
HAL Id: inria-00374910
https://hal.inria.fr/inria-00374910

Submitted on 10 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal robust expensive optimization is tractable
Philippe Rolet, Michèle Sebag, Olivier Teytaud

To cite this version:
Philippe Rolet, Michèle Sebag, Olivier Teytaud. Optimal robust expensive optimization is tractable.
Gecco 2009, ACM, 2009, Montréal, Canada. 8 p. �inria-00374910�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50179951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00374910
https://hal.archives-ouvertes.fr

Optimal robust expensive optimization is tractable

P. Rolet, M. Sebag, O. Teytaud,
Tao, Inria, Lri, Umr Cnrs 8623, Univ. Paris-Sud

ABSTRACT
Following a number of recent papers investigating the possi-
bility of optimal comparison-based optimization algorithms
for a given distribution of probability on fitness functions,
we (i) discuss the comparison-based constraints (ii) choose
a setting in which theoretical tight bounds are known (iii)
develop a careful implementation using billiard algorithms,
Upper Confidence trees and (iv) experimentally test the
tractability of the approach. The results, on still very simple
cases, show that the approach, yet still preliminary, could
be tested successfully until dimension 10 and horizon 50 it-
erations within a few hours on a standard computer, with
convergence rate far better than the best algorithms.

Categories and Subject Descriptors
G.1.6 [Optimization]: Nonlinear programming; I.2.8
[Problem Solving, Control Methods, and Search]:
Graph and tree search strategies

General Terms
Algorithms

1. INTRODUCTION
Computational optimisation techniques are concerned

with a growing variety of fields, and among them those
implying expensive-to-evaluate fitnesses. Industries such as
aerospace or automobile often rely on numerical engineering:
the codes used for simulations during optimisation processes
are computationally heavy. In the web industry, many web
applications try to learn people’s tastes by using preference
ranking techniques that present a user choices (usually bi-
nary): the fitness is the user’s utility function, and each it-
eration is costly since the user has to think about his tastes
before answering; furthermore, too many requests could an-
noy him/her.

This paper is interested in optimal performance of optimi-
sation problems given a small number of allowed iterations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

(i.e. fitness evaluations) that characterize expensive opti-
mization. Besides, focus will be set on robust optimisation—
i.e. rugged fitness functions—and comparison-based algo-
rithms such as in evolutionary computation.

Robust comparison-based optimisation
Evolutionary algorithms are often said to be of order 0, be-
cause they don’t rely on gradient computation. It is how-
ever possible to distinguish between two kinds of “order 0”
algorithms: those using fitness evaluations and those only
requiring comparisons between fitness values, that is binary
informations. Algorithms based on surrogate models (see
for instance [25]) usually fall in the former category (with
the exception of [19]). However, most evolutionary algo-
rithms are comparison-based. Comparison-based strategies
have nice robustness guarantees, and there are known com-
plexity bounds relating precision and number of iterations,
which is particularly needed in an expensive optimization
setting. Besides, in some applications—for instance in pref-
erence ranking problems introduced above—comparisons are
the only available information. Therefore, much work has
already been done regarding these strategies.

Expensive optimisation
Many artificial fitness functions are computed very quickly,
whereas real-world applications often involve huge computa-
tional cost. This can be due, for instance, to finite-element
methods or (Quasi-)Monte-Carlo sampling in numerical en-
gineering problems. In some cases the fitness function can
take days to be evaluated on a point. In that case, one can
often neglect the internal cost of the optimization algorithm,
and only consider the number of fitness evaluations—the
fact that optimization algorithms may require a few min-
utes before sending a request to the fitness function does
not matter. Therefore, some algorithms with a huge inter-
nal computational cost have been designed. Efficient Global
Optimization [15], and Informational Approach to Global
Optimization [22, 23] are examples of such algorithms. They
are robust in front of local minima, and experimentally quite
good; on the other hand, as acknowledged by the authors of
[23], their algorithm is untractable in high dimension due
to the selection among a finite set of candidates (with size
exponential in the size of the domain), and has no conver-
gence proof; also, it is based on a Gaussian prior on the
distribution of fitness functions (i.e. the fitness functions is
supposed to be drawn according to a Gaussian process).

In this paper we use an approach similar to [5]: a novel
way to reach optimal optimisation in the expensive setting

based on Monte-Carlo tree search, along with techniques
allowing this approach to be tractable. This includes (i)
proved optimality under some arbitrary prior (ii) optimized
implementation through billiards, progressive widening and
other techniques (iii) experiments in settings in which the
optimal possible convergence rates are known, leading to a
proof of concept.

In section 2.1, we recall results from [11] showing that for
a general robustness criterion introduced below, optimal-
ity can be reached without using more informations than
comparisons (i.e. there are optimal optimization algorithms
which are comparison-based).

In section 2.2, we present state-of-the-art complexity
bounds for such algorithms [21, 20].

In section 3.2 and 3.3, we introduce Upper Confidence
Trees (UCT)[16], a Monte-Carlo tree search algorithm, and
show how it can be used for approximating an optimal
comparison-based optimization algorithm. This has already
been tried in [5] with very small scale results; we will there-
fore show in section 4 how to drastically reduce the compu-
tational cost.

Section 5 will detail experiments on the resulting algo-
rithm showing how it gets close to complexity bounds from
[21, 20] introduced in section 2.2.

2. THEORETICAL BACKGROUND
Section 2.1 recalls theoretical results showing that

comparison-based optimization is optimal with respect to
a standard robstness criterion. Then, section 2.2 shows that
the comparison-based nature of an optimization algorithm
entails complexity bounds: it is not possible to be faster
than some absolute limit. Next sections will show that this
absolute limit can be reached theoretically (by an algorithm
with huge computational cost), and that it can be approxi-
mated thanks to the UCT algorithm.

2.1 Optimal optimization with robustness
constraints

We consider families of optimization algorithms. Thus we
need to formalize optimization algorithms. We consider a
real-valued fitness function f defined on D.

For some fixed optimization algorithm Opt generating a
point xN as an approximation of the optimum of the fitness
function f after N steps, the performance is evaluated e.g.
by ‖xN − arg min f‖2, f being assumed to have one global
minimum.The optimization algorithm is formalized as a map
Opt : {∅} ∪

SN
n=1(D ×R)n → D and we define the sequence

Optf = (xn)1≤n≤N , as follows:

x1 = Opt() and

∀n ∈ {1, . . . , N − 1}, xn+1 = Opt(x1, f(x1), . . . , xn, f(xn)).

We introduce the set of increasing functions G = {g :
R → R; ∀(x, y) ∈ R

2, x < y ⇒ g(x) < g(y)}. An al-
gorithm f 7→ Optf is said comparison-based if, for every
g ∈ G, the output of the map Opt is the same if the val-
ues y1, . . . , yn in its inputs are replaced by g(y1), . . . , g(yn),
that is, for all x1, . . . , xn ∈ D, y1, . . . , yn ∈ R and g ∈ G,
Opt(x1, g(y1), . . . , xn, g(yn)) = Opt(x1, y1, . . . , xn, yn).

We consider robustness properties. In the robust case, the
quality of an optimizer is estimated by its worst case among
a family of functions: if F is a space of fitness functions,
N is a number of iterations and xN is the estimate of the

optimum proposed by the algorithm, the quality criterion is
supf∈F ‖xN − x∗(f)‖2 where x∗(f) is the optimum of the
fitness function f . For this robustness criterion, theorem
2.1 shows that if F is stable by composition with G, then
every optimization algorithm can be replaced without loss
of efficiency by a comparison-based algorithm.

Many algorithms, in spite of this restriction (they only use
comparisons, and loose all other information), have been
proved to be linear in the sense that the log-distance to
the optimum converges to −∞ linearly in the number of
iterations (i.e. 1

n
log ‖xn − x∗(f)‖ converges to a negative

constant); see e.g. [3, 4, 9, 18]. Therefore these algorithms
have a reasonably good convergence rate. Some linear lower
bounds also exist in various cases [14, 21], and they show
that the constant in the linear convergence decreases to 0
linearly with the inverse of the dimension.

Theorem 2.1 below states that, for this robustness crite-
rion, for every optimization algorithm Opt, there is another
optimization algorithm Opt′ that has the same efficiency
and such that Opt′ is comparison-based. More precisely, we
state that if for some N and ǫ, Opt ensures that the N -th
iteration is the optimum within precision ǫ, then there ex-
ists Opt′ which is comparison-based and ensures the same
precision.

We let sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and
sign(0) = 0.

Theorem 2.1 (Comparisons are robust).
Consider F a space of real-valued functions defined on
a given domain D such that each f ∈ F has one and only
one global minimum, and assume that, for all f ∈ F and
all g ∈ G, g ◦ f belongs to F . Consider a deterministic
optimization algorithm Opt : f 7→ Optf = (xn)n∈N (see the
definitions in Section 1). We consider x′

N = (Optf)N as a
function of f . Assume that, for some ǫ > 0, there exists an
integer N such that,

∀f ∈ F, ‖(Optf)N − arg min f‖ ≤ ǫ. (1)

Then, there exists a deterministic algorithm Opt′ that only
depends on comparisons, in the sense that

(∀i, j, sign(yi − yj) = sign(y′
i − y′

j))

=⇒ Opt′(x1, y1, . . . , xn, yn) = Opt′(x1, y
′
1, . . . , xn, y′

n),

and Opt′ is such that Equation (1) holds with the same ǫ
and the same N , i.e.,

∀f ∈ F, ‖(Opt′f)N − arg min f‖ ≤ ǫ. (2)

The reader is referred to [11] for the proof and variations
of these results in terms of convergence rate.

2.2 Consequences in terms of complexity
[21] (extended in [20]) has shown that comparison-based

algorithms have some ultimate limits on their convergence
rates. Results in [21, 20] are much more general than that,
but we will restrict here our attention to the case of algo-
rithms using one single binary information, i.e. one compar-
ison between two fitness values. Theorem 1 in [21] implies
that, if xn is proposed by a comparison-based algorithm as
an approximation of the optimum after n comparisons, then
necessarily, for the worst case among objective functions in
any translation invariant family F of fitness functions on
[0, 1]d with one and only one optimum, the expected dis-

tance between xn and the optimum x∗ is as follows:

lim
n→∞

sup
f∈F

E
d

n
log2(||xn − x∗(f)||) ≥ −1. (3)

3. OPTIMAL COMPARISON-BASED AL-
GORITHMS

[11] provides, as a preliminary approximation of optimal
optimization algorithm, BREDA. BREDA uses as prior in-
formation a space F of fitness functions; f is supposed to be
distributed according to the probability distribution F .

Then, BREDA uniformly draws an offspring in the set S
of points which might be an optimum, i.e.:

S =

{arg min f ; f ∈ F, f is consistent with previous observations}.

If previous observations are comparisons, i.e. in previous
offsprings it has been established that

f(x1) ≤ f(x′
1)

f(x2) ≤ f(x′
2)

f(x3) ≤ f(x′
3)

. . .

f(xn) ≤ f(x′
n)

then this means

S = {arg min f ; f ∈ F, ∀i ∈ {1, 2, . . . , n}f(xi) ≥ f(x′
i)}.

This random draw is done using a billiard algorithm, the
principle of which is described in section 4. In order to do
so, we need a family of possible fitness functions, and the
memory of past comparisons in order to reduce the set of
possible fitness functions; S is then the set of the optima of
all the fitness functions which are consistent with previous
comparisons. BREDA has very good empirical results.

However, BREDA is not rigorously optimal. Here, we
rephrase the optimal optimization problem as a Partially
Observable Markov Decision Process (POMDP):

• A decision consists in choosing the next points for
which fitnesses are compared.

• Randomness consists in choosing the fitness function
(once for all; this is the unobservable part of the MDP).

• The observations are the points which are compared
(i.e. the decisions) and the results of these compar-
isons.

• The horizon (number of time steps) is the budget in
terms of requests for comparisons.

[1] has shown that POMDP can be solved as standard
Markov Decision Processes (MDP), provided that the state
is augmented so that it contains all the past observations.
[5] uses this in order to rephrase the POMDP of comparison-
based optimal non-linear optimization as a MDP, and then
approximately solves this MDP in a very restricted setting.
This section is devoted to

• present UCT, an algorithm which is particularly suit-
able for this problem (section 3.2);

• show its applicability in our framework, namely opti-
mal comparison-based algorithm (section 3.3).

3.1 Upper Confidence Bounds in a nutshell
Imagine you are in a node of a graph, and have to choose

between various edges e1,e2,. . . ,ek. Also, assume you have,
in the past, already tested these edges:

• you tested n1 times edge e1, with on average a reward
r1 (defined if and only if n1 > 0);

• you tested n2 times edge e2, with average reward r2

(idem);

• . . .

• you tested nk times edge ek, with average reward rk

(idem).

Then, the Upper Confidence Bound (UCB, [17, 2]) score of
edge ei is

ri + C

s

log(
X

j

nj)/ni (4)

if ni > 0, and ∞ otherwise, where C is some empiri-
cally tuned constant. Then, the UCB algorithm suggests
to choose edge ei such that si is maximal, in order to get
fruitful information. An important point is that ei is not
necessarily the edge which is expected to provide the best
reward; it is supposed to be a good choice in order to get
more information for the future. UCB is the guide for choos-
ing paths to be explored in the tree of the MDP by the Upper
Confidence Trees algorithm, to be presented below.

3.2 Upper Confidence Trees in a nutshell
Upper Confidence Trees (UCT, [16]) is a particular form of

Monte-Carlo Tree Search [7, 6] based on multi-armed bandit
formalism and the UCB formula [2]. The algorithm has
been applied to the game of Go with impressive results [24,
12, 10] (first victories of a computer against professional
human). In spite of the fact that it is mainly known in
the artificial game players community, it can be applied in
numerous other similar settings, such as in discrete time
control problems, even in the stochastic case.

A detailed presentation of UCT is beyond the scope of
this paper. Therefore, the reader is referred to [16] for a
more detailed presentation; we only here informally intro-
duce UCT.

Remember the goal is to select the right actions in the
graph of the MDP at each step, so that the reward is max-
imised in expectancy when the horizon T is reached. Thus,
a node of the graph can be viewed as a multi-armed ban-
dit, with each branch having an unknown mean reward, and
branches that look more rewarding should be searched more
deeply– ultimately only looking at the actual most rewarding
branch. There is an exploration/exploitation dilemma lying
in the uncertainty in current estimates of branches’ mean
reward. A property of the UCB formula is that asymptot-
ically, the branch that has the best mean reward is played
exponentially more times than the others[2]. When a leaf
is reached, a reward is given and estimates of mean reward
for the nodes of the currently explored path are updated
accordingly.

UCT is a Monte-Carlo strategy: it relies on performing
many random walks in the graph. It typically proceeds this
way: run a random simulation – i.e randomly (but not uni-
formly!) select actions to go from s0 (the initial state) to a

terminal state sT – and get a reward. This reward is seen as
a first estimate of the states’ value. Perform random simu-
lations again, until all actions at the root s0 have been tried
once. From this moment on, use the UCB formula to select
the action to take at s0 for each new simulation, and then
proceed in the same way with child states of s0. As the num-
ber of simulations increases, more and more deep states are
being explored as multi-armed bandits, and the estimates
of expected rewards for the actions converge to their true
values. One can then select the best unlabeled sample from
s0, which is an estimate of what the optimal strategy would
recommend, and label it with the real hypothesis, the one
that must actually be learnt. Eventually, the approximated
policy will converge to the optimal policy as the number of
simulations tend to infinity.

This outlines two important properties of UCT:

• Asymmetric tree search: the tree is developed more
precisely on better looking branches in a dynamic fash-
ion;

• Anytime: The result will improve somewhat contin-
uously with the number of random walks that are
made, as opposed to e.g. minimax tree search; stop-
ping search at any time may yield a significant result;

3.3 UCT in the optimization framework
As discussed in the beginning of section 3, optimal

comparison-based optimization can be rephrased as a
POMDP. Thanks to [1], this MDP can be rephrased as a
MDP. We have presented above UCT for solving such a
MDP. Let us now formalize this MDP so that the complete
algorithm becomes clear.
X is the space of possible requests and Y is the space

of possible answers to these requests; typically, X might
be D2, where D is the domain of the optimization, and Y
might be {0, 1}. An answer y = Oraclef ((x, x′)) to a request
(x, x′) ∈ X = D2 is then 1 if f(x) ≤ f(x′), and 0 otherwise:

Oraclef (x, x′) = 1 if and only if f(x) ≤ f(x′)

= 0 otherwise (5)

We restrict the discussion below and our implementation
to this case, but we could also consider λ points (x1, . . . , xλ)
as a request, and Y the set of orders (with possibly equality)
among λ points.

In figure 3.3 is a tree1 representing the MDP. Let us
remind the correspondence in vocabulary between opti-
mization and MDPs. Decision nodes are labelled with a
state, i.e. a finite sequence (x1, y1), (x2, y2), . . . , (xk, yk)
in X × Y; from decision nodes, we have edges (an edge
is labelled by some unanswered request x) directed to
random nodes. A random node is labelled with a fi-
nite sequence (x1, y1), (x2, y2), . . . , (xk, yk) in X × Y, plus
the unanswered request x; there is an edge labelled by
decision x ∈ X from the decision node labelled by
(x1, y1), (x2, y2), . . . , (xk, yk) to the random node labelled by
(x1, y1), (x2, y2), . . . , (xk, yk) and x. There are two edges, la-
belled by 0 and 1, from this random node, leading to nodes

1It is actually a directed acyclic graph, since for instance
state s2 = {(x1, y1), (x2, y2)} can be reached either from
state s1 = {(x1, y1)} or s2 = {(x2, y2)}. However, as cycles
are rare, the usual terminology keeps the word ”tree”

s0

x1

kkkkkkkkkkkkkkkkkkk

x2 ...
xP

QQQQQQQQQQQQQQQ

s10

0

�������
s11

1

6666666
s20

0

s21

1

1111111

1111111
sP0

0

������
sP1

1

......

x1

kkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkk

x2 ...
xP

PPPPPPPPPPPPPP

s2110

0

�������

�������
s2111

1

6666666

sT

O�
O�
O�
O�
O�
O�
O�
O�

Figure 1: A tree representation of the MDP. Once
an action x is chosen (i.e. a pair of points to be
compared) at state s0, the ”label” stage of the tree
correspond to transition function ptr(.|st, x); it is the
probability that a hypothesis randomly chosen in the
set of hypotheses consistent with st labels x by 0 or
1.

labelled by respectively (x1, y1), (x2, y2), . . . , (xk, yk), (x, 0)
and (x1, y1), (x2, y2), . . . , (xk, yk), (x, 1).

The probability on the edge from the node labelled
(x1, y1), (x2, y2), . . . , (xk, yk) and x, to the node labelled
by (x1, y1), (x2, y2), . . . , (xk, yk), (x, 0) is P (Oraclef (x) =
0|Oraclef (x1) = y1, Oraclef (x2) = y2, . . . , Oraclef (xk) =
yk).

4. IMPLEMENTATION AND PRACTICAL
ISSUES

UCT has already been applied to optimization in [5]; how-
ever, it was not fully documented (the paper was essentially
theoretical) and tested only in very specific cases. We here
fully detail the implementation and experiment it on a much
larger (yet still restricted) case. Moreover, we compare the
results with theoretical bounds discussed in section 2.2 and
proved in [21, 20].

We assume that a distribution of probability F on the
space F of fitness functions is given. The optimization algo-
rithm is allowed to send requests about the unknown fitness
function f ; the oracle send provides a label for this request.
For example, the request is a population of points, and the
oracle gives the comparisons between fitness values. In our
experiments, we will consider two points x and x′, and the
oracle answer 1 if and only if f(x) ≤ f(x′), but the princi-
ple is generic. The resulting Algorithm 1 is termed CONO
(comparison-based optimal non-linear optimization).

The first point is tackled in the following way. Before
starting a new random walk from s0, a hypothesis (a fitness
function) f is chosen randomly in F . It will play the role of
the target hypothesis for this walk. At a given state, when

Algorithm 1 The Cono algorithm. Given a measure on the
set F of fitness functions, a number of simulations N and
a target hypothesis h∗, the main loop takes as argument a
horizon T , a current state s (starting by ∅) and a current
horizon t (starting by T). It runs N simulations as described
above, and chooses the action x whose mean reward estimate
is the best to label by h∗. It then calls itself after decrement-
ing by 1 the horizon and restricting the hypothesis space
to hypotheses consistent with (x, h∗(x)), runs N simulations
again, and repeats the process until T = 0. An admissible re-
quest is a pair (x1, x2) such that for i ∈ {1, 2}, xi ∈ arg min h
for some f ∈ F consistent with previous requests (i.e. we
only allow the algorithm to compare points which might be
the optimum - this is directly inspired by BREDA).

Function CONO(s, t)
if t == 0 then

Return arg minx∈D Ef |F ||x− arg min f ||2

end if
for i=1 to N do

PerformSimulation(s, t)
end for
// find the request to be sent to the oracle
Let x be the action corresponding to the most visited
branch from s
Let y be the label of x, i.e. y = Oraclef (x)
Return CONO(s

S

{(x, y)}, t− 1)

Function PerformSimulation(s, t)
Pick f using the distribution of probability F
/** Oraclef is defined as in Eq. 5 **/
for i = 1tot do

Get the admissible branches, i.e.:
nbr=PW(s)
Padm = nbr requests randomly drawn among admis-

sible requests.
Get the best branch and label it by h, i.e. :

x0 = arg maxx∈Padm
UCB(s

S

{x})
s← s

S

{(x0, Oraclef (x0)}
end for
Let x = arg minx∈D Ef |s||x− arg min f ||2

Get the reward r = ||x− arg min f ||2

Update the tree by increasing the number of visits of each
node on the path by one, and adjusting their mean re-
wards by r

Function UCB(s
S

{x})
Returns the UCB value of branch x taken as node s, or
+∞ if the branch has never been tried

Function PW(s) /** progressive widening **/
Return the number of branches that should be considered
at node s, here ⌊ns⌋

1/4 where ns is the number of times
s has been visited

an action x is chosen, the next state is determined by the
label Oraclef (x).

To deal with the second point, a technique called progres-
sive widening [8] is applied. It basically limits the number of
branches that are allowed to be explored from a state, based
on the number of times that the state has been visited. In
this implementation, a node that has been visited n times
will explore only a subset of possible actions whose cardinal
is ⌊n1/4⌋2. For instance, for the first fifteen random walks,
only one action will be explored from the root node; at the
sixteenth simulation, another action will be tried and UCB
will be applied on these two actions. Progressive widening
also has the added benefit of removing the need for the finite
pool assumption.

A pseudo-code of the algorithm, called Cono (for
comparison-based optimal nonlinear optimization) is pre-
sented in figure 1.

Remarks on the algorithm 1.

• Billiard algorithms. We have to randomly draw two
possible optima, to be compared by the oracle (i.e.
to be ranked depending on their fitness values). This
is performed in our implementation thanks to billiard
algorithms, as in [13] and [5]. The algorithm is pre-
sented in Algorithm 2; informally the principle con-
sists in launching a particle in R

d, which bounces on
satisfied constraints and crosses freely unsatisfied con-
straints. After a finite length, the particle halts; this
is the output of the billiard algorithm, and this output
is expected to be uniformly drawn in the points which
satisfy the constraints, in the limit of an infinite length
path. This property is only proved in very restricted
cases and is conjectured in the general case.

Algorithm 2 Billiard algorithm, taking as input a set of
constraints gi, a trajectory length L, and returning a final
point. The algorithm is supposed to return a final point
uniformly drawn in {z ∈ R

d; ∀igi(z) ≥ 0}, in the limit of
L→∞.

Randomly select z ∈ R
d satisfying at least one constraint,

and a direction ~v.
while L > 0 do

//Find the set of satisfied constraints

J = {j; gj(p) ≥ 0}
//Go as far as possible while gj ≥ 0, j ∈ J

λ∗ = sup{λ ≥ 0 s.t. ∀ℓ < λ, ∀j ∈ J, gj(z + ℓ~v) ≥ 0}
if J = {1, . . . , n} then

//(all constraints satisfied)

if L > λ∗ then
//Go until some gi is saturated

p = p + λ∗~v
L = L− λ∗

else
Return p + L~v //out of resources

end if
end if
~v = symmetric(~v, gi) //Bounce against gi

end while

• About which request should be chosen after the
simulations have been performed. The action se-

2This formula is used on the basis of its empirical success
(see [8, 6])

lected at the end of a UCT round (N simulations) is
the action that has been the most visited—it is known
as a robust choice, much more efficient than a criterion
like best rewards.

The algorithm takes a number of simulations as input,
but since the approach is anytime it would be easy to
give it a time budget instead, if required.

5. EXPERIMENTS
This section compares (i) BREDA (ii) UCT built on top

of BREDA (iii) theoretical bounds in the following cases:

• the domain D of the optimization is [0, 1]d;

• the horizon is 10, 20, 50;

• the fitness function is the sphere function, i.e. a point x
has better fitness than a point y for the sphere function
centered at x∗ if and only if ||x− x∗|| < ||y − y∗||.

Results are presented in Fig. 2, 3, 4 respectively, for horizon
10, 20, 50.

Figure 2: Results for horizon n = 10 with vari-
ous dimensions. Error bars are 1/3 of the stan-
dard deviation. The abscissa is the log2 of the
number of simulations, the ordinate is the aver-
age of log(||xn − x∗(f)||) × d/n, supposed to reach
− log(2) = 0.69315 asymptotically in n if bound in Eq.
3 is reached.

6. CONCLUSION
Comparison-based algorithms are optimally robust for

some robustness criterion. This paper has shown the feasi-
bility, thanks to UCT and to billiard algorithms, of optimal
comparison-based algorithms; in particular, BREDA [11],
which has provided the current best results on the sphere
function, could be outperformed whilst preserving a reason-
able computation time.

The point in this section is to estimate the tractability of
the approach. The conclusions are as follows:

• Each curve in figure 2, 3, 4 is based on 12 hours of com-
putation, for the whole curve, i.e. all tested numbers

Figure 3: Results for horizon n = 20 with vari-
ous dimensions. Error bars are 1/3 of the stan-
dard deviation. The abscissa is the log2 of the
number of simulations, the ordinate is the aver-
age of log(||xn − x∗(f)||) × d/n, supposed to reach
− log(2) = 0.69315 asymptotically in n if bound in Eq.
3 is reached.

of simulations. The optimization runs are therefore
at most a few hours long, accumulating to 12h for all
experiments with 1,2,4,8,16,. . . simulations.

• The scores are close to optimality for horizon 10 in
dimension 2, 4, 8; for horizon 20 in dimension 2 and 4;
for horizon 50, in dimension 2 and 4.

• Even in non-optimal cases, the results were better than
BREDA which is already much faster than most ES.
BREDA is the case of 1 simulation and CONO suc-
cessfully benefits from its UCT-based exploration for
outperforming BREDA with more simulations. We re-
call that typical constants in most ES are 0.06 instead
of 0.69 at the limit of CONO (almost reached in many
cases, and almost always more than 0.5).

7. DISCUSSION
This paper is a part of a long-term work in progress. In

[11], it was shown that comparison-based algorithms are op-
timal for some robustness criterion, and a theoretical algo-
rithm was proposed. In [5], an approximation of optimal
algorithm, using UCT, was outlined but was still incredibly
slow. In [21, 20], complexity lower-bounds for comparison-
based algorithms were derived. In this paper, some tricks
(e.g. the use of the BREDA algorithm) have been added,
so that the algorithm can be tested more intensively and in
a more general setting; also, we have tackled problems for
which optimal constants can be theoretically derived - we
have by the way shown that optimality is very well approxi-
mated. A few hours were enough for results close to optimal
constants, for up to 8 dimensions and up to 50 iterations.
A cluster was used for constructing error bars, but each run
was performed on a single core, within a few hours, each
complete curve with 1, 2, 4, 8, . . . simulations being gener-
ated in 12 hours.

Figure 4: Results for horizon n = 50 with vari-
ous dimensions. Error bars are 1/3 of the stan-
dard deviation. The abscissa is the log2 of the
number of simulations, the ordinate is the aver-
age of log(||xn − x∗(f)||) × d/n, supposed to reach
− log(2) = −0.69315 asymptotically in n if bound in
Eq. 3 is reached.

A prior for which all samples are feasible. We have
done our experiments with a prior uniform on all translations
of the sphere function. This both simplifies the implementa-
tion and allows the comparisons with known mathematical
proofs of complexity. On the other hand, a main drawback
is that if the fitness function is not a translated sphere, the
billiard might be frozen (because there might be no satisfi-
able solution!). So, an immediate further work consists in
generalizing the prior. The approach needs a prior, i.e. a
distribution on fitness functions: we can for example con-
sider a fitness function f drawn as follows:

• randomly draw k ∈ N, k = i with probability 1/2i;

• randomly draw x1, . . . , xk uniformly and indepen-
dently in the domain D;

• then x has fitness mini∈[[1,k]] ||x− xi||.

An immediate consequence of this choice is that the algo-
rithm would never get stuck in a situation in which some
points can’t be ranked by some f : for any distinct p1, . . . , pn,
there is a non-zero probability on f that f(p1) < f(p2) <
· · · < f(pn). [13] also proposes, with a billiard algorithm,
some possible space of functions (using the so-called kernel
trick with a Gaussian kernel), so that arbitrary functions
can be approximated by their prior.

Interestingly, with such a prior, the algorithm is optimal
for a Bayesian prior which is compliant with multimodal
optimization.

A population size larger than 2. A second step con-
sists in using comparisons between more than 2 points. This
is theoretically easy (Algorithm 1 does not assume that we
compare only 2 points and is ready for applications with
λ > 2 points), and important as it provides optimal paral-
lel optimization algorithms as well as this paper proposes
optimal sequential optimization algorithms.

8. REFERENCES
[1] K. Astrom. Optimal control of Markov decision

processes with incomplete state estimation. Journal of
Mathematical Analysis and Applications, 10:174–205,
1965.

[2] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2003.

[3] A. Auger. Convergence results for (1,λ)-SA-ES using
the theory of ϕ-irreducible markov chains. Theoretical
Computer Science, 334:35–69, 2005.

[4] A. Auger, M. Jebalia, and O. Teytaud. Xse:
quasi-random mutations for evolution strategies. In
Proceedings of Evolutionary Algorithms, 12 pages,
2005.

[5] A. Auger and O. Teytaud. Continuous lunches are free
plus the design of optimal optimization algorithms.
Algorithmica, Accepted.

[6] G. Chaslot, M. Winands, J. Uiterwijk, H. van den
Herik, and B. Bouzy. Progressive strategies for
monte-carlo tree search. In P. Wang et al., editors,
Proceedings of the 10th Joint Conference on
Information Sciences (JCIS 2007), pages 655–661.
World Scientific Publishing Co. Pte. Ltd., 2007.

[7] R. Coulom. Efficient selectivity and backup operators
in monte-carlo tree search. In P. Ciancarini and H. J.
van den Herik, editors, Proceedings of the 5th
International Conference on Computers and Games,
Turin, Italy, 2006.

[8] R. Coulom. Computing elo ratings of move patterns in
the game of go. In Computer Games Workshop,
Amsterdam, The Netherlands, 2007.

[9] S. Droste. Not all linear functions are equally difficult
for the compact genetic algorithm. In Proc. of the
Genetic and Evolutionary Computation COnference
(GECCO 2005), pages 679–686, 2005.

[10] S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and
Y. Kalemkarian. The parallelization of monte-carlo
planning. In Proceedings of the International
Conference on Informatics in Control, Automation
and Robotics (ICINCO 2008), pages 198–203, 2008. To
appear.

[11] S. Gelly, S. Ruette, and O. Teytaud.
Comparison-based algorithms: worst-case optimality,
optimality w.r.t a bayesian prior, the
intraclass-variance minimization in eda, and
implementations with billiards. In PPSN-BTP
workshop, 2006.

[12] S. Gelly and D. Silver. Combining online and offline
knowledge in uct. In ICML ’07: Proceedings of the
24th international conference on Machine learning,
pages 273–280, New York, NY, USA, 2007. ACM
Press.

[13] R. Herbrich, T. Graepel, and C. Campbell. Bayes
point machines. Journal of Machine Learning
Research, 1:245–279, 2001.

[14] J. Jagerskupper and C. Witt. Runtime analysis of a
(mu+1)es for the sphere function. Technical report,
2005.

[15] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
J. of Global Optimization, 13(4):455–492, 1998.

[16] L. Kocsis and C. Szepesvari. Bandit-based monte-carlo
planning. In ECML’06, pages 282–293, 2006.

[17] T. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

[18] G. Rudolph. Convergence rates of evolutionary
algorithms for a class of convex objective functions.
Control and Cybernetics, 26(3):375–390, 1997.

[19] T.-P. Runarsson. Ordinal regression in evolutionary
computation. In proceedings of PPSN, pages
1048–1057, 2006.

[20] O. Teytaud and H. Fournier. Lower bounds for
evolution strategies using VC-dimension. In
G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and
N. Beume, editors, PPSN, volume 5199 of Lecture
Notes in Computer Science, pages 102–111. Springer,
2008.

[21] O. Teytaud and S. Gelly. General lower bounds for
evolutionary computation. In proceedings of PPSN,
2006.

[22] E. Vazquez, J. Villemonteix, M. Sidorkiewicz, and
E. Walter. Global optimization based on noisy
evaluations: an empirical study of two statistical
approaches. Journal of Global Optimization, page 17
pages, 2008.

[23] J. Villemonteix, E. Vazquez, and E. Walter. An
informational approach to the global optimization of
expensive-to-evaluate functions. Journal of Global
Optimization, page 26 pages, 09 2008.

[24] Y. Wang and S. Gelly. Modifications of UCT and
sequence-like simulations for Monte-Carlo Go. In
IEEE Symposium on Computational Intelligence and
Games, Honolulu, Hawaii, pages 175–182, 2007.

[25] Z. Zhou. Hierarchical surrogate-assisted evolutionary
optimization framework. In In Evolutionary
Computation, 2004. CEC2004. Congress on, pages
1586–1593, 2004.

