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The General Problem

Validation of mathematical models of real Complex Systems

Search for the set of parameters that best approaches
model output with available real data;
Usually a hard, multi-modal problem:

Potential experimental errors on available data;
Data may originate from several experiments with different
setups;
Gradient-based techniques fail to give reliable solutions.

Evolutionary Algorithms are a better choice.



Introduction Drosophila Early Development Evolutionary Computation Algorithms Results Conclusions

The Specific Problem

Calibration of a Morphogenesis Model of Drosophila

Distribution of Bicoid and Caudal proteins along the
antero-posterior axis of the embryo of Drosophila.
Ideal optimisation will find parameters fitting the distribution
of both proteins through minimisation of sum of MSE;

Infeasible given noise and different experimental setups.

Multi-objective algorithms a better approach for model
calibration and validation.
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Biological Background

Morphogenesis in Drosophila early development

First 2h of development

Begins with deposition of bicoid mRNA of maternal origin
near pole of embryo:

14 mitotic nuclear replication cycles (first 2h);

Nuclear membranes appear at end of 14th mitotic cycle;
Absence of membranes facilitates diffusion of proteins:

stable gradients are established.
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Biological Background

Morphogenesis in Drosophila early development

Regulation Network responsible for first 95 minutes

Model repression mechanism between Bicoid and Caudal ;

Interested in spatial gradients of both proteins.
(From: F. Alves and R. Dilão, J. Theoretical Biology, 241 (2006) 342-359.)
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Biological Background

Morphogenesis in Drosophila early development

After 14th replication cycle

Fluorochrome measurement marking protein
concentrations proportional to intensity;

Blue: Bicoid; Green: Caudal.
(experimental data, FlyEx database)
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Biological Background

Morphogenesis in Drosophila early development

11th (a) and 12th (b) replication cycles

From 1a to 1b the nuclei have divided by mitosis, but
proteins keep apparent gradient;

1c shows concentrations of BCD and CAD along the
antero-posterior axis (x) of embryo.

(experimental data, FlyEx database, datasets ab18 (a) and ab17 (b))



Introduction Drosophila Early Development Evolutionary Computation Algorithms Results Conclusions

Mathematical Model

Mathematical Model of Protein Diffusion

The bicoid and caudal mRNA of maternal origin have
initial distributions given by:

bcd(x , t = 0) =

{

B > 0, if 0 < L1 < x < L2 < L
0, otherwise

cad(x , t = 0) =

{

C > 0, if 0 < L3 < x < L4 < L
0, otherwise

L1, L2, L3 and L4 are constants representing intervals of
localisation of the corresponding mRNA; B and C are
concentration constants.
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Mathematical Model

Mathematical Model of Protein Diffusion

During first stage of development, bicoid and caudal are
transformed into proteins with rate constants abcd and acad :

bcd
abcd→ BCD cad

acad→ CAD

Bicoid prevents expression of Caudal through repression
mechanism described by the mass action type
transformation:

BCD + cad r
→ BCD

r is rate of degradation
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Mathematical Model

Mathematical Model of Protein Diffusion

From mass action law, model equations are deduced:
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∂bcd
∂t = −abcdbcd(x) + Dbcd

∂2bcd
∂x2

∂BCD
∂t = abcdbcd(x)

∂cad
∂t = −acadcad(x) − rBCD.cad + Dcad

∂2cad
∂x2

∂CAD
∂t = acadcad(x)

System of non-linear parabolic partial differential
equations;

Diffusion of bicoid and caudal mRNA is added.
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Mathematical Model

Mathematical Model of Protein Diffusion

Calibrate model just derived with experimental data

Parameters to calibrate:
L1, L2, L3 and L4;
B and C;
abcd and acad ;
Dbcd and Dcad ;
r and t (time).

Hard optimisation problem

Model is an approximation;

Biological data is noisy;

Optimise with single- or multi-objective algorithms.
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CMA-ES

Single-Objective Approach

CMA-ES: state of the art in evolutionary computation

(µ, λ)−Evolutionary Strategy:
Population of µ parents to generate λ offspring;
Deterministically choose the best µ offspring to become
parents for the next generation;
Offspring generated by sampling Gaussian distribution
centered on weighted recombination of parents;
Multi-dimensional Gaussian distributions determined by
their covariance matrix;
Notion of cumulated path to separately update stepsize and
covariance matrix.
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MO-CMA-ES

Multi-Objective Approach

MO-CMA-ES
Multi-objective version of CMA-ES:

Based on a specific (1+1)-CMA-ES algorithm;
λMO(1+1)-CMA-ES are run in parallel, each with its own
stepsize and covariance matrix;
At each step, set of λMO parents and their λMO offspring are
ranked, according to selection criterion;
Fleisher algorithm used for selection - based on
hyper-volume measure.
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Experimental Setup

Fitness Functions

Optimise MSEs of model with experimental data of
distribution of BCD and CAD

Optimise two fitness functions:

FitBCD(~α) =
1
n

n
∑

i=1

(BCD(xi , ~α) − BCDexp(xi ))
2

FitCAD(~α) =
1
n

n
∑

i=1

(CAD(xi , ~α) − CADexp(xi ))
2

(α = set of parameters to be optimised)
CMA-ES optimises function:

Fit(~α, ci) = FitCAD(~α) + ci · FitBCD(~α)

12 different ci slopes sample Pareto front.
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Experimental Setup

Parameters

MO-CMA-ES
Population size λMO = 100;
Gradual penalisation to reduce spread of Pareto front;

Sample Pareto front in range [0, 40] × [0, 80];
Penalise FitBCD by amount which FitCAD overpassed
upper bound.

100 runs: best non dominated points extracted;

CMA-ES
Population size λCMA = 4 + ⌈3 × log n⌉;
Fitness function: Fit(~α, ci ) = FitCAD(~α) + ci · FitBCD(~α)

12 slopes used (0.01, 1, 5, 10, . . . , 100), 10 runs per slope;

Best non-dominated results from each slope gathered to
form Pareto front.
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Pareto Front and Fitness Evolution

Pareto Front Approximation
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CMA and MOCMA solutions

Best non-dominated sets found by both algorithms;

CMA-ES results for slopes (1, 5, 25, 50, 100);
Asymmetrical relationship between FitCAD and FitBCD:

In accordance with biology.
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Pareto Front and Fitness Evolution

Fitness Evolution over time
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Evolution of MSEs on BCD and CAD;

Similarity between runs on CMA-ES, but not on
MO-CMA-ES.
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Pareto Front and Fitness Evolution

Best Sets of Parameters Found

a b c d e mean

L1 5.68 · 10−2 6.72 · 10−2 6.25 · 10−2 3.29 · 10−2 1.43 · 10−2 4.67 · 10−2

L2 1.73 · 10−1 1.68 · 10−1 1.62 · 10−1 1.84 · 10−1 1.94 · 10−1 1.76 · 10−1

L3 4.28 · 10−1 4.35 · 10−1 4.04 · 10−1 4.07 · 10−1 4.04 · 10−1 4.16 · 10−1

L4 7.63 · 10−1 7.74 · 10−1 8.45 · 10−1 8.45 · 10−1 8.48 · 10−1 8.15 · 10−1

B 1.53 · 10+3 1.98 · 10+3 3.47 · 10+3 2.36 · 10+3 1.98 · 10+3 2.26 · 10+3

C 1.06 · 10+3 1.08 · 10+3 1.26 · 10+3 1.28 · 10+3 1.28 · 10+3 1.19 · 10+3

Dbcd 1.00 · 10−2 1.09 · 10−2 1.99 · 10−2 2.03 · 10−2 2.04 · 10−2 1.63 · 10−2

Dcad 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2

abcd 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4

acad 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4

r 8.64 · 10+3 6.74 · 10+3 3.34 · 10−2 5.74 · 10−2 6.71 · 10−4 3.07 · 10+3

Iterations 9.84 · 10+3 9.79 · 10+3 9.37 · 10+3 9.35 · 10+3 9.36 · 10+3 9.54 · 10+3

Parameters from 5 best non-dominated solutions of
CMA-ES;

All valid solutions from a Biological point of view.
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Pareto Front and Fitness Evolution

Fitting the Experimental Data
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(a): best FitBCD, (e): best FitCAD.
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Pareto Front and Fitness Evolution

Error of Calibrated Model

Accuracy of Model

Can be measured by fitness function;

For BCD, if BCDmax is maximum value of experimental
values:

√

FitBCD
(BCDmax )2

For current experimental data, error in range 3% − 6%.
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Results and future work

Computer Science point of view

Striking difference in performance between both
algorithms:

Multi-objective lacks pressure toward Pareto front;
Concentrates on spreading, even after penalisation.

Future work: test how well identified parameters generalise
over other datasets.

Biological point of view

Applicability of an mRNA diffusion model to describe
protein gradients in early Drosophila development;
Non-dominated variability provided by multi-objective
approaches intrinsic to biological systems :

Helps explain phenotypic plasticity of living systems.
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Results and future work
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