
HAL Id: inria-00375419
https://hal.inria.fr/inria-00375419

Submitted on 14 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bringing Evolutionary Computation to Industrial
Applications with GUIDE

Luis da Costa, Marc Schoenauer

To cite this version:
Luis da Costa, Marc Schoenauer. Bringing Evolutionary Computation to Industrial Applications with
GUIDE. GECCO 2009, ACM, Jul 2009, Montréal, Québec, Canada. �inria-00375419�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50179539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00375419
https://hal.archives-ouvertes.fr

Bringing Evolutionary Computation to Industrial
Applications with GUIDE

Luis Da Costa1, Marc Schoenauer1,2

1Team TAO, LRI (UMR CNRS 8623)
INRIA Saclay - Île-de-France
Bat 490, Université Paris-Sud
91405 Orsay Cedex, France

2Microsoft Research–INRIA Joint Centre
Parc Orsay Université
28, rue Jean Rostand
91893 Orsay Cedex, France

luis.dacosta@inria.fr, marc.schoenauer@inria.fr

ABSTRACT

Evolutionary Computation is an exciting research field with
the power to assist researchers in the task of solving hard
optimization problems (i.e., problems where the exploitable
knowledge about the solution space is very hard and/or ex-
pensive to obtain). However, Evolutionary Algorithms are
rarely used outside the circle of knowledgeable practitioners,
and in that way have not achieved a status of useful enough
tool to assist “general” researchers. We think that part of
the blame is the lack of practical implementations of research
efforts reflecting a unifying common ground in the field.

In this communication we present GUIDE, a software
framework incorporating some of the latest results from the
EC research community and offering a Graphical User In-
terface that allows the straightforward manipulation of evo-
lutionary algorithms. From a high-level description pro-
vided by the user it generates the code that is needed to
run an evolutionary algorithm in a specified existing library
(as of March 2009, EO and ECJ are the possible targeted
libraries). GUIDE’s GUI allows users to acquire a straight-
forward understanding of EC ideas, while at the same time
providing them with a sophisticated research tool. In this
communication we present 3 industrial case studies using
GUIDE as one of the main tools in order to perform soft-
ware testing on large, complex systems.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Software libraries;
D.1.7 [Programming Techniques]: Visual Programming;
H.5.2 [User Interfaces]: Graphical Interfaces

General Terms

Algorithms

Keywords

Evolutionary Computation; Software Development; Algo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

rithms.

1. INTRODUCTION AND MOTIVATION
In this article we present GUIDE, a programming frame-

work that comes with an easy-to-use Graphical User Inter-
face that allows the easy, efficient, and economical manip-
ulation of evolutionary algorithms (EAs). From the high-
level description of the user’s problem, generated through
the GUI, it derives the code of a complete Evolutionary Al-
gorithm in a specified existing library, and compiles it into
an executable program that can be executed as a normal
computer program. The GUI also offers an original global
point of view of the algorithm that results in a straightfor-
ward improvement of the user’s understanding of EC ideas.
Finally, it allows any GUIDE user to benefit from recent
results from the research community as soon as they are
implemented in its kernel.

The development of GUIDE was born out of our con-
cern of bringing the methods of our domain, Evolution-
ary Computation, closer to general, non-expert, users. It
started to be developed under the DREAM FP5 European
Project (www.dcs.napier.ac.uk/~benp/dream/dream.htm),
from where it took its acronym (“Graphical User Interfa-
ce for DREAM Experiments”) and has come a long way
since. The need for such a “democratization” of the field has
appeared along with the practical success of Evolutionary
Algorithms to solve hard optimization problems. Indeed,
EAs consistently perform well approximating solutions to a
large number of types of problems (see references [20, 10]
for a long list and explanations of these problems), largely
because they do not make any assumption about the under-
lying search space. Research groups on EC are very active
around the world, with several high-level conferences regu-
larly held and an important number of scientific journals
dedicated to the field. However, their adoption by non-
expert users has not followed. We think there are several
reasons for such a state of affairs, the most important ones
being:

1. A lack of practical support for work: in spite of
the publication of Michalewicz’ seminal book [20], and
much more recently of the two unifying books by Eiben
and Smith [10] and DeJong [8], it is very difficult to get
a clear picture of the field, as there still is not even a
common terminology between all papers published in
the domain. This terminology is still much influenced
by the history of the models that have been proposed

over the years. However, a user, advanced or not, is
mainly concerned about the best possible way to solve
her/his problem, so the historical differences that exist
in the terminology should not matter [5]. However,
even though all models share a common structure, no
existing software package allows the user to actually
shift from one model to another.

2. The difficult tuning of an EA: The second prob-
lem, and probably the most important one, is related
to the specific tuning of an evolutionary algorithm.
The description of a specific EA contains its compo-
nents (the choice of representation, selection, recom-
bination, and mutation operators) thereby setting a
framework while still leaving quite a few items unde-
fined [11]. For instance, in a simple GA, while the
representation is a simple bitstring with its associated
operators, further details have to be given (population
size, choice of crossover and mutation operators, and
probabilities of application of these operators) before
having a running version of the algorithm. These al-
gorithm parameters greatly determine whether the al-
gorithm will find an optimal or near-optimal solution,
and whether it will find such a solution efficiently [11].
Choosing such operators and parameters is difficult,
no theoretical guidelines yet exist, and a great deal
of knowledge about EC is needed to make a sensi-
ble choice. The growing field of Automatic Parameter
Tuning is based on the idea that is possible to make
the choice of the parameters in an automatic way, with
minimal user intervention, but is at the moment only
described in recent papers (a good review of the state
of the art in the field can be found in reference [18])
and is not yet available in existing EC software pack-
ages.

GUIDE is a complete software environment that proposes
a solution for these two problems: first, it offers a framework
with a GUI, establishing in a practical and easy-to-visualize
way a clear paradigm to work with any EA. Second, it incor-
porates the latest results from current research on Adaptive
Parameter Tuning. This paper introduces a description of
the system (Section 2), and presents three current industrial
applications that use GUIDE under the frame of the Evotest
European Project: two from the automobile industry and
one from the software development industry (Section 3).

2. GUIDE
In order to Cross the Chasm [21] and bring the benefits of

EC to the research and industry communities it is imperative
to find a way to let the user easily interact with a research
tool. In the case of an EC tool, this idea amounts to“asking”
the user only for what they know about: (1) what is the

problem? (i.e., how can the problem be encoded?) and,
(2) how to recognize a good solution for the problem? Other
than that, they needn’t be concerned with any of the details
that advance practitioners in the field of EC have to know
about.

2.1 Defining an Evolutionary Algorithm
GUIDE lets the user intuitively define an EA, either pro-

gramatically through an API (as in the case where a third-
party application interfaces with it) or by means of a GUI.

We show in this Section hints of the GUI interaction; inter-
facing with the API is completely equivalent, from a func-
tional point of view. This definition has 3 parts: the rep-

resentation, or how to describe a possible solution of the
problem at hand, the fitness function, or how to evaluate
the quality of possible solutions, and the Evolution Engine,
or how to possibly describe the different selection mecha-
nisms of an EA.

2.1.1 Representation

Rationale: Solving a given problem with an EA starts with
specifying a representation of the candidate solutions (the
“individuals” of the population). There has been for some
time now a body of research dedicated to searching for a
problem-independent representation: a certain representa-
tion that could be easily instantiated and directly used inde-
pendently of the problem. This search is focused on finding
regularities or properties of a general search space, and then
reaching conclusions valid for any representation mapping
into that search space.

Early work that has been published in that respect start
with John Holland’s Schema Theory [14]. The Schema The-
ory argues for the optimality of binary encoding (i.e., bit-

string encoding is the most efficient encoding for any prob-

lem), which is proven for finite search spaces. It was heavily
argued (in [1, 22, 25, 23, 24]) and later proved (in [32, 33])
that no single representation can be better than any other
for all problems. Then the search for a universal representa-
tion had to be switched to the more realistic goal of guiding
the user towards the specification of a sensible representa-
tion for their problem.

An extension of Holland’s ideas is the Forma Theory, orig-
inally developed by Radcliffe [22, 25, 23, 24] and continued
later with Surry [26, 27, 28, 30, 31]. It is both an attempt
to generalize the Schema Theory, and, more importantly,
to link it more tightly with the problem at hand. Radcliffe
and Surry do not claim there exists one optimal represen-
tation for any problem, but instead they build their ideas
on the existence of a family F of representations that are
optimal. Radcliffe and Surry’s ideas were later extended by
Droste and Wiesmann [29, 9], essentially discussing condi-
tions needed to achieve convergence on the search.

The Forma Theory approach would indeed provide a rep-
resentation family containing any specific problem if all con-
crete representations could be proven to be in F . But it
has been shown that some widely used representations, like
parse-trees (commonly used for Genetic Programming), can-
not be expressed in this formalism.

In light of these research results, in GUIDE we have taken
the approach of asking the user for some details about the
representation. Note that, no matter what representation is
chosen, there are a certain number of details that have to be
defined in order to apply an EA: how to create (initialize)
the population, and how it is modified (mutated and com-

bined). In other words defining a representation for an EA
not only requires the specification of the actual structure: it
also involves the specification of the functions that modify
this structure.

GUIDE provides three ways of helping with this specifi-
cation: first, it has a GUI that a user can manipulate (or
an API that can be used from within a program). Second,
it provides a set of operators (dynamically loaded from an
external repository) that apply to the specific types involved

in the definition of the problem. Third, it provides default
values for the operators; that way, the definition of those
operations becomes optional for the user.

For example, when a user chooses to use a real as the rep-
resentation of her problem she has to specify how to initial-
ize and modify each individual generated by an EA. GUIDE
provides, for the chosen type real, some pre-defined func-
tions with chosen defaults:

• Initialization: available are Uniform (taking a value
uniformly in the interval of definition) and Gaussian

(choosing a value by sampling a Gaussian function
with mean the middle of the interval and with standard
deviation a third of the length of interval of definition).
Default is Uniform.

• Mutation: Uniform or Gaussian, defined as in the
initialization description. Default is Gaussian.

• Crossover: Exchange (children exchange parents’ val-
ues), Linear (children take a linear combination of
their parents’ values), Middle (children take the mid-
dle point of their parents’ values) or Gaussian (chil-
dren sample a Gaussian distribution defined by the
parents’ values). Default is Gaussian.

The same type of choices arises for every representation
defined. Note that the operators needed for structured rep-
resentations (e.g., “vector of reals”) can be defined using the
operators present for basic representations. We give more
details below.
Representation and operators in GUIDE: More pre-
cisely, an individual in GUIDE is defined through the use of
basic types and containers, that can be recursively used
to construct complex structures through the GUI. The cor-
responding ‘structure’ for the operators is built at the same
time without any action from the user, as detailed below.

• Basic types are types that can’t be defined using
other types. Available in GUIDE are enumeration,
boolean, integer, real value and permutation.

• Containers are places to hold different instances of
other sub-structures in a recursive way. They are ei-
ther heterogeneous or homogenous. The heterogeneous
container, termed tuple, is a simple list of other sub-
structures. Homogenous containers contain several in-
stances of the same partial type, and are distinguished
by the number of instances of the sub-structures they
contain (either fixed or variable), and by whether or
not the order of those sub-structures is relevant. This
gives the 4 possibilities: ‘ordered’ containers are vec-
tors (fixed length) and lists (variable length) and order-
independent containers are called bags (fixed length)
and sets (variable length).

The main reason for distinguishing those 4 types (vec-
tors, lists, bags and sets) is that their characteris-
tics dictate the definition and application of the corre-
sponding operators (initialization, crossover and muta-
tion). For instance, the number of sub-structures to be
initialized by the initialization operator is either fixed
or uniformly drawn in a given interval.

From there on, default operators can easily be defined
for containers, that either act at the container level

(e.g., add or delete sub-structures for variable-length
containers; 1-point crossover on vectors) or call the
corresponding operator on the sub-structures (e.g., the
‘flip’ mutation operator of any container sequentially
calls the available mutation operator of each one of
its substructures with a given probability – by default,
1/n where n is the number of sub-structures).

We want to stress here again that the user is only asked
to provide a description of the structure of the possible solu-
tions of the problem at hand. Default operators will be set
up by GUIDE automatically. Though some of those opera-
tors seem to require some parameters, only those parameters
that are part of the definition of the structure will be asked
to the user.

Another important feature of GUIDE is its flexibility: all
the above-mentioned default values can be overridden by
the user in the GUI, clicking on the corresponding tag. The
curious user will gradually acquire deeper and deeper under-
standing of the principles of an EA by looking at the opera-
tors that are actually used in the corresponding of GUIDE,
and start to change them, checking the effect on the be-
havior of the algorithm. Ultimately, the advanced user can
even include his own hand-made operators. Local and spe-
cific improvements could hence be rapidly disseminated to
all colleagues who do not want to know about EC in detail.

2.1.2 The Fitness Function

Once the representation for the problem has been chosen,
a measure of quality for the solutions has to be defined. This
is clearly related to the problem being solved: fitness-based
selection implements the paradigm of natural selection, and
is the force that represents the drive toward quality improve-
ments in an EA. The knowledge the user brings from his(her)
field of expertise into the resolution of their problem has to
be somehow fed into the system that is solving it, and the
fitness function very often is the only information about the
problem in the algorithm.

GUIDE provides a basic screen allowing the user either
to write her/his own fitness function, or to specify where
the code or executable program for the fitness function is
located (specification of the API is provided in this latter
case). Details on the definition can be found in GUIDE’s
manuals (documents hosted in guide.gforge.inria.fr). It
is worth noting that this is the only place where any kind of
programming is needed in order to use GUIDE.

2.1.3 The Evolution Engine

After defining the representation and the fitness function,
the framework for an EA is completed. However, there are
still some undefined points in order to have a running version
of the algorithm: the details about exactly how to carry
out the operations defined by the representation definition.
These are called the parameters of the evolution engine, and
are illustrated by boxes and comments in Alg. 1

The evolution engine parameters define the fine-tuned func-
tioning of the algorithm: how many individuals form the
population (line 1), the stopping condition of the algorithm
(line 3), and the details about the internal dynamics of a
generation: the way the parents are selected to become gen-
itors (line 4), the way those genitors are recombined in or-
der to yield the offspring (line 5) and the way that offspring
replaces the old population in order to form the new popu-
lation (line 7).

Algorithm 1 Parameters of an Evolutionary Algorithm

1: Initialize population.{How many individuals ?}
2: Evaluate (compute fitness of) all individuals

3: while not STOP do {Good stopping condition?}

4: Select genitors from parent population {How? }

5: Create offspring using variation operators on geni-
tors {stochastically?}

6: Evaluate newborn offspring

7: Replace some parents by some offspring {How?}

8: end while

GUIDE has a very user friendly screen dedicated to the
evolution engine. A snapshot is presented in Fig 1. This part
was carefully designed for clarity, as a user’s understanding
of the relevant parameters is central to the use of our tool.
A side effect, here again, is that it makes GUIDE a great
tool for teaching Evolutionary Computation.

While the problem-specific points have to be specified by
the users (as they are the only ones to know what the prob-
lem is about, in the end), we believe that the parameters can
be chosen in automatic ways. There is a strong community
of research in this area, exemplified by the workshops held
regularly in EC conferences, or by the printing of the lat-
est books (see, for example, [18]). GUIDE contains initial
implementations of some of the latest results on the area:
a method to perform basic dynamic choice of evolutionary
operators based on past performance ([12]) and an initial im-
plementation of the Racing method [3], which is a method
that optimizes all parameters of an EA.

2.2 Features of GUIDE
Now that we have presented GUIDE from an user’s point

of view we would like to present the characteristics that we
think are most important in the framework, along with the
theoretical motivations behind them. GUIDE follows the
idea of the first library implemented under the theoretical
developments of representation-independence: EO [15]. In-
deed, despite good theoretical advances, no practical imple-
mentation of the idea of finding a representation-independent
EA existed other than a first effort by Radcliffe and Surry
(they implemented a description language called Repro-
ductive Plans Language, but their efforts stopped there).
From this effort, Keijzer et al. [15] developed a representation-
independent framework called EO (for Evolving Objects –
eodev.sourceforge.net). Its design principles implement
a syntax-based forma theory, differing from the full-fledged
Forma Theory in that the equivalence relations (and there-
fore the formæ) are built purely from syntactic information
from the structure of the representation.

However, EO still requires, for each new representation,
a careful design of the corresponding initialization and vari-
ation operators. A very basic idea implemented in GUIDE
is to provide generic basic types, with associated operators,
that could be reused when constructing the final represen-
tations. In that way, all the skeletons of the representations
would be problem-independent. GUIDE is in fact an ab-
straction layer for the user or for the application that wants
to use a meta-heuristic as means of finding a solution (this
idea is represented on Fig. 2). It uses a description lan-
guage [6] to manipulate the basic types and associated ini-

tialization and variation operators, and fully implement the
different types of representation-independent operators.

Figure 2: GUIDE using different Evolutionary Li-
braries (EO and ECJ, in this case)

GUIDE can, theoretically, generate code for any library
or programming language; in practice we have followed the
opinion handed by Gagné and Parizeau, who performed a
survey of existing evolutionary frameworks in [13]. The
authors conclude that only 3 of them fulfill their criteria
for genericity: ECJ [19], EO (although they express some
restriction regarding the configurable output aspect) and
OpenBeagle (described in the last section of [13]). The
current implementation of GUIDE allows for code gener-
ation in EO (C++) and ECJ (Java – cs.gmu.edu/~eclab/

projects/ecj/). The addition of more libraries requires rel-
atively little work, as it only involves the definition of tem-
plates in Velocity (velocity.apache.org) for the specific
language.

The main features of GUIDE can be summarized as fol-
lows:

1. Target public: as stressed through the paper, our
main objective is to bring the main ideas of the field of
EC to the larger community of researchers. However,
it is important to stress that the users of this technol-
ogy have to be able to describe the problem they are
trying to solve. In the domain of EC this requirement
is visible on the fact that the fitness function has to be
programmed by the user in order to use it in GUIDE.
This requirement is very reasonable, as the definition
of the fitness function is part of the description of the
problem. Other than this, no programming is needed
in order to use GUIDE.

2. Management as a software product: it is main-
tained by a group of developers, and publicly offered
at guide.inria.gforge.fr under a CeCILL-C license1

1 The CeCILL family of licenses was first released in
July 2004 by the initiative of three French research orga-
nizations, CEA, CNRS and INRIA. CeCILL is the first
license defining the principles of use and dissemination of
Free Software in conformance with French law, following the
principles of the GNU GPL. The license is backed by identi-
fied, French, law; this is a plus in case of litigation and thus
incites confidence, especially concerning the use and devel-
opment of free software in business. CeCILL is fully compat-
ible with GNU GPL. For more details and discussion, please
see (www.cecill.info/index.en.html) and www.inria.fr/
actualites/inedit/inedit47_actu.en.html

Figure 1: Evolution engine specification in GUIDE.
The engine is represented with its values, and in graphical form.

in order to be further developed by the community. It
is a pure Java application, and thus it runs on any
architecture able to run a Java virtual machine.

3. Code generation: starting from a high-level descrip-
tion of an EA it generates the actual code (in a spec-
ified programming language) that can be executed as
a normal computer program. It liberates the user
from the burden of investing time in understanding
programming details that are probably superfluous in
their everyday research life. It can generate code on
several platforms and languages, and other libraries
can be added on request.

4. Allows easy user-understanding of EA ideas and
incorporates results from the research commu-
nity, particularly in the sub-field of automatic para-
meter tuning.

3. CURRENT INDUSTRIAL APPLICATIONS
In this Section we present three examples of current in-

dustrial applications that are using GUIDE (embedded on a
higher-level framework) in order to perform testing on their
software systems.

Testing is at the moment the most used quality assurance
technique for software systems. However, the development
of cost effective and high-quality complex systems opens
challenges that cannot be faced only with traditional test-
ing approaches. Automation of difficult and time-consuming
tasks like test case design seems to be the only way to mas-
ter the complexity, and develop quality systems within a
competitive amount of time.

Evotest is a multidisciplinary project that combines the
power of evolutionary adaptive techniques with software en-
gineering techniques like slicing, program transformation and

reliability analysis in order to find solutions to the problems
of testing software systems and dealing with its complexity.

Now, in order to provide results on how effective and how
efficient the use of Evolutionary Testing is for functional
testing and how applicable it is in industrial practice exten-
sive case studies must be defined and carried out. A case
study will also detect weaknesses in the Evolutionary Test-
ing Concept and will contribute to further improvements in
Evolutionary Testing technology.

GUIDE is the evolutionary engine generator for the soft-
ware system produced by the Evotest European Project
(www.evotest.eu). The goal of Evotest is to perform test-
ing on software programs using the power of EC. Under
Evotest we have developed, with the rest of the partners,
a framework that allows the development of testing scenar-
ios (the framework will be referred to as ETF for the rest
of this paper). The software architecture for the ETF is
presented on Fig. 3 (taken from [16]). GUIDE is the evo-
lutionary engine generator for this framework; its role is to
generate, following the specifications produced by the users
through the ETF, the engine performing the evolutionary
search. This (generated) engine is identified on the middle
bottom of Fig. 3, labeled as EvolutionaryEngine.

The objective of work with the ETF is to perform testing
on software programs using the power of EC, and thus to
use the Evolutionary Testing Concept on real-world stud-
ies; Evotest case study partners will evaluate this concept
by applying the resulting framework to problems of their re-
spective application domain. Here we present three of the
problems, with a short introduction of the application do-
main and the objective to be reached by each of them.

1. Daimler’s automotive case studies:

Daimler uses ETF to perform automotive case stud-
ies taken from serial production developments of the

Figure 3: Evotest’s ETF. GUIDE generates the engine labeled as EvolutionaryEngine.

power train development divisions, the vehicle dynam-
ics development divisions or from driver assistance sys-
tem developments.

Currently Daimler is working with their Adaptive Cruise
Control (ACC) systems. The 1st generation ACC sys-
tem was introduced in the Actros (Mercedes truck)
in June 2000 while the 2nd generation ACC system
was introduced in January 2005. MB Passenger Cars
is currently working on the 3rd generation ACC. The
proximity control function (ACC) is mainly used in
the long-distance haulage sector, on freeways, high-
ways or expressways as well as routes similar to free-
ways with curvature radiuses larger than 250m. The
ACC’s sensor system must therefore be capable of re-
liably detecting the traffic situations relevant to this
area. These also include construction site areas or ar-
eas with changed traffic routing. Many accidents are
rear-end collisions on highways. When activated, the
purpose of ACC is not only to maintain a given speed
but also to control the distance to preceding vehicles
and thus prevent accidents.

Safety-critical requirements are tested. For this pur-
pose input parameters (continuous signals) represent-
ing a specific real world scenario must be determined
that yield a violation of the requirement under investi-
gation. Safety requirement violations to consider are:

(a) The system does not intervene in a critical situa-
tion, possibly leading to a collision.

(b) The system still intervenes even though the situ-
ation is not critical anymore.

(c) The system intervenes even though the situation
is not critical at all.

(d) The system neglects the driver’s intent to deac-
tivate the system by using the turn signals or by
accelerating.

(e) Safety requirements on handling merging vehicles.

The most evident safety requirement to be tested is the
compliance with the safety distance to the preceding
vehicle.

2. Berner & Mattner Systemtechnik GmbH (BMS)
automotive case studies: BMS uses the ETF in
conjunction with some proprietary tools and simula-
tors in order to test the performance of an anti-lock
braking system (ABS). An ABS is a system which pre-
vents the wheels of a vehicle from locking while brak-
ing, in order to allow the driver to maintain steering
control under heavy braking and, in most situations,
to shorten braking distances. ABS is very effective at
braking in adverse weather conditions like ice, snow or
rain. When ABS equipped brakes are depressed hard -
like in an emergency braking situation - the ABS sys-
tem pumps the brakes several times per second. Sen-
sors measure the speed at which the wheels are turn-
ing. If the speed decreases rapidly, the electronic con-
trol system reports blocking danger. The pressure of
the brake hydraulics is reduced immediately and then
raised to just under the blocking threshold. This pro-
cess can be repeated several times per second. The
goal of the anti-locking control system is to maintain
the slip of the wheels at a level which guarantees high-

est braking power and highest maneuverability of the
vehicle.

For the testing of the anti-lock braking system input
values for the input signals of the system have to be
provided by the individuals generated. Typical input
signals for the anti-lock braking system are the wheel
speeds for the wheels of the vehicle and the braking
torque requirement resulting from the driver pressing
the brake pedal (probably supported by driver assis-
tance systems controlling the overall vehicle perfor-
mance). Additionally, individuals have to control pa-
rameters of the simulation environment, e.g., the grip
of the roadbed and the road conditions (icy road, wet
road, gravel road), temperature of the brake discs. The
individuals have to define input signals and simulation
parameters for several seconds of realtime simulation
of a braking maneuver.

3. RILA’s software case study: The system under
test is called ChatPC. ChatPC is a dynamic display
augmentative communication device using a ruggedi-
zed PocketPC. It offers symbol-based, dynamic-screen
communication. ChatPC is intended for individuals
with existing or emerging literacy skills or using sym-
bols for communication. It has all the features neces-
sary to use and create vocabulary sets using symbols
and photographs as well as spelling enhancement tools.
ChatPC provides Word Prediction, Letter Prediction
and Abbreviation Expansion. The main ChatPC ap-
plication is built upon a PocketPC.

ChatPC software package has two main applications
- the client software which can operate on a mobile
device or desktop computer and provides GUI to the
user and a desktop-based editor for the client’s con-
tent. The editor includes capability to import photos
and other graphics that can be used as symbols in the
content, loaded in the client software. Customization
capabilities include the size, color, background, sym-
bol/image, font and associated action of the rendered
buttons as well as touch-screen button layout and link-
ing between pages. ChatPC can generate speech in
English, French, or Spanish and switch between them
dynamically. ChatPC can provide access to its func-
tionality either by a pointing device which can directly
select buttons on the screen (stylus or fingertip on the
touch screen, mouse, movement/gaze tracking system)
or by using a specialized interactive mode called switch
scanning where external switches can be used for nav-
igation by mobility-impaired people.

4. FUTURE WORK
We consider that our efforts in further development will

follow two main directions: first, improving and extending
the feedback given to the user. Some advanced visualiza-
tion capabilities are still missing in GUIDE; we believe that
a clear vision of how the genome is changing over the gen-
erations is one of the key features allowing a user to make
informed choices about the run of an EA.

We are also aware that, though GUIDE covers most in-
dustrial needs in term of the representation of solutions the
main missing part is the representation of parse trees as used
in Genetic Programming [17, 2]. It is true that few indus-
trial applications seem to be concerned with GP; this can

actually be the result of the lack of a user-friendly program-
ming environment for developing GP applications, and thus
justify that tree structures are added to GUIDE.This addi-
tion represents a large amount of work, mainly due to the
difficulties associated with a sensible graphic representation
of solutions.

Another important area that is rapidly growing in our field
and concerns many industrial application is multi-objective
optimization [7, 4]. Most real-world problems are in fact
multi-objective, even if they are often transformed in single-
objective problems for the sake of simplicity. From the EC
point of view, the ‘only’ part that needs to be modified in
GUIDE so that it is able to handle multi-objective problems
is the Evolution Engine (and the template for the fitness
function, that would have to return a vector of values). In-
deed, the largest part of GUIDE, the easy specification of
representation and operators, is exactly the same for both
single- and multi-objective EAs. This extension can hence
be envisioned in a rather short term.

5. CONCLUSION
In this paper we presented GUIDE, a software framework

that allows the easy and efficient manipulation of evolution-
ary algorithms. Based on a high-level description provided
by the user, it generates a complete ready-to-use evolution-
ary algorithm, fully executable as a stand-alone application.
Moreover, the ideas implemented in the application allow
for a straightforward understanding of EC ideas, while at
the same time incorporating results from the research com-
munity, like the automatic tuning of some of the sensitive
parameters of the algorithm, both off-line (using Racing
techniques) and on-line (using Adaptive Operator Selection
methods).

We also described 3 industrial applications where GUIDE
is actively used, all related to evolutionary software testing:
Daimler’s Adaptive Cruise Control testing, BMS’s anti-lock
braking system, and RILA’s ChatPC software product. All
three are actively using GUIDE as part of a set of tools pro-
vided under the umbrella of the Evotest European Project.

The need for GUIDE is motivated by our belief of the
necessity of a common ground in our field, both in theory
and communication, but also in practice; a main unifying
idea from EC practitioners must reflect a single view for
newcomers to the field. We argue in this paper that one
big step toward such grouping ideas of the field can be the
use of a unified environment, that will be useful not only
in order to disseminate our work and research outside our
community, but even to a better understanding and a faster
fostering of ideas inside our field.

We believe that GUIDE is a good proposal for the be-
ginning of a solution for the problem of making EAs widely-
known, both in industry and in academia. As a further proof
of concept, GUIDE is being used on a educational level for
some courses on EC.

Acknowledgments

The authors would like to acknowledge the important role
played by the industrial partners of Evotest (European Project
number IST-33472) in the development of this work. One of
the authors (Luis Da Costa) is funded by this project.

6. REFERENCES

[1] J. Antonisse. A new interpretation of schema notation
that overturns the binary encoding constraint. In J. D.
Schaffer, editor, Proc. ICGA’89, pages 86–91. Morgan
Kaufmann, June 1989.

[2] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.
Genetic Programming — An Introduction On the

Automatic Evolution of Computer Programs and Its

Applications. Morgan Kaufmann, 1998.

[3] M. Birattari, T. Stützle, L. Paquete, and
K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In Proc. GECCO’02. Morgan
Kaufmann, 2002.

[4] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving

Multi-Objective Problems. Kluwer Academic
Publishers, New York, 2002. ISBN 0-3064-6762-3.

[5] P. Collet and M. Schoenauer. GUIDE: Unifying
evolutionary engines through a graphical user
interface. In P. Liardet, P. Collet, C. Fonlupt,
E. Lutton, and M. Schoenauer, editors, Evolution

Artificielle, 6th International Conference, volume 2936
of Lecture Notes in Computer Science, pages 203–215,
Marseilles, France, 27-30 Oct. 2003. Springer. Revised
Selected Papers.

[6] L. Da Costa. Specification of language description.
Technical report, INRIA Futurs, 2007. Produced as
Evotest’s Deliverable 3.2. EvoTest is identified as
EU-IST STREP FP6-IST-2006-33472.

[7] K. Deb. Multi-Objective Optimization Using

Evolutionary Algorithms. John Wiley, 2001.

[8] K. DeJong. Evolutionary Computation. A unified

Approach. MIT Press, 2006.

[9] S. Droste and D. Wiesmann. On representation and
genetic operators in evolutionary algorithms. Technical
Report CI–41/98, Universität Dortmund, 1998.

[10] A. Eiben and J. Smith. Introduction to Evolutionary

Computing. Springer Verlag, 2003.

[11] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E.
Smith. Parameter Control in Evolutionary
Algorithms. In F. Lobo, C. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms,
chapter 2, pages 19–46. Springer Verlag, 2007.

[12] A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag.
Extreme value based adaptive operator selection. In
Parallel Problem Solving from Nature– PPSN X,
volume 5199/2008, pages 175–184. Springer Berlin /
Heidelberg, 2008.

[13] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.
International Journal on Artificial Intelligence Tools,
15(2):173–194, 2006.

[14] J. H. Holland. Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor,
1975.

[15] M. Keijzer, J. J. Merelo, G. Romero, and
M. Schoenauer. Evolving Objects: a general purpose
evolutionary computation library. In P. C. et al.,
editor, Evolution Artificielle’01, pages 229–241. LNCS
2310, Springer Verlag, 2002. URL:
http://eodev.sourceforge.net/.

[16] G. Kock, J. Hänsel, and J. Gerlach. Automated
evolutionary testing architecture. Technical report,

Fraunhofer FIRST, November 2007. Produced as
Evotest’s Deliverable 5.1. EvoTest is identified as
EU-IST STREP FP6-IST-2006-33472.

[17] J. R. Koza. Genetic Programming: On the

Programming of Computers by means of Natural

Evolution. MIT Press, Massachusetts, 1992.

[18] F. Lobo, C. Lima, and Z. Michalewicz, editors.
Parameter Setting in Evolutionary Algorithms.
Springer, 2007.

[19] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki,
J. Bassett, and R. Hubley. ECJ: Evolutionary
computation in java.

[20] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolution Programs. Springer Verlag, New-York,
1992-1996. 1st-3rd edition.

[21] G. A. Moore. Crossing The Chasm. Collins Business,
revised (aug 8 2002) edition, 2002. ISBN-10:
0060517123; ISBN-13: 978-0060517120.

[22] N. J. Radcliffe. Equivalence class analysis of genetic
algorithms. Complex Systems, 5:183–20, 1991.

[23] N. J. Radcliffe. Forma analysis and random respectful
recombination. In R. K. Belew and L. B. Booker,
editors, Proc. ICGA’91, pages 222–229. Morgan
Kaufmann, 1991.

[24] N. J. Radcliffe. Nonlinear genetic representations. In
R. Manner and B. Manderick, editors, Proc. PPSN’92,
pages 259–268. Morgan Kaufmann, 1992.

[25] N. J. Radcliffe. Set recombination and its application
to neural network topology optimisation. Neural

Computing and Applications, 1(1):67–90, 1993.

[26] N. J. Radcliffe and P. D. Surry. Formal memetic
algorithms. In T. Fogarty, editor, Evolutionary

Computing: AISB Workshop, pages 1–16. Springer
Verlag LNCS 865, 1994.

[27] N. J. Radcliffe and P. D. Surry. Fitness variance of
formae and performance prediction. In L. D. Whitley
and M. D. Vose, editors, Foundation Of Genetic

Algorithms 3, pages 51–72. Morgan Kaufmann, 1995.

[28] N. J. Radcliffe and P. D. Surry. Real representations.
In L. D. Whitley and R. K. Belew, editors, Foundation

Of Genetic Algorithms 4, pages 51–72. Morgan
Kaufmann, 1997.

[29] B. Sendhoff, M. Kreutz, and W. von Seelen. A
condition for the genotype-phenotype mapping:
Causality. In T. Bäck, editor, Proc. ICGA’97. Morgan
Kaufmann, 1997.

[30] P. Surry. A Prescriptive Formalism for Contructing

Domain-specific Evolutionary Algorithms. PhD thesis,
University of Edinburgh, 1998.

[31] P. D. Surry and N. J. Radcliffe. RPL2: A language
and parallel framework for evolutionary computing. In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
PPSN’94, pages 628–637. Springer Verlag, 1994.

[32] D. Wolpert and W. Macready. No Free Lunch
Theorems for Search. Technical report, Santa Fe
Institute, 1995.

[33] D. Wolpert and W. Macready. No Free Lunch
Theorems for Optimization. IEEE Transactions on

Evolutionary Computation, 1(1):67–82, 1997.

