting feasible queries. We, thus,
define the allocation satisfaction of a given provider p, δas(p), as the quotient of
its satisfaction divided by its adequation,

δas(p) =
δs(p)

δa(p)
(3)

Thus, the greater the provider satisfaction value with respect to the provider
adequation value is, the more satisfied the provider is from the mediation pro-
cess.

4.2 Satisfaction-Based Query Load Balancing

This section details the SbQLB approach itself for allocating a query q to the
q.n providers based on the providers’ satisfaction. We focus on the case where
requests can be viewed as single units of work called tasks. Requests arrive to the
system to be allocated to n providers. We assume that a previous matchmaking
step has found the set of providers Pq to deal with an incoming query.

Algorithm 1 shows the main steps of the SbQLB approach for selecting the
providers that will treat the queries. These steps are detailed below.

Given an incoming feasible query q and the providers’ set Pq, as a first step,
the SbQLB asks to each p ∈ Pq for its intention7 to deal with q and build a vector
−→
I q containing such intentions values. The way in which providers work out
their intentions is defined in Definition 4 and such details are considered private
information. This way allows providers to base their intentions principally on
their preferences when are not satisfied and on their utilization conversely.

7 Notice that, considering our system architecture, this operation is realized in local
which considerably reduce the network traffic

-2.5
-2
-1.5
-1
-0.5
 0
 0.5
 1

In
te

nt
io

n

-1
-0.5

 0
 0.5

 1

Preference

 0
 0.5

 1
 1.5

 2
Utilization

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

(a) for a provider’s satisfaction of 0.5

-2.5
-2
-1.5
-1
-0.5
 0
 0.5
 1

In
te

nt
io

n

-1
-0.5

 0
 0.5

 1

Preference

 0
 0.5

 1
 1.5

 2
Utilization

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

(b) for a provider’s satisfaction of 0

Fig. 1. Tradeoff between preference and utilization for getting intention.

Definition 4. Providers’ Intention
Given a query q the intention of a provider p ∈ Pq to deal with it is defined as
follows,

Ip(q) =

˛

˛

˛

˛

(pref1−δs(p))(1− Ut(p))δs(p) if(pref >= 0) ∧ (Ut(p) <= 1)

−(((1− pref) + ǫ)1−δs(p)(Ut(p) + ǫ)δs(p)) otherwise

with ǫ = 0.1 and pref denotes the p’s preference for dealing with q.

As second step, the SbQLB approach computes the providers’ ranking
−→
R q

based on their shown intentions. Such a ranking is introduced for an easiest use

of the
−→
I q vector and to enable the selection of the q.n providers to deal with

q. Intuitively,
−→
R q[1] is the most interested provider to deal with q,

−→
R q[2] the

second, and so on up to
−→
R q[N] which is the least.

As a result, the SbQLB returns the q.n best ranked providers in the
−→
I q vector

if q.n <= ||Pq||, else it returns the ||Pq || providers. Note that the providers’
intention is the criterion by which SbQLB chooses the providers.

As illustrated by Figures 1, providers will show positive intention for dealing
with queries only when their preferences and utilization are between 0 and 1.
This means, that SbQLB strives to allocate queries to those providers that desire
to perform them and that are not overutilized. This enables providers to preserve
their preferences while good response times are also ensured to consumers.

On the one hand, we observe that when providers are satisfied of 0.5 (see
Figure 1(a)) the providers’ preferences and utilization have the same impor-
tance for providers in the obtention of their intentions. On the other hand, when
providers are not satisfied at all (see Figure 1(b)) the providers’ utilization has
not importance for providers and are their preferences that define their inten-
tions. Conversely, when providers are completely satisfied the utilization defines
their intentions.

Algorithm 1 providersSelection(q, k, Pq)
1: begin

2: foreach p in Pq do

3: ask for the provider’s intention Ip(q)

4: put the Ip(q) value into
−→
I q

5: done

6: compute the providers’ intention vector ranking
−→
R q

7: providersSelection ←
−→
I q [
−→
R q[1..min(n, N)]]

8: end

5 Metrics

We now propose a solution to analyze the QLB approaches against the Satisfac-
tory QLB problem. To do so, we use two metrics, one for evaluating the ensured
satisfaction-balance in the system and the other one for evaluating the ensured
query-balance.

5.1 Satisfaction Balance Metrics

We define the dissatisfaction ratio as the ratio between the most and the least
satisfied providers in the system. Since we look for providers’ satisfaction, we
will use the satisfaction term instead the dissatisfaction one. Obviously, the
satisfaction ratio is defined as the dissatisfaction ratio’s inverse.

Before going further, let us say that we have had to define how providers
are satisfied by the system, δs(p) (see Equation 1). The following can also be
developed for the adequation and allocation satisfaction functions (Equations 2
and 3), but for space reasons we just develop it for the satisfaction function.

A distributed information system ensures a provider satisfaction-balance ra-
tio, α, if after each query allocation,

min
p∈P

`

δs(p)
´

+ cs ≥ α
“

max
p∈P

`

δs(p)
´

+ cs

”

for some fixed constant8 cs and where α denotes the desired satisfaction-balance
ratio in the system. Having said this, we measure the satisfaction-balance at a
given time t as follows,

γ =

min
p∈Px

`

δs(p)
´

+ cs

max
p∈Px

`

δs(p)
´

+ cs

γ denotes the factor under which the system is said to be satisfaction-balanced
at a given time t.

8 Which is set to the minimal satisfaction value that a provider could have with a
query, 0.001 for example.

5.2 Query Balance Metrics

As is conventional, we define the imbalance ratio at a given time t as the ratio
between the most and the least utilized provider in the system at that time. For
better representation and explanation of this property, we use the term balance
instead of imbalance, which is defined as the imbalance ratio’s inverse,

min
p∈P

`

Ut(p)
´

+ cu ≥ σ
“

max
p∈P

`

Ut(p)
´

+ cu

”

for some fixed constant9 cu and where σ denotes the desired query-balance ratio
in the system. In order to measure the query-balance λ in the system, we first
must measure the providers’ utilization in the system, as in Definition 3, and
then, we proceed to measure λ as follows,

λ =

min
p∈Px

`

Ut(p)
´

+ cu

max
p∈Px

`

Ut(p)
´

+ cu

We believe that it is quite important that the system also be able to balance
all the incoming feasible queries among the relevant providers in average. That
is, it must strive to give queries to all the providers in the system if possible,
in order to avoid having providers leave the system becuase of starvation and
unsatisfaction. This is why we introduce the average query-balance, λ′, metric.
We do not need to define this metric since it is symmetrical to the query-balance
metric. We only define what an average provider utilization means in a discrete
time interval.

Definition 5. Provider Average Utilization
U[t1, t2](p) is defined to be the average of the p’s utilization (with p ∈ P) at the
time interval [t1, t2],

U[t1, t2](p) =

X

ti∈[t1..t2]

Uti
(p)

(t2 − t1) + 1

6 Experimental Validation

In this section, we present our experimental evaluation and discuss the results.
We have simulated a mono-mediator distributed information system with het-
erogeneous and autonomous provider sources and carried out a series of tests
with the objective of assessing how well the SbQLB approach operates in au-
tonomous environments. We first describe the Capacity Based and Economic
approaches against which we compare the SbQLB algorithm. Next, we describe
the simulation setup.

We have conducted three types of evaluations. In the first series of evalu-
ations, we analyze and compare the performance of SbQLB against Capacity

9 Which is set to the minimal utilization value that a provider may have with a query,
0.001 for example.

Based and Economic approaches in considering the unsatisfaction departures of
providers. The second series focuses on providers’ utilization. More precisely, we
measure the QLB achieved by current QLB approaches. We also study, in these
experiments, if such approaches really strive to give requests to all providers in
the system, i.e. we measure how well they realize the QLB in average. Finally,
the third series of tests focuses on the providers’ satisfactions. We study, here,
how well SbQLB and current QLB approaches satisfy the providers, and how
well they do it with different query rates.

6.1 Baseline QLB Approaches

Capacity Based In distributed information systems, there are two well known
approaches to balance requests across providers: the load based and capacity
based. We discard the load based [1, 6] approach since, unlike capacity based,
they inherently assume that providers and requests are homogeneous.

In the capacity based [11, 16, 19] approach, one common way to allocate
queries is choosing the providers that have more available capacities amongst
the providers’ set that can deal with them. In other words, it sends queries to
those relevant providers that are the less utilized. This criterion is defined below.

criterion : 1/(1 + Ut(p))

Another way is to discard those providers that are overutilized or fail a
constant utilization threshold, and then balance queries among the remaining
ones. However, in practice is not easy to set the utilization threshold. By this
fact, we analyze in our experiments the first way for allocating queries.

Economic Economical models have been introduced in distributed systems with
the goal of decreasing the data management complexity by decentralizing the
resources’ access and the allocation mechanisms [4, 5, 2, 17]. We implemented an
not pure economical10 QLB approach based on the Sealed Bid Auction, where
providers pay for acquiring requests. The criterion to select providers is in con-
sidering the providers’ available capacity and not just the providers’ bid. That
is, the highest below criterion for a provider is given access to the request.

criterion : bid × (1/(1 + Ut(p)))

In economical approaches the bid is set using a bulletin board containing the
preference for bidding which, conversely to our preference notion (see Section
4.1), inherently limits the provider’s preference to the queries’ type.

Moreover, let us say that for our experiment simulations, we use virtual
money which is just seen as a means of regulation. In the course of the time the
money is spent by providers in order to acquire requests. The process itself does
not provide them anyway to earn money. Nevertheless, a source of financing is
necessary to them, because otherwise, after some time, providers would not have

10 Since not only the bids are considered to select providers

Table 2. Simulation parameters.

Parameter Definition Value

nbConsumers Number of consumers 200
nbProviders Number of providers 400
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial providers’ satisfaction 0
qTypes Supported query types 10
nbSimulations Number of realized simulations for each experience test 10

more credit to bid positively. Different solutions are possible. We have chosen
to associate a bank with the mediator (if there were several mediators, there
would be as many banks as mediators). The mediator’s bank gives an specific
amount of money to providers at the registration step and in the course of the
time it equally redistributes the money which it gained to the providers after
some given time.

6.2 Setup

In all experiments, the number of consumers and providers is 200 and 400 re-
spectively, with only one mediator allocating all the incoming feasible queries11.
Feasible queries arrive to the system in a Poisson distribution, which has been
found in dynamic autonomous environments [10]. Consumers always ask for 1
provider to solve their requests (i.e. q.n = 1). Providers are initialized with a
satisfaction value of 0, and a satisfaction size12 of 500. Since our principal focus
in this paper is to study the way in which requests are allocated in the system,
we do not take into account the bandwidth problem and consider it as a future
work.

We set the providers’ capacity heterogeneity, in our experiments, in accor-
dance to the results in [15]. This work measures the nodes capacities in the
Napster and Gnutella systems which are a clear example of large distributed
systems. Based on these results, we generate around 10% of low-capable, 60% of
medium-capable, and 30% of high-capable providers. The high-capable providers
are 3 times more capable than medium-capable providers and still 7 times more
capable than low-capable ones. We generate 10 types of requests which can be
of two classes that consume, respectively, 130 and 150 treatment units at the
high-capable providers13.

For the experiments, in order to simulate high autonomy, providers’ pref-
erences are randomly obtained between −1 and 1, where 1 means the greatest

11 We assigned sufficient resources to the mediator so that it does not cause bottlenecks
in the system.

12 Which denotes the k last arrival feasible queries.
13 Such a treatment takes almost 1.3 and 1.5 seconds, respectively.

interest and −1 the greatest refusal. More sophisticated mechanisms for obtain-
ing such preferences can be applied ([14] for example).

6.3 Performance Results

We now investigate the impact on performance of the Capacity Based, Economic,
and SbQLB approaches against the providers’ departures by unsatisfaction. To
this end, we have to set the unsatisfaction threshold in which providers decide
to leave the system whether they fail it. In our experiments, providers decide to
leave the system if they receive more than the 50% of uninteresting queries.

We evaluate response times14 with different request arrival rates in order to
study the possible impact that the unsatisfaction departures could have. Also,
we measured the number of uninteresting queries allocated by all these three
approaches. Results are shown in Figure 2. We observe that SbQLB and the
Economic approaches allocate only interesting queries to providers, while the
Capacity Based approach allocates in average a 50% of uninteresting queries!

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100

%
 o

f u
ni

nt
er

es
tin

g
qu

er
ie

s

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

Fig. 2. Uninteresting received queries.

Now, in order to see the impact of provider departures, we show in Figure 3(a)
the ensured response times when providers are not allowed to leave the system
by unsatisfaction (i.e. with the full system capacity).

In Figure 3(b) the same parameters are drawn when providers are authorized
to quite the system by unsatisfaction. As expected, the Capacity Based approach
suffers significantly from unsatisfaction departures. We can observe that, in such
a case, the Capacity Based degrades in average the response times by a factor
of 4.5! This is because even if it gives requests to all providers, it usually gives
them uninteresting ones. On the other hand, since the SbQLB and Economic
approaches strive to give interesting requests to providers, they deals better with
this problem in preserving their full system capacity.

The choice of an unsatisfaction threshold under which the providers would
leave the system is very subjective and may depend on several external factors.

14 As is conventional, the response time is defined as the elapsed time from the time
that a query q is issued to the time that q.c receives the response.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

(a) when providers do not leave the system
by unsatisfaction

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

(b) when providers leave the system by un-
satisfaction

Fig. 3. Response times.

As shown previously, it has a deep impact on response time, but also on adequa-
tion and satisfaction of remaining providers. By this fact, to avoid any suspicion
on the choice of the unsatisfaction threshold, in the following experiments, we
have preferred to consider captive providers: they are not allowed to leave the
system whatever their degree of dissatisfaction is.

6.4 Providers’ Utilization Results

We measure the query-balance factor (λ-QLB t) for different Poisson arrival
rates15. λ-QLB t (Y-axis) at different times (X-axis) of the experiment. Con-
trary to the expected, the results show that the Economic approach has serious
problems to ensure good λ-QLB t in the system, because for providers, preference
is more important than utilization in order to express their intentions.

The results show that the Capacity Based and SbQLB approaches have seri-
ous problems to ensure good λ-QLB t with request arrival rates under 40% of the
total system capacity. In contrast, when the query arrival rate increases, both ap-
proaches improve the λ-QLB t in the system. This is due to the fact that when
most providers have no queries (i.e. have all their capacity available), queries
may be allocated to those providers that spend more treatment units to perform
them. Hence, each time a query is allocated to the less capable providers, the
distance between the more and less utilized providers increases significantly.

To prove this intuition, we studied the ensured λ-QLB t by varying the query
arrival rate from 30 (at the beginning of the simulation) to 120% (at the end of
the simulation) of the total system capacity. The result is shown in Figure 4(a).
We observe that both Capacity Based and SbQLB approaches improve the λ-
QLB t as the query arrival rate increases.

In all cases, the Capacity Based is better than SbQLB. This is because it
takes into account providers’ intentions. Howver, Capacity Based suffers from

15 For example, given our simulation setup, the 40% and 80% of the total system
capacity correspond respectively to 84 and 164 requests per second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

Q
ue

ry
 lo

ad
-b

al
an

ce
, λ

-Q
L

B
t

Time (seconds)

Capacity Based
Economic

Satisfaction Based

(a) for a range request load of 30-120%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100A
ve

ra
ge

 q
ue

ry
 lo

ad
-b

al
an

ce
, λ

’-
Q

L
B

t

Load (% of the total system capacity)

Capacity Based
Economic

Satisfaction Based

(b) average query-balance%

Fig. 4. Query-balance.

greater vairations which means that, at times, some providers are much more
utilized than others (when all of them have the same chances to get queries).
SbQLB better deals with such variations by considering providers’ satisfaction.
Furthermore, SbQLB is much better than the Economic approach.

We also measured the average query-balance factor (λ-QLB [t1, t2]) ensured
by these approaches. That is, we analyzed how well these approaches avoid the
starvation problems. To this end, we ran several tests with different request
arrival rates and measure the λ-QLB [t1, t2] in such a time interval (from the
beginning to the end of the simulations). The results of such experiments are
shown by Figure 4(b).

Unlike the λ-QLB t experiments, we observe that for request arrival rates
under 40% of the total system capacity the SbQLB guarantees a better λ’-
QLB [t1, t2] than the Capacity Based and Economic approaches. This means that
SbQLB strives to give queries, in the course of the time, to all the providers in
the system even if the arrival query rate is not sufficient to do it. In contrast,
when the query arrival rate is greater than the 40% of the total system capacity,
Capacity Based does it better. This is because the arrival query rate is sufficient
for giving queries to all providers in the system. But, we observe that SbQLB is
still better than the Economic approach in which providers significantly suffers
from starvation problems.

6.5 Providers’ Satisfaction Results

As expected, the adequation of providers depends only on query arrival and
their preferences for performing queries. Adequation is completely independent
of the query arrival rates. In our experiments, the providers’ adequation is 0.5 in
average for all the query arrival rates. So, graphics are not presented here since
they do not say anything else.

In our experiments the allocation satisfaction and satisfaction of providers
are very similar but at different scale. This is because the results that providers
get, depend roughly on the query allocation process. Then, because of space, we

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000 2200 2400 2600 2800 3000

Sa
tis

fa
ct

io
n

de
gr

ee
, δ

s

Time (seconds)

Capacity Based
Economic

Satisfaction Based

(a) providers’ satisfaction for a request
load of 80%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Sa
tis

fa
ct

io
n

ba
la

nc
e,

 γ-
PS

B
-t

Load (% of the total system capacity)

Capacity Based
Economic

Satisfaction Based

(b) provider satisfaction balance

Fig. 5. Provider satisfactions.

just present the providers’ satisfaction results for an arrival query rate of 80%
of the total system capacity (see Figure 5(a)).

The results show that conversely to the QLB aspect (Section 6.4) the Eco-
nomic approach better satisfies the providers than the SbQLB and Capacity
Based approaches. This is because, the providers’ intentions in the Economic
approach are principally based on the providers’ preferences while SbQLB takes
equally into account the providers’ utilization as shown in Section 4.2.

We can also observe, in our experiments, that the satisfaction of providers
with SbQLB are almost all the time over the providers’ adequation (i.e. over
0.5). In contrast, the satisfaction of providers with Capacity Based are almost
all the time under the providers’ adequation. The oscillation of the providers’
satisfaction is caused by the natural competition of providers for performing
queries.

Furthermore, we observe that while the less satisfied provider with the
Economic and SbQLB approaches has, respectively, a satisfaction of 0.69 and
0.61 with an arrival query rate of 80% the total system capacity, the more

satisfied provider with Capacity Based has a satisfaction of 0.61! This confirms
that Capacity Based significantly hurts the providers’ preferences for performing
queries. The impact of this phenomenon was shown in Section 6.3.

Finally, the experiments show that the Economic and SbQLB guarantee bet-
ter γ-PSBt factors than the Capacity Based (see Figure 5(b)). In other words,
both Economic and SbQLB strive to satisfy equally all the providers while Ca-
pacity Based does not.

7 Related Work

The problem of balancing queries while respecting the providers’ autonomy for
performing queries has not received much attention and is still an open problem.

Much work on query load balancing has been done in distributed systems
[1, 6, 11, 16, 19]. We can classify load balancing algorithms into two approaches:
load based and capacity based.

Load based approach decide to allocate requests to those providers with the
highest inverse probability of their reported load. Generally, load is defined as the
number of request that the providers has in its arrival queries’ queue. Thus, they
inherently assume that providers and requests are homogeneous. Capacity based
approach already take into account such heterogeneity by allocating requests to
those providers with the greatest available capacity. The provider’s capacity is
defined as the maximum query rate that the provider can treat. All these works
mainly model and address the problem of minimizing the providers’ load or
utilization for ensuring good response times in the system. However, unlike our
approach, they do not consider the providers’ intention for performing queries
which drastically punish the providers’ autonomy and the system performance
(see Sections 6.3 and 6.5).

Many solutions [2, 5, 17] strive to deal with providers’ autonomy by means
of economical models. Providers denote their intention for performing queries
via a bidding mechanism. A survey of economic models for various aspects of
distributed system is presented in [4]. The motivation of economical models is
to decentralize the access to the system’s resources. In economical models, every
provider in the system tries to maximize its own profit by selling services. Never-
theless, such models need robust market mechanisms for avoiding a degradation
of the system’s performance, and rationalized pricing schemes for giving price
guarantees to consumers (see [4]).

Mariposa [17] is one of the first systems which deals with the query processing
and data migration problem, in distributed information systems, based on a
bidding process. In this approach, providers bid to acquire parts of a query
and consumers pay for their queries’ execution. In order to ensure a crude form
of query load balancing, the providers’ bid is multiplied by their load. Then,
the mediator broker selects a set of bids that corresponds to a set of relevant
queries and has an aggregate price and delay under a bid curve provided by
the consumer. But, it is unclear how this approach really ensures the QLB in
the system. Furthermore, some queries may not get processed although relevant
providers exist, just because they do not intend to treat them.

In addition, our approach also differs from the above works since it also strives
to balance queries in the course of the time reducing, by consequent, the request
starvation in the system. In contrast, we assume that providers say the truth
about their utilization and satisfaction, but also, Capacity Based and Economic
approaches does for the providers’ utilization and credit balance respectively. If
this is not the case, works about providers’ reputation can be applied to tackle
this issue, for instance [3, 7].

8 Conclusion

In this paper, we addressed the problem of balancing queries in dynamic and dis-
tributed systems with autonomous providers. We considered not only providers’
utilization but also providers’ preference and satisfaction. This paper has several
contributions.

First, we defined a model that enables providers to evaluate if they are meet-
ing their objectives. The model relies on three definitions: satisfaction which
defines what providers are really getting from the system; adequation which de-
fines how much interesting are the proposed queries; and allocation satisfaction
which allows providers to know whether the query allocation process is doing a
good job for them.

Second, we proposed a QLB approach which takes care of the providers’
satisfaction, called Satisfaction-based QLB (SbQLB). SbQLB allows providers to
express their intention to perform queries by taking into account their preferences
and utilization in accordance to their satisfaction.

Third, we evaluated and compared the SbQLB approach against the Capacity
Based and Economic approaches. Our results show that the Economic approach
does not guarantee good query-balance factors for all query arrival rates. This is
because it relies mainly on the bids made by the providers (i.e. indirectly on the
providers’ preferences). On the other hand, we found that SbQLB and Capacity
Based have problems to ensure good query-balance factors for low request arrival
rates (rates from 10 to 40% of the total system capacity). This is due to the fact
that query cost is not considered in query allocation. Thus, for low query arrival
rates, almost all providers have the same chances to get queries.

The experimental results show that the Economic approach has serious prob-
lems of starvation for all request arrival rates. This is due to the fact that
providers that are very interested in a given query may spend much money for
getting it. Then, such providers tend to be idle by lack of money. Capacity Based
approach suffers from starvation only for query arrival rates under 30% of the
total system capacity. When the query arrival rate increases, it better tackles
this problem. This is because the query arrival rate is sufficient for balancing
queries while giving queries to all providers in the system. Our SbQLB approach
deals better with this problem than the Capacity Based approach for query ar-
rival rates under 30% of the total system capacity. In all cases, it is better than
the Economic approach.

Another important result is that the Capacity Based approach drastically
hurts providers’ autonomy in allocating them, in average, 50% of uninteresting
queries. Thus, Capacity Based does not scale up since it suffers from providers’
departures. Such departures degrade the system’s response time by a factor
of 4.5. On the other hand, both SbQLB and Economic approaches allocate
only interesting queries to providers, and then, do not suffer from providers’
departures.

Conversely to the expected, economical models do not perform well the QLB
task since they depend on the providers preferences for performing queries. Fur-
thermore, while SbQLB does not rely on special mechanisms, Economic ap-
proach does [5, 4]. This makes the SbQLB approach more suitable for open and
very large distributed systems, such as peer-to-peer systems.

As future work, we plan to design a QLB approach that also takes into
account the consumers’ intention for allocating requests. In order to be fair and
guarantee equity at all levels, we must be able to decide which is the most

important criterion, among consumers’ satisfaction, providers’ satisfaction or
providers’ utilization, at a given time in the system.

References

1. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced Allocations. SIAM
J. Comput., 1999.

2. R. Buyya, H. Stockinger, J. Giddy, and D. Abramson. Economic Models for Man-
agement of Resources in Grid Computing. CoRR, 2001.

3. Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust incentive tech-
niques for peer-to-peer networks. In In EC ’04, 2004.

4. D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic models for
allocating resources in computer systems. 1996.

5. D. F. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic Algorithms for Load
Balancing in Distributed Computer Systems. In ICDCS, 1988.

6. Z. Genova and K. J. Christensen. Challenges in URL Switching for Implementing
Globally Distributed Web Sites. In ICPP Workshops, 2000.

7. Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigen-
trust algorithm for reputation management in P2P networks. In WWW ’03: Pro-
ceedings of the 12th international conference on World Wide Web, 2003.

8. P. Lamarre, S. Cazalens, S. Lemp, and P. Valduriez. A Flexible Mediation Process
for Large Distributed Information Systems. In CoopIS/DOA/ODBASE, 2004.

9. L. Li and I. Horrocks. A Software Framework For Matchmaking Based on Semantic
Web Technology. In Proc. 12th International WWW Conference.

10. E. P. Markatos. Tracing a Large-Scale Peer to Peer System: An Hour in the Life
of Gnutella. In CCGRID, 2002.

11. R. Mirchandaney, D. F. Towsley, and J. A. Stankovic. Adaptive Load Sharing in
Heterogeneous Distributed Systems. J. Parallel Distrib. Comput., 1990.

12. M. H. Nodine, W. Bohrer, and A. H. Ngu. Semantic Brokering over Dynamic
Heterogeneous Data Sources in InfoSleuth. In Proc. 15th ICDE, 1999.

13. M. T. Ösu and P. Valduriez. Principles of distributed database systems (2nd ed.).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

14. A. Sah, J. Blow, and B. Dennis. An introduction to the Rush language. In Proc.
Tcl’94 Workshop, 1994.

15. S. Saroiu, P. Krishna Gummadi, and S. D. Gribble. A Measurement Study of
Peer-to-Peer File Sharing Systems. In Proc. of MCN, 2002.

16. N. G. Shivaratri, P. Krueger, and M. Singhal. Load Distributing for Locally Dis-
tributed Systems. IEEE Computer, 1992.

17. M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: A Wide-Area Distributed Database System. VLDB J., 1996.

18. K. P. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking
Among Agents in Open Information Environments. SIGMOD Record, 1999.

19. H. Zhu, T. Yang, Q. Zheng, D. Watson, O. H. Ibarra, and T. R. Smith. Adaptive
Load Sharing for Clustered Digital Library Servers. In HPDC, 1998.

