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The General Problem

Validation of mathematical models of real Complex Systems

@ Search for the set of parameters that best approaches
model output with available real data;
@ Usually a hard, multi-modal problem:

@ Potential experimental errors on available data;

@ Data may originate from several experiments with different
setups;

@ Gradient-based techniques fail to give reliable solutions.

@ Evolutionary Algorithms are a better choice.
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The Specific Problem

Calibration of a Morphogenesis Model of  Drosophila

@ Distribution of Bicoid and Caudal proteins along the
antero-posterior axis of the embryo of Drosophila.

@ |deal optimisation will find parameters fitting the distribution
of both proteins through minimisation of sum of MSE;

@ Infeasible given noise and different experimental setups.

@ Multi-objective algorithms a better approach for model
calibration and validation.
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Drosophila Early Development
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Biological Background

Morphogenesisin Drosophila early development

First 2h of development

@ Begins with deposition of bicoid mRNA of maternal origin
near pole of embryo:
@ 14 mitotic nuclear replication cycles (first 2h);
@ Nuclear membranes appear at end of 14" mitotic cycle;
@ Absence of membranes facilitates diffusion of proteins:
@ stable gradients are established.
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Biological Background

Morphogenesisin Drosophila early development

caudal

cad

Regulation Network responsible for first 95 minutes

CAD

protein

@ Model repression mechanism between Bicoid and Caudal;

@ Interested in spatial gradients of both proteins.

(From: F. Alves and R. Dildo, J. Theoretical Biology, 241 (2006) 342-359.)
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Drosophila Early Development
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Biological Background

Morphogenesisin Drosophila early development

After 14™ replication cycle

@ Fluorochrome measurement marking protein
concentrations proportional to intensity;

@ Blue: Bicoid; Green: Caudal.

(experimental data, FlyEx database)
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Biological Background

Morphogenesisin Drosophila early development

11" (a) and 12™ (b) replication cycles

100,

@ From lato 1b the nuclei have divided by mitosis, but

proteins keep apparent gradient;
@ 1c shows concentrations of BCD and CAD along the

antero-posterior axis (x) of embryo.
EC

(experimental data, FlyEx database, datasets ab18 (a) and ab17 (b))
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Mathematical Model

Mathematical Model of Protein Diffusion

@ The bicoid and caudal mRNA of maternal origin have
initial distributions given by:

B>0, ifO<lL;i<x<Lly<lL
bed (x,t =0) = { 0 otherwisle i

C>0, ifO<lz<x<ls<lL
cad(x,t:O):{ 0 otherwis?é )

L., Ly, Ly and L, are constants representing intervals of
localisation of the corresponding mRNA; B and C are
concentration constants.
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Mathematical Model

Mathematical Model of Protein Diffusion

@ During first stage of development, bicoid and caudal are
transformed into proteins with rate constants ap.q and acag:

bed *% BCD cad 2 CAD

@ Bicoid prevents expression of Caudal through repression
mechanism described by the mass action type
transformation:

BCD <+ cad > BCD

r is rate of degradation
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Mathematical Model

Mathematical Model of Protein Diffusion

@ From mass action law, model equations are deduced:

obcd
ot

OBCD
ot

Ocad
ot

HCAD
\ T ot

92
—apcabed (X) + Dped 7508

abcdbcd(x)

—acagcad(x) — rBCD.cad + Deaq 0;‘)’(%"

acagcad (X)

@ System of non-linear parabolic partial differential

equations;

@ Diffusion of bicoid and caudal mRNA is added.
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Mathematical Model

Mathematical Model of Protein Diffusion

Calibrate model just derived with experimental data

@ Parameters to calibrate:
L1, Ly, L3 and Ly;

B and C;

apcd and acad

Dpcd and Dead;

r andt (time).

©
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Hard optimisation problem
@ Model is an approximation;

@ Biological data is noisy;
@ Optimise with single- or multi-objective algorithms.
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Evolutionary Computation Algorithms
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CMA-ES

Single-Objective Approach

CMA-ES: state of the art in evolutionary computation

@ (u, \)—Evolutionary Strategy:

@ Population of u parents to generate \ offspring;

@ Deterministically choose the best p offspring to become
parents for the next generation;

@ Offspring generated by sampling Gaussian distribution
centered on weighted recombination of parents;

@ Multi-dimensional Gaussian distributions determined by
their covariance matrix;

@ Notion of cumulated path to separately update stepsize and
covariance matrix.
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Evolutionary Computation Algorithms
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MO-CMA-ES

Multi-Objective Approach

@ Multi-objective version of CMA-ES:

@ Based on a specific (1+1)-CMA-ES algorithm;

@ Avo(1+1)-CMA-ES are run in parallel, each with its own
stepsize and covariance matrix;

@ At each step, set of \yo parents and their \yo offspring are
ranked, according to selection criterion;

@ Fleisher algorithm used for selection - based on
hyper-volume measure.
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Experimental Setup

Fitness Functions

Optimise MSEs of model with experimental data of
distribution of BCD and CAD

@ Optimise two fithess functions:

. 1<
FitBCD(d) = — > (BCD(x;, @) — BCDexp(Xi))
i=1
1 n
FitCAD (&) = = ) (CAD(X;, @) — CADexp(Xi))?
i=1
(o = set of parameters to be optimised)
@ CMA-ES optimises function:

Fit(a, ¢;) = FitCAD(@) + ¢; - FitBCD(&)

o 12 different ¢; slopes sample Pareto front. EC



Evolutionary Computation Algorithms
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Experimental Setup

Parameters

MO-CMA-ES
@ Population size Ao = 100;
@ Gradual penalisation to reduce spread of Pareto front;

@ Sample Pareto front in range [0, 40] x [0, 80];
@ Penalise FitBCD by amount which FitCAD overpassed
upper bound.

@ 100 runs: best non dominated points extracted:;

'

@ Population size A\cya =4+ [3 x logn]|;
@ Fitness function: Fit(&, c;) = FitCAD(&) + ¢; - FitBCD(Q)
@ 12 slopes used (0.01,1,5,10,...,100), 10 runs per slope;
@ Best non-dominated results from each slope gathered to
form Pareto front.
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Pareto Front and Fitness Evolution

Pareto Front Approximation

CMA and MOCMA solutions

100} ee e
de
£ o) \
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=1 “‘
& 8 d .
CMA ;
G i best non dominated set
N ‘)‘ blald (MOCMA)
70| | S P e )
c b a
285 290 295 30.0 305 310 315
Fitness Bicoid

@ Best non-dominated sets found by both algorithms;
@ CMA-ES results for slopes (1,5, 25,50, 100);

@ Asymmetrical relationship between FitCAD and FitBCD:
@ In accordance with biology.
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Pareto Front and Fitness Evolution

Fitness Evolution over time
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@ Evolution of MSEs on BCD and CAD;

@ Similarity between runs on CMA-ES, but not on
MO-CMA-ES.




Pareto Front and Fitness Evolution

Best Sets of Parameters Found

Results
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a [ d e mean
[ 568-10 2 | 6.72-10 2 | 6.25.-10 2 | 3.29-10 2 | 1.43-10"2 | 4.67-10 7
L, 1.73-10"1 [ 1.68-10"1 | 1.62.1071 [ 1.84.1071 [ 1.94.1071 [ 1.76.10"1
[ 4281071 | 435.10°1 | 4.04.12071 | 4.07-1071 | 404-10°T | 4.16.10°1
L, 763-10 1 | 7.74-1071 | 845.10~1 | 845.10~1 | 8.48-10"1 | 8.15.10° 1
B 1.53-10"3 [ 1.98.1073 | 3.47.10"% [ 2.36.10%3 | 1.98.107° | 2.26.10%3
C 1.06-1073 | 1.08-107% | 1.26.107% | 1.28.1073 | 1.28.1073 | 1.19.1073
Dped 1.00-10-2 | 1.09-10=2 | 1.99.10=2 [ 2.03-10=? | 2.04-10=2 | 1.63-10"7
Dead 1.00-102 | 1.00-10~2 | 1.00-10=2 | 1.00-10=2 | 1.00-10~2 | 1.00 102
Aped 9.99-107" | 9.99.10™ | 9.99.10™ | 9.99.10"% | 9.99.107% | 9.99. 1077
acad 9.99-10"* | 9.99.10"* | 9.99.10" | 9.99.10"* | 9.99.10™* [ 9.99.107*
r 8.64-107° | 6.74-107° | 3.34.10°2 | 5.74.10°2 | 6.71-10 % | 3.07.107°
Iterations | 9.84-107° | 9.79.107° | 9.37-1073 | 9.35.107° | 9.36-10"° | 9.54.107°

@ Parameters from 5 best non-dominated solutions of
CMA-ES;

@ All valid solutions from a Biological point of view.
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Pareto Front and Fitness Evolution

Fitting the Experimental Data

@ Best 5 non-dominated solutions of CMA-ES;
@ (a): best FitBCD, (e): best FitCAD.

>
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Pareto Front and Fitness Evolution

Error of Calibrated Model

Accuracy of Model
@ Can be measured by fitness function;

@ For BCD, if BCDpax is maximum value of experimental
values:
FitBCD
(BCDmax )?

@ For current experimental data, error in range 3% — 6%.

QEI\-NETEC



Conclusions

000
Results and future work

Computer Science point of view

@ Striking difference in performance between both
algorithms:

@ Multi-objective lacks pressure toward Pareto front;
@ Concentrates on spreading, even after penalisation.

@ Future work: test how well identified parameters generalise
over other datasets.

Biological point of view
@ Applicability of an mRNA diffusion model to describe
protein gradients in early Drosophila development;

@ Non-dominated variability provided by multi-objective
approaches intrinsic to biological systems

@ Helps explain phenotypic plasticity of living systems.
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