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Abstract. Sharing huge databases in distributed systems is inherently difficult.
As the amount of stored data increases, data localization techniques become no
longer sufficient. A more efficient approach is to rely on compact database sum-
maries rather than raw database records, whose access is costly in large distrib-
uted systems. In this paper, we propose PeerSum, a new service for managing
summaries over shared data in large P2P and Grid applications. Our summaries
are synthetic, multidimensional views with two main virtues. First, they can be
directly queried and used to approximately answer a query without exploring the
original data. Second, as semantic indexes, they support locating relevant nodes
based on data content. Our main contribution is to define a summary model for
P2P systems, and the algorithms for summary management. Our performance
evaluation shows that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

1 Introduction

Research on distributed systems is focusing on supporting advanced applications which
must deal with semantically rich data (e.g. XML documents, relational tables, etc.),
using a high-level SQL-like query language. As a potential example of applications,
consider the cooperation of scientists who are willing to share their private data for
the duration of a given experiment. Such cooperation may be efficiently supported by
improving the data localization and data description techniques.

Initially developed for moderate-sized scientific applications, Grid technology is
now evolving to provide database sharing services, in large virtual organizations. In [9],
a service-based architecture for database access (OGSA-DAI) has been defined over the
Grid. OGSA-DAI extends the distributed database architecture [13] to provide distrib-
ution transparency using Web services. However, it relies on some centralized schema
and directory management, which is not an adequate solution for supporting highly
dynamic organizations, with a large number of autonomous members.

Peer-to-Peer (P2P) techniques that focus on scaling up, dynamicity, autonomy and
decentralized control can be very useful to Grid data management. The complemen-
tary nature of the strengths and weaknesses of the two technologies suggests that the
interests of the two communities are likely to grow closer over time [6]. For instance,
P-Grid [1] and Organic Grid [3] develop self-organizing and scalable services on top of
P2P systems.



In unstructured P2P systems, query routing relies on flooding mechanisms which
suffer from high query execution cost and poor recall. To improve performance, several
techniques have been proposed to locate data relevant to a user query. These techniques
can be grouped in three classes: data indexing, mediation and content-based cluster-
ing. Data indexing maintains the location (e.g. [18], [15]) or the direction (e.g. [4]) to
nodes storing relevant data. However, efficient data indexes must be small, distributed
and refer to data based on their content, without compromising peer autonomy or man-
dating a specific network structure. Mediation consists in exploiting structural informa-
tion on data schemas to guide query propagation. For instance, in Piazza [19], a query
is propagated along pre-existing pairwise mappings between peer schemas. However,
many limitations prevent these techniques from scaling up. Content-based clustering
consists in organizing the network such that “similar” peers, e.g. peers answering simi-
lar queries, are grouped together ([12], [5]). Similarity between peers may be computed
using techniques of the two preceding classes (e.g. similarity between indexes [11]).

With the ever increasing amount of information stored into databases, data localiza-
tion techniques are no longer sufficient to support P2P data sharing. Today’s Decision-
Support and collaborative applications are typically exploratory. Thus, a user may pre-
fer a fast, approximate answer to a long, exact answer. In other words, reasoning on
compact data descriptions rather than raw database records, whose access is costly in
large P2P systems, may be much more efficient. For instance, a doctor asking queries
like “youngandfat patients diagnosed with disease X” may prefer descriptions of result
tuples to rapidly make a decision based on similar situations, treated by other doctors.

In this paper, we propose PeerSum, a new service for managing summaries over
shared data in P2P systems. Our summaries are synthetic, multidimensional views with
two main virtues. First, they provide an intelligible representation of the underlying data
such that an approximate query can be processed entirely in their domain; that is, inputs
and outputs are summaries. Second, as indexing structures, they support locating rele-
vant nodes based on their data descriptions. PeerSum is done in the context of APPA, a
network-independent P2P data management system [2].

This paper makes the following contributions. First, we define a summary model
which deals with the distributed and autonomous nature of P2P systems. Second, we
propose efficient algorithms for summary management. We validated our algorithmic
solutions through simulation, using the BRITE topology generator and SimJava. The
performance results show that the cost of query routing is minimized, while incurring a
low cost of summary maintenance.

The rest of this paper is organized as follows. Section 2 describes PeerSum’s sum-
mary model. Section 3 describes PeerSum’s summary management with its algorithms.
Section 4 discusses query processing with PeerSum. Section 5 gives a performance
evaluation with a cost model and a simulation model. Section 6 compares our solution
with related work. Section 7 concludes.

2 PeerSum summary model

In this section, we first present our summary model architecture and the principle of
summary construction in P2P systems. Second, we discuss the scalability issues of



the summarization process that is integrated to a peer DataBase Management System
(DBMS), to allow generating summaries of a relational database. Then, we formally
define the notion of data summary in a P2P network.

2.1 Model architecture

Our ultimate goal is to build a complete summary that describes the content of all shared
data sources. However, such a summary is ideal in the context of P2P networks, because
of their autonomous and dynamic nature. It is difficult to build and to keep this sum-
mary consistent relative to the current data instances it describes. In our approach, we

Fig. 1.Summary Model Architecture

adopt an incremental mechanism for summary construction, and define the notion of
“summary coverage” as follows.

Definition 1. Summary coverage.Thecoverageof a summaryS in a network of size
N is the fraction of the peers that own data described by the summaryS.

The coverage of a summary quantifies its convergence to the complete summary
which is obviously characterized by a coverage =1.

The architecture of our summary model is presented in Figure 1. Each peer gen-
erates the Local Summary (LS) of its database, which is characterized by the lowest-
coverage level. Then, it cooperates with other peers through exchanging and merging
summaries, in order to build a Global Summary (GS). The last one is characterized by
a continuous evolution in term of coverage. In fact, the cooperation between two sets of
peers, each having constructed a global summary, will result in a higher-coverage one.
That is, in a large P2P system, one could see the global summary as an intermediate
node in a global hierarchy where the virtual root is the ideal complete summary.

In this work, we propose fully distributed algorithms for global summary construc-
tion and maintenance. However, we will first give a brief description of the summariza-
tion process that generates summaries of relational databases with interesting features,
making it scalable in a distributed environment.



2.2 Summarization process: Scalability issues

A summarization process is integrated to each peer’s DBMS to allow constructing the
local summary level of Figure 1. Our approach is based on SAINT ETIQ [14], an on-
line linguistic approach for summarizing databases. The system is organized into two
separate web services. Thetranslation servicecorresponds to the pre-processing step
that prepares data for summarization while thesummarization serviceproduces a set of
summaries arranged in a hierarchy. A unique feature of the summary system is its use of
Background Knowledge(BK), a priori built on each attribute. It supports the translation
of descriptions of database tuples into a user-defined vocabulary. Descriptors used for
summary content representation are defined as linguistic variables [21] on the attribute
domain. For example, Figure 2 shows a user-defined vocabulary on the attributeage .
A detailed description of the SAINT ETIQ process is available in [14] and [16]. Con-
cerning our work, we are interested in the scalability of the summarization process in a
distributed environment.

Fig. 2.Fuzzy Linguistic Partition onage

Memory consumption and time complexity are the two main factors that need to
be taken care off in order to guaranty the capacity of the summary system to handle
massive datasets. First, the process time complexity is inO(n), wheren is the number
of tuples to incorporate into a hierarchy of summaries. Besides, an important feature
is that in the summary algorithm raw data have to be parsed only once and it is per-
formed with a low time cost. Second, the system requires low memory consumption
for performing the summary construction algorithm as well as for storing the produced
summaries. Moreover, a cache manager is in charge of summary caching in memory
and it can be bounded to a given memory requirement. On the other hand, the paral-
lelization of the summary system is a key feature to ensure a smooth scalability. The im-
plementation of the system is based on the Message-Oriented Programming paradigm.
Each sub-system is autonomous and collaborates with the others through disconnected
asynchronous method invocations. It is among the least demanding approaches in terms
of availability and centralization. The autonomy of summary components allows for a
distributed computing of the process.

2.3 Summary representation

A summaryz is a pair(Iz, Rz) whereIz is the intentional content of the summary
andRz is its extent, that is the group of database tuples described byIz. The intentIz



provides a short description ofz in terms of linguistic labels defined in the Background
Knowledge (BK) and used in the pre-processing step.

For our purpose, we consider a summary as an indexing structure over distributed
data in a P2P system. Thus, we added a third dimension to the definition of a summary
z: apeer-extentPz, which provides the set of peers having data described byz.

Definition 2. Peer-extent.Let z be a node in a given hierarchy of summariesS, and
P the set of all peers who participated to the construction ofS. Thepeer-extentPz

of the summaryz is the subset of peers owning, at least, one record of its extentRz:
Pz = {p ∈ P | Rz ∩Rp 6= ∅} , whereRp is the view over the database of nodep, used
to build summaries.

Due to the above definition, we extend the notion ofdata-orientedsummary in a
given database, to asource-orientedsummary in a given P2P network. In other words,
our summary can be used as a database index (e.g. referring to relevant tuples), as well
as a semantic index in a distributed database system (e.g. referring to relevant nodes).

A summary is an edge in the tree structure finally produced by the summarization
service. The summary hierarchyS will be characterized by itsCoveragein the P2P
system; that is, the fraction of nodes (data sources) covered byS (see Definition1).
Relative to the hierarchyS, we callPartner Peera peer whose data is described by at
least a summary node ofS.

Definition 3. Partner peers.The set ofPartner peersPS of a summary hierarchy S is
the union of peer-extents of all the summary nodes:PS = {∪z∈SPz} .

By now and for convenient purpose only, we designate by “summary” a hierarchy of
summaries maintained in a P2P system, unless otherwise specified.

3 Summary management in PeerSum

We present PeerSum, a summary management service for P2P systems. First, we study
the integration of PeerSum in an existing P2P architecture. Here we work in the context
of APPA (Atlas Peer to Peer Architecture) [2]. Then, we propose algorithms for Peer-
Sum’s summary management. APPA has a network-independent architecture so it can
be implemented over different types of P2P networks. APPA provides three layers of
services: P2P network, basic services and advanced services. PeerSum is integrated at
the advanced layer and defined based on the underlying services. Due to space limita-
tions, we will only mention the services required for PeerSum definition. According to
Section 2.1, PeerSum must address the following requirements:

– Peers construct individually their local summaries,
– Peers cooperate for exchanging and merging summaries into a global summary,
– Peers share a common storage in which the global summary is maintained.

The first point is addressed by integrating the summarization process, previously de-
fined, to each peer’s DBMS. Second, the peer linking and peer communication services
of the APPA’s P2P network layer allow peers to communicate and exchange messages



(through service calls), while cooperating for a global summary construction. However,
two problems arise from the heterogeneous nature of peers in a P2P system. First, peers
may have different processing and storage capabilities. Therefore, a main function of
PeerSum is to ensure a distributed operation for summary merging. A partner peer that
requires merging two summaries, calls the service which then delegates the right peers
to perform merging calculations, using load balancing and distributed computing tech-
niques. This function can be implemented since the summarization process, at each
peer, can be distributed and parallelized, as discussed in Section 2.2.

Second, peers exchange summaries that are produced using local Background Know-
ledges (BKs). Thus, they may be represented in different vocabularies, making difficult
their shared exploitation. In this work, we assume that the participants to a collaborative
database application agree on aCommon Background Knowledge(CBK) that will be
used locally by each summarization process. An example of such a CBK is the Sys-
tematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [10], which is
a comprehensive clinical terminology covering diseases, clinical findings, and proce-
dures.

On the other hand, several works have addressed the problem of semantic hetero-
geneity in advanced P2P applications (e.g. [19], [2]). Since our summaries are data
structures that respect the original data schemas [16], we can assume that the techniques
they proposed for a decentralized schema management can be also used to overcome
the heterogeneity of summary representations, in the context of different BKs.

Finally, the P2P data management (P2PDM) service of the basic layer and the Key-
based Storage and Retrieval (KSR) service of the P2P network layer, work together to
provide a common storage in which a global summary is maintained. This common
storage increases the probability that “P2P data” (e.g. metadata, indexes, summaries)
produced and used by advanced services are available even if peers that have produced
them are disconnected. P2PDM and KSR manage data based on keys. A key is a data
identifier which determines which peer should store the data in the system, e.g. through
hashing over all peers in DHT networks or using super-peers for storage and retrieval
in super-peer networks. All data operations on the common storage are key-based, i.e.
they require a key as parameter.

In the following, we will describe our algorithms for summary construction and
maintenance. First, we work in a static context where all the participants remain con-
nected. Then, we address the dynamicity of peers and propose appropriate solutions.

3.1 Summary construction

Starting up with a local summary level (see Figure 1), we present the algorithm for peer
cooperation that allows constructing a global summaryGS. We assume that each global
summary is associated with aCooperation List(CL) that provides information about its
partner peers. An element of the cooperation list is composed of two fields. A partner
peer identifierPeerID, and a2-bit freshness valuev that provides information about the
freshness of the descriptions as well as the availability of the corresponding database.

– value 0 (initial value): the descriptions are fresh relative to the original data,
– value 1: the descriptions need to be refreshed,



– value 2: the original data are not available. This value will be used while addressing
peer volatility in Section 3.3.

Both the global summary and its cooperation list are considered as “summary data” and
are maintained in the common storage, using the P2PDM and KSR services.

Cooperation request The algorithm starts at aninitiator peerPinit who sends a coop-
eration request message to its neighbors, to participate to a global summary construc-
tion. This message containsPinit’s identifier and a given value of TTL (Time-To-Live).
One may think that a large value of TTL allows to obtain directly a high-coverage sum-
mary. However, due to the autonomous nature of P2P systems,Pinit may keep waiting
for a very long time without having constructed that global summary. Therefore, we
choose to limit the value to TTL and adopt an incremental construction mechanism, as
discussed in Section 2.1.

Cooperation response A peerp who receives the message, performs the following
steps. First, if the request has already been received, it discards the message. Else, it
saves the address of the sender as its parent. Then, its decrements TTL by one. If the
value of TTL remains positive, it sends the message to its neighbors (except theparent)
with the new TTL value. After propagating the message,p must wait to receive the
responses of its neighbors. However, since some of the neighbors may leave the system
and never response, the waiting time must be limited. We computep’s waiting time
using a cost function based on TTL, and network dependent parameters.

A cooperation response of a peerp has the following structure:Coop Resp =〈CS,
PeerIDs, GSKeys〉. CS is the current summary obtained atp, PeerIDs is the list of
identifiers of peers that have responded top, andGSKeys is the list of keys of global
summaries. Ifp is a partner peer, that is,p has already participated to an existing global
summary, itsCoop Resp will include the key of the global summary it knows, as well
as the peer identifiers contained in the correspondingCL, i.e. Coop Resp =〈∅, ex-
tractPeerIDs(CL),{GSKey}〉. In that case,p locates at the boundary of two knowl-
edge scopes of two different summaries. Hence, it allows merging them into a higher-
coverage one (i.e. incremental construction). Otherwise, its response will include its
local summary and its identifier, i.e.Coop Resp =〈p.LS,{p.ID}, ∅〉.

Summary data storage In the waiting phase, when a child’sCoop Resp arrives, a
parent peerp merges it with its own response by making the union ofPeerIDs and
GSKeys lists, and merging the current summaries. Once the time expires,p sends the
result to its parent. But, ifp is the initiator peerPinit, it will store the new summary data,
i.e. the new global summary GS and its cooperation list CL, using the KSR service:
GSKey := KSRinsert(CS, CL). CL contains each peer identifier obtained in the final
PeerIDs list, associated with a freshness valuev equal to zero. At the end,Pinit sends
the new key (GSKey) to all participant peers, which become GS’spartner peers.



3.2 Summary maintenance

A crucial issue for any indexing structure is to maintain the index, relative to the current
data instances, without incurring high costs. For a local summary, it has been demon-
strated that the summarization process guarantees an incremental maintenance, using a
pushmode for exchanging data with the DBMS, while performing with a low complex-
ity. In this section, we propose a strategy for maintaining a global summary based on
bothpushandpull techniques, in order to minimize the number of messages exchanged
in the system. The appropriate algorithm is divided into two phases: Data modification
and summary reconciliation.

Push: Data modification Let GS be a global summary andPGS the set of partner
peers. Each partner is responsible for refreshing its own element in theGS’s coopera-
tion list. A partner peerp observes the modification rate issued on its local summaryLS.
WhenLS is considered as enough modified,p sets its freshness valuev to 1, through a
push message. This value indicates that the local summary version being merged while
buildingGS does not correspond any more to the current instance of the database.

An important feature is that the frequency of push messages depends on modifica-
tions issued on local summaries, rather than on the underlying databases. It has been
demonstrated in [16] that, after a given process time, a summary becomes very stable.
As more tuples are processed, the need to adapt the hierarchy decreases. A summary
modification can be determined by observing the appearance/disappearance of descrip-
tors in summary intentions.

Pull: Service-Initiated reconciliation The summary service, in its turn, observes the
fraction of old descriptions (i.e. number of ones) in the cooperation list. Whenever
this fraction exceeds a threshold value, the global summaryGS must be refreshed. In
that case, the service pulls all the partner peers to merge their current local summaries
into the new version ofGS, which will be then under reconstruction. The algorithm is
described as follows.

A reconciliation message that contains a new summaryNewGS(initially empty),
is propagated from a partner to another. When a partnerp receives this message, it
first merges NewGS with its local summary. Then, it sends the message to another
partner (chosen from the cooperation list CL). Ifp is the last visited peer, it updates the
GS’ssummary data, using the KSR service. All the freshness values in CL are reset to
zero. This strategy guarantees a high availability of the summary data, since only one
KSR Update operation is performed by the last partner.

3.3 Peer dynamicity

In large P2P systems, a peer connects mainly to download some data and may leave
the system without any constraint. Therefore, the shared data can be submitted to a low
modification rate, while the rate of node arrival/departure is very important. We propose
now solutions for that peer dynamicity.



Peer arrival When a new peerp joins the system, it contacts some existing peers to
determine the set of its neighbors. If one of those neighbors is a partner peer,p becomes
a new partner: a new element is added to the cooperation list with a freshness value
v equal to one. Recall that the value1 indicates the need of pulling the peer to get
new data descriptions. Furthermore, ifp is a neighbor of two partners of two different
summaries, it allows merging them in a higher-coverage one (Section 3.1).

Peer departure When a partner peerp decides to leave the system, it first sets its fresh-
ness valuev to two in the cooperation list, through a push message. This value reminds
the participation of the disconnected peerp to the corresponding global summary, but
also indicates the unavailability of the original data. There are two alternatives to deal
with such a freshness value. First, we can keep the data descriptions and use it, when
a query is approximately answered using the global summary. A second alternative
consists in considering the data descriptions as expired, since the original data are not
accessible. Thus, a partner departure will accelerate the summary reconciliation initiat-
ing. In the rest of this paper, we adopt the second alternative and consider only a1-bit
freshness valuev: a value0 to indicate the freshness of data descriptions, and a value
1 to indicate either their expiration or their unavailability. However, ifp failed, it could
not notify its partners by its departure. In that case, its data descriptions will remain in
the global summary until we execute a new summary reconciliation. The reconciliation
algorithm does not require the participation of a disconnected peer. The global summary
GS is reconstructed, and descriptions of unavailable data will be then omitted.

4 Query processing

Now we discuss how a queryQ, posed at a peerp, is processed. Our approach consists
in querying at first the available summary . This allows an efficient peer localization
since we exploit data descriptions rather than structural information on data schemas, in
order to propagate the query. Besides, when an exact answer is not required, summaries
can directly provide approximate answers without accessing original database records.
Query processing proceeds in two phases: 1) query extension and 2) query evaluation.

4.1 Query extension

First, the queryQ must be extended to a flexible queryQ∗ in order to be handled by a
summary querying process. For instance, consider the following selection queryQ1:

Select BMI From Patient Where age≺ 30 And disease = “Malaria”

This phase consists in replacing the original value of each selection predicate by the
corresponding descriptors defined in the Background Knowledge (BK). According to
the fuzzy partition of Figure 2, the above query is transformed toQ∗:

Select BMI From Patient Where age In{young, adult} And disease =“Malaria”

1 Body Mass Index (BMI) is the patient’s body weight divided by the square of the height.



Let QS (resp.QS∗) be theQuery Scopeof queryQ (resp.Q∗), that is; the set of
peers that should be visited to answer the query. Obviously, the query extension phase
may induce false positives in query results. To illustrate, a patient having35 years old
will be returned as an answer to the queryQ∗, while the selection predicate on the
attributeage of the original queryQ is not satisfied. However, false negatives can not
occur which is expressed by the following inclusion:QS ⊆ QS∗.

In the rest of this paper, we suppose that a user query is directly formulated using
descriptors defined in the BK (i.e.Q = Q∗). As we discussed in the introduction of this
work, a doctor that participates to a given medical collaboration, may ask queryQ like
“the BMI of youngandadult patients diagnosed withmalaria”.Thus, we eliminate
eventual false positives that result from query extension.

4.2 Query evaluation

This phase deals with matching a set of summaries organized in a hierarchyS, against
the queryQ. The query is transformed into a logical propositionP used to qualify the
link between a summary node and the query.P is under a conjunctive form in which
all descriptors appears as literals. In consequence, each set of descriptors yields on cor-
responding clause. For instance, the above queryQ is transformed toP = (young OU
adult) ET (malaria). A valuation function has been defined to valuate the proposition
P in the context of a summary nodez. Then, a selection algorithm performs a fast ex-
ploration of the hierarchy and returns the setZQ of most precise summaries that satisfy
the query. For more details see [20]. OnceZQ determined, the query evaluation process
is able to achieve two distinct tasks depending on the user/application requirements:
1) Peer localization to return the original result records and 2) Summary answering to
return approximate answers.

Peer localization Since the extended definition of a summary nodez provides a peer-
extent, i.e. the set of peersPz having data described by its intent (see Definition 2), we
can define the setPQ of relevant peers for the queryQ as follows:PQ = {∪z∈ZQ

Pz}.
The queryQ is directly propagated to these relevant peers. Thus, a distinctive fea-

ture of our approach is that the number of hops the queries makes to find the matching
nodes is “ideally” reduced to one, and consequently, excessive delays are avoided. How-
ever, the efficiency of this query routing depends on the completeness and the freshness
of summaries, since stale answers may occur in query results. We define aFalse Posi-
tive as the case in which a peerp belongs toPQ and there is actually no data in thep
source that satisfiesQ (i.e. p /∈ QS). A False Negativeis the reverse case in which ap
does not belong toPQ, whereas there exists at least one tuple in thep data source that
satisfiesQ (i.e.p ∈ QS).

Summary answering Another distinctive feature is that a query can be processed en-
tirely in the summary domain. An approximate answer can be provided from summary
descriptions, without having to access original, distributed database records. The se-
lected summariesZQ are aggregated according to their interpretation of propositionP :
summaries that have the same required characteristics on all predicates (i.e.ageand



disease) form a class. The aggregation in a given class is a union of descriptors: for
each attribute of the selection list (i.e.BMI), the querying process supplies a set of
descriptors which characterize summaries that respond to the query through the same
interpretation [20]. For example, for the class{young, malaria}, we can obtain an out-
put setBMI = {underweight, normal}.

5 Performance evaluation

In this section, we devise a simple model of the summary management cost in PeerSum.
Then, we evaluate and analyze our model with a simulation.

5.1 Cost model

A critical issue in summary management is to trade off the summary updating cost
against the benefits obtained for queries.

Summary update cost Here, our first undertaking is to optimize the update cost while
taking into accountquery accuracy. In the next section, we discuss query accuracy
which is measured in terms of the percentage of false positives and false negatives in
query results. The cost of updating summaries is divided into: usage of peer resources,
i.e. time cost and storage cost, and the traffic overhead generated in the network.

Time cost: A unique feature of SAINT ETIQ is that the changes in the database
are reflected through an incremental maintenance of the summary hierarchy. The time
complexity of the summarization process is inO(n) wheren is the number of tuples
to be incorporated in that hierarchy [16]. For a global summary, we are concerned with
the complexity of merging summaries. Recently, a new MERGING method has been
proposed, based on the SAINT ETIQ engine. This method consists in incorporating the
leaves of a given summary hierarchyS1 into an anotherS2, using the same algorithm
described by the SAINT ETIQ summarization service. It has been proved that the com-
plexity CM12 of the MERGING(S1, S2) process is constant w.r.t the number of tuples.

Storage cost:We denote byk the average size of a summary node. In the average-
case assumption, there are

∑d
i=0 Bi = (Bd+1 − 1)/(B − 1) nodes in a B-arity tree

with d, the average depth of the hierarchy. Thus the average space requirement is given
by: Cm = k.(Bd+1 − 1)/(B − 1). Based on real test,k = 512 bytes gives a rough
estimation of the space required for each summary node. An important issue is that the
size of the hierarchy is quite related to its stabilization (i.e.B andd). As more tuples
are processed, the need to adapt the hierarchy decreases and incorporating a new tuple
may consist only in sorting a tree. Hence, the structure of the hierarchy remains stable
and no additional space is required.

According to the above discussion, the usage of peer resources is optimized by the
summarization process itself. Thus, we restrict now our focus to the traffic overhead
generated in the P2P network.

Network traffic: Recall that there are two types of exchanged messages:pushand
reconciliation. Let local summaries have an average lifetime ofL seconds in a given



global summary. OnceL expired, the node sends a (push) message to update its fresh-
ness valuev in the cooperation listCL. The reconciliation algorithm is then initiated
whenever the following condition is satisfied:

∑
v∈CL v/|CL| ≥ α whereα is a thresh-

old that represents the ratio of old descriptions tolerated in the global summary. During
reconciliation, only one message is propagated among all partner peers until the new
global summary version is inserted in the common storage. LetFrec be the reconcilia-
tion frequency. The update cost is:Cup = 1/L+Frec messages per node per second. In
this expression,1/L represents the number of push messages which depends either on
the modification rate issued on local summaries or the connection/disconnection rate of
peers in the system. Higher is the rate, lower is the lifetimeL, and thus a large number
of push messages are entailed in the system.Frec represents the number of reconcilia-
tion messages which depends on the value ofα. This threshold is our system parameter
that provides a trade-off between the cost of summary updating and query accuracy. If
α is large, the update cost is low since a low frequency of reconciliation is required,
but query results may be less accurate due both to false positives stemming from the
descriptions of non existent data, and to false negatives due to the loss of relevant data
descriptions whereas they are available in the system. Ifα is small, the update cost is
high but there are few query results that refers to data no longer in the system, and
nearly all available results are returned by the query.

Query cost We have seen that the use of summaries as data indexes may improve
query processing. When a queryQ is posed at a peerp, first it is matched against the
global summary to determine the set of peersPQ whose descriptions are considered as
answers. Then,Q is directly propagated to those peers. As a consequence, the number of
messages exchanged in the system is intended to be significantly reduced. Furthermore,
the cooperation list associated with a global summary provides information about the
relevance of each database description. Thus, it gives more flexibility in tuning the
trade-offrecall ρ / precisionπ of the query answers. LetV be the set of peers visited
while processing a query. Thenρ = |QS ∩ V |/|QS| andπ = |QS ∩ V |/|V |, where
QS is the set of all peers that really match the query (i.e.Query Scope).

The trade-off can be tuned by confronting the setPQ with the cooperation listCL.
The set of all partner peersPH in CL can be divided into two subsets:Pold = {p ∈
PH | p.v = 1}, the set of peers whose descriptions are considered old, andPfresh =
{p ∈ PH | p.v = 0} the set of peers whose descriptions are considered fresh according
to their current data instances. Thus, if a queryQ is propagated only to the setV =
PQ ∩ Pfresh, then precision is maximum since all visited peers are certainly matching
peers (no false positives), but recall depends on the fraction of false negatives in query
results that could be returned by the set of excluded peersPQ\Pfresh. On the contrary,
if the queryQ is propagated to the extended setV = PQ∪Pold, recall value is maximum
since all matching peers are visited (no false negatives), but precision depends on the
fraction of false positives in query results that are returned by the set of peersPold.

The above two situations are bounds of a range of strategies available to propagate
the query. In our experiments, we assumeV = PQ, the initial peer set. Thus, the cost is
computed asCQ = 2 · |PQ| number of messages.



5.2 Discussion

We evaluated the performance of PeerSum through simulation, using the SimJava pack-
age [7] and the BRITE [8] universal topology generator. We calibrated our simulator
using real data gathered in [17].

In a first set of experiments we quantified the trade-off between query accuracy
and the cost of updating a global summary. Interesting results showed that the fraction
of stale answers in query results is limited to3% for a network size lower than2000
peers. For the update cost, we observed that the total number of messages increases
with the number of peers, but not surprisingly, the number of messages per node remains
almost the same. In the expression of the update costCup, the number of push messages
for a given peer is independent of network size. On the other hand, the number of
reconciliation messages decreases slowly with the number of peers, for a given value
of the thresholdα. More interestingly, when the threshold value decreases (from0.8 to
0.3) we noticed a small cost increasing of1.2 on average. However, a small value of the
thresholdα allows to significantly reduce the fraction of stale answers in query results.
We concluded therefore that tuning our system parameter, i.e. the thresholdα, do not
incur additional traffic overhead in the system, while improving query accuracy.

In the second set of experiments, we compare our algorithm for query processing
against non-index/flooding algorithms which are very used in real life, due to their
simplicity and the lack of complex state information at each peer. Here, we limit the
flooding by a value3 of TTL (Time-To-Live). Our algorithm SI showed the best results
that can be expected from any query processing algorithm, when no stale answers occur
in query results (the ideal case). However, to give a real performance evaluation, we
decided to study our algorithm in the worst case where the stale answers occur in query
results. Even in that, SI showed a reduction of the number of messages, in comparison
with flooding algorithms, that becomes more important with a large size of network.
For instance, the query cost is reduced by a factor of3 for a network of2000 peers.

6 Conclusion

In this paper, we proposed PeerSum, a new service for managing data summaries in P2P
and Grid systems. PeerSum supports scaling up in terms of two dimensions: number of
participants and amount of data. As we discussed, our summaries are compact data
descriptions that can approximately answer a query without retrieving original records
from distributed databases. This is very interesting for Grid applications which tend to
be more data intensive. On the other hand, as indexing structures, they support locating
relevant data based on their content. Such semantic indexes are extremely efficient in
large distributed systems, where accessing data becomes difficult and costly. Besides,
we have addressed peer dynamicity which is critical in both P2P and Grid applications.

This paper made two main contributions. First, we defined a summary model for
P2P systems, based on the SAINT ETIQ process. SAINT ETIQ generates database sum-
maries with low complexity, and can be distributed and parallelized which makes it
scalable in a distributed environment. Second, we proposed efficient algorithms for
summary management in PeerSum. Our analysis and simulation results showed that



the use of summaries as data indexes reduces the cost of query routing by an important
factor compared to flooding approaches, without incurring high costs in terms of update
messages exchanged in the network. Furthermore, our system guarantees a good query
accuracy which is measured in terms of the fraction of stale answers in query results.
Moreover, tuning our system parameter, i.e. the freshness thresholdα, improves query
accuracy while inducing a small increasing of summary update cost.
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