
HAL Id: inria-00379268
https://hal.inria.fr/inria-00379268

Submitted on 28 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reconfiguration Framework for Distributed
Components

Boutheina Bennour, Ludovic Henrio, Marcela Rivera

To cite this version:
Boutheina Bennour, Ludovic Henrio, Marcela Rivera. A Reconfiguration Framework for Distributed
Components. [Research Report] RR-6911, INRIA. 2009. �inria-00379268�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50176217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00379268
https://hal.archives-ouvertes.fr

appor t
de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

11
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Reconfiguration Framework
for

Distributed Components

Boutheina Bennour — Ludovic Henrio — Marcela Rivera

N° 6911

April 2009

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

A Reconfiguration Framework

for
Distributed Components

Boutheina Bennour , Ludovic Henrio , Marcela Rivera

Thème COM — Systèmes communicants
Équipe-Projet Oasis

Rapport de recherche n° 6911 — April 2009 — 17 pages

Abstract: Adaptability is a key feature of distributed systems. In component
systems, adaptability can be realised by reconfiguration of the component as-
sembly. The objective of this work is to increase the support for reconfiguration
capabilities in distributed component models. This work extends an existing
framework of reconfiguration language, FScript, by enabling remote interpre-
tation of reconfiguration procedures. We provide an extension of the compo-
nent model with a non-functional ability: the interpretation of reconfiguration
scripts. This capability provides the basis for the non-centralised interpretation
of reconfiguration scripts. This way, reconfiguration scripts can be evaluated
in a distributed manner. We also provide an implementation of the extended
script language and the interpreter.

Key-words: component, reconfiguration, distribution, fscript, adaptation

Un environnement de reconfiguration
pour

composants distribuées

Résumé : L’adaptabilité est la caractéristique principale des systèmes dis-
tribués. Dans les systèmes de composants, l’adaptabilité peut être réalisée par
la reconfiguration de l’assemblage de composants. L’objectif de ce travail est
d’améliorer le support pour la reconfiguration dans les modèles à composants
distribués. Ce travail étend un environnement de langage de reconfiguration
existant, FScript, en permettant l’interprétation distante des procédures de
reconfiguration. Nous avons étendu le modèle de composant avec une capa-
cité non fonctionnelle : l’interprétation des scripts de reconfiguration. Ces ca-
ractéristiques constituent une base solide base pour l’interprétation non-centralisée
des scripts de reconfiguration. De cette façon, des scripts de reconfiguration
peuvent être évalués de façon distribuée. Egalement, nous fournissons une
implémentation de l’extension du langage de script et de l’interprète.

Mots-clés : composant, reconfiguration, distribution, fscript, adaptation

A Reconfiguration Framework for Distributed Components 3

Contents

1 Introduction 4

1.1 Context . 4
1.2 Objective and Contribution . 4

2 Related Works and Positioning 5

3 A Controller for Reconfiguration 7

4 An Extension to the FScript language 8

4.1 Remote Script Execution . 8
4.2 Passing Parameters to a Remotely Invoked Script 10

5 Prototype and Experiments 12

5.1 An Implementation in GCM/ProActive 12
5.2 Experiment: Distributed reconfiguration of a component system 12

6 Conclusion 14

RR n° 6911

4 Bennour & Henrio & Rivera

1 Introduction

1.1 Context

This work is placed in the context of large-scale distribution, and distributed
computing. Components have been considered over the recent years as a good
abstraction to program distributed systems thanks to the encapsulation the com-
ponents provide, and their clearly defined interfaces. The success of component
models also comes from the high-level view of a component system (e.g. defined
by an architecture description language), which is considered as the good level
to design distribution of applications. Highly evolving distributed environments
also require applications deployed on those environments to evolve. Dynamic
reconfiguration of the component structure is particularly well suited to ensure
this evolution. Dynamic reconfiguration allows applications not only to adapt to
changes in their execution environments, but also to changes in their functional
and non-functional requirements. Some approaches even consider component
systems evolving in an autonomic way [1]. There, reconfiguration is handled
automatically, in order to ensure a required quality of service.

1.2 Objective and Contribution

This article presents a distributed reconfiguration mechanism based on a script-
ing language. Our framework supports the implementation of reconfiguration
procedures by providing to the programmer an adapted language. Using a
scripting language, the programmer of the adaptation code can focus on the
reconfiguration procedures.

More precisely, this article shows how distributed system can be reconfigured
in a non-centralised manner. That means, the programmer can now write and
execute distributed reconfiguration procedures. To reach this goal, we propose
to extend existing component frameworks with:� A non-functional port, localised in several (possibly all) components that

is able to interpret reconfiguration orders.� An extension of existing reconfiguration scripting languages with primi-
tives for distributed interpretation.

This distributed evaluation allows the parallelisation of the reconfiguration.
Also the reconfiguration interpreter can be moved close to the reconfigured en-
tity improving efficiency of the adaptation process. Our contribution is applied
to the scripting language FScript and the GCM (Grid Component Model) [2]
component framework. We show the adequacy of our contribution by provid-
ing an implementation of those features in the context of the GCM, and of its
reference implementation above the ProActive middleware.

After a review of related works on reconfiguration and component systems
in Section 2, we define a Fractal controller for reconfiguration in Section 3.
Section 4 extends the FScript language to support distribute reconfiguration,
and ease the passing of parameters between reconfiguration scripts. Section 5
presents the implementation of our approach, and some experiments. Finally,
Section 6 presents the conclusions and future works.

INRIA

A Reconfiguration Framework for Distributed Components 5

2 Related Works and Positioning

This section presents five component models and studies their reconfigurabil-
ity. We focus here on reconfiguration and adaptation capabilities, first from the
component model point of view, and then focusing on reconfiguration (script-
ing) languages. One of the most interesting features of component models for
adaptive applications is the possibility to introspect and modify the component
structure at runtime. Then, the component structure can be reconfigured in
order to modify the system capabilities. Our approach is mainly based on this
property.

CCM (CORBA Component Model) [13, 11] is a specification for business
components which can be distributed, heterogeneous, and implemented over
different programming languages or operating systems. CCM components com-
municate through ports that can be interconnected (also, the OMG D&C spec-
ification [12] supports hierarchical assemblies). All component instances are
handled at runtime by their container. Distribution and container existence
should make CCM a possible target of our approach, but unfortunately most of
the CCM implementation does not support dynamic reconfiguration.

CCA (Corba Component Architecture) [8] aims at a minimal specification
of component architecture for high-performance computing. The composition
of component system is flat. A CCA component is defined as a set of ports.
The components are assembled at runtime connecting ports together, using
scripts that interact with the CCA framework. The CCA framework acts as a
component container; it allows building, connecting and running components.
Despite the presence of a container, applying our approach of reconfiguration
to CCA components remains less interesting than considering it for hierarchical
assemblies which should scale better.

Fractal [7] is a hierarchical and reflective component model. A Fractal com-
ponent can be either composite (i.e. composed of sub-components), or primi-
tive (a basic element encapsulating the business code). A Fractal component
comprises a content (providing the functional code) and a membrane (a con-
tainer managing the non-functional operations). The components have client
interfaces and server interfaces which are connected by bindings. Fractal com-
ponents can easily be reconfigured by invocations on their non-functional in-
terfaces. The membrane takes care of the reconfiguration of the component
structure. A fractal component architecture can be described using an architec-
ture description language (ADL) [6].

SCA (Service Component Architecture) [3] provides a component-oriented
programming model for building applications based on a Service Oriented Ar-
chitecture. SCA provides a model for both the composition of services and the
creation of service components, including the reuse of existing application func-
tion within SCA composites. SCA component structure is not specified at run-
time. So, further work is required to extend the SCA model for reconfiguration.
The SCOrWare runtime platform, called FraSCAti [4, 14] is an implementation
of the SCA model built upon Fractal. It provides advanced functionalities such
as dynamic reconfiguration of SCA component assemblies, a binding factory, a
transaction service, and a deployment engine of autonomous SCA architecture.

GCM [2] is a distributed extension of Fractal. Like Fractal, each compo-
nent has a membrane and a content. Components are composed hierarchi-
cally, and interfaces are interconnected by bindings. Contrary to Fractal, GCM

RR n° 6911

6 Bennour & Henrio & Rivera

specifies distribution aspects of the component model, and defines one-to-many
and many-to-one communication, which are particularly efficient for distributed
components. GCM model also refines the structure of the membrane, and de-
fines some controllers for autonomic behaviour. GCM provides the same recon-
figuration functionalities as Fractal.

We presented five prevalent component models namely: CCM, CCA, SCA,
Fractal, and GCM. Reconfigurability is guaranteed for most models (like Frac-
tal, GCM, CCM, and CCA) by the presence at runtime of a container or a
membrane. As soon as component manipulation is allowed by some control
structure, a reconfiguration language can be designed. If the component model
is distributed, it is interesting to evaluate reconfiguration scripts in a decen-
tralised manner.

Fractal is particularly well suited for component adaptability, because it
comes with high reconfiguration capabilities, and a scripting language for re-
configuration: FScript. Our approach is designed for the GCM, a distributed
extension of this approach can be adapted to other component models (for ex-
ample, to extend GScript [10] and reconfigure CCA components). The approach
relies on the possibility to embed a script interpreter in some components and
to extend the scripting language with a couple of new primitives.

Let us now focus on languages for expressing dynamic evolution of compo-
nent systems. The GScript [10] scripting language for CCA and GCM com-
ponents is the closest approach to ours. It provides a scripting language for
high-level orchestration and interaction with distributed components. GScript
programs can trigger reconfiguration of GCM components by direct invocation
on the adequate component interfaces.

FScript [9] is a DSL (Domain-specific Language) to program dynamic re-
configurations of Fractal architectures. FScript includes the FPath notation to
navigate inside component architectures. FScript gives the possibility to de-
fine reconfiguration scripts to modify the architecture of a Fractal application.
A key characteristic of FScript is that it is specifically tailored to the recon-
figuration of components, in particular for Fractal components. Consequently,
despite the high-level approach suggested by GScript, FScript proposes much
higher-level primitives due this specialisation. In consequence, reconfiguration
scripts are simpler in FScript. Of course, as a counterpart, GScript is much
more expressive particularly for expressing orchestration and dataflow between
components.

The expressivity of FScript is close to Fractal. In FScript for example it
is not possible to add new interfaces to an existing component because this
is not allowed by the Fractal model; however the component structure can be
easily changed. In most implementations of Fractal it is necessary to stop the
target components (but not the whole application) before reconfiguring them.
Stopping a component can then be hierarchical (stopping all sub-components) or
not, depending on the implementation. Reconfiguration scripts in FScript can
invoke the life-cycle controller of some components to stop or start some of the
components of the application in order to reconfigure them. Note that stopping
a component does not stop the membrane and thus a stopped component can
still interpret reconfiguration scripts and be reconfigured.

We focus on the distributed evaluation of FScript programs. The characteris-
tics and restrictions of FScript mentioned above are unchanged. Like in FScript,

INRIA

A Reconfiguration Framework for Distributed Components 7

transactions are only guaranteed at the action level. Inter-action transactivity
would be possible to ensure in FScript but is too costly to guarantee in our
framework and would cancel most of the benefits of the distributed evaluation.
The user can still run scripts in a centralised manner to benefit from FScript
transactions. GScript language is also not distributed, and our approach can
easily be adapted to this language. This would make GScript a rich distributed
language for component management on the Grid; but we focused on FScript
which is better tailored to GCM, and is easier to extend.

3 A Controller for Reconfiguration

To trigger decentralised reconfigurations on distributed components, we pro-
pose to incorporate a reconfiguration script interpreter into components. This
way, interpretation of reconfiguration scripts can be distributed, and a script
interpreter can remotely invoke another one. Therefore, several (possibly all)
components must expose script interpretation capabilities in order to allow the
system to perform distributed evaluation of reconfiguration scripts.

Exposing such a non-functional feature is possible in the Fractal model
through the definition of a new controller. Fractal specification defines basic
controllers ensuring component reflective abilities (introspection and interces-
sion). We add a reconfiguration controller in the component membrane. This
controller provides the interface allowing the invocation of a script interpreter.
The reconfiguration controller improves component reconfigurability since it can
interpret high level scripts. The programmer of adaptivity procedure can thus
focus on a high level language, instead of direct invocation of basic reconfigura-
tion primitives.

interface ReconfigurationController {

void setInterpreter(String interpreterClassName)

void loadScript(String scriptFileName)

void executeAction(String actionName, Object... arguments)

}

Figure 1: Reconfiguration controller interface

Figure 1 shows the interface implemented by the reconfiguration controller.
The method setInterpreter assigns an interpreter to the component. The
method complies with the singleton pattern. If it does not exist, an interpreter
instance is created. Actually, the interpreter is not instantiated when creating a
component for performance efficiency. Only the components that must be able
to interpret reconfiguration procedures encapsulate an interpreter.

Reconfiguration actions are defined in script files. The reconfiguration con-
troller provides a method loadScript for the interpreter to recognise actions by
parsing the script file. Once the script file is loaded, a reconfiguration action
can be triggered on the component by calling method executeAction of the con-
troller API. The action name and arguments are passed as parameters to the
method. When a remote script interpretation is triggered on a component, the
associated reconfiguration controller is created (see Section 4.1).

Thanks to the reconfiguration controller, the programmer can trigger re-
configuration actions on remotely accessible components. In Figure 2, direct
invocations on the reconfiguration controller are performed by a Java program.

RR n° 6911

8 Bennour & Henrio & Rivera

This code installs an interpreter, loads a script, and executes it. Such script
management is still low level. Each component equipped with a reconfiguration
controller, can interpret reconfiguration scripts. In Section 4, we will show an
easier way to manage component, relying only on the scripting language. The
next section also shows how a reconfiguration language can be extended with a
primitive for remotely invoking a reconfiguration controller.

/* retrieve a reference on component controller for reconfiguration */

ReconfigurationController rc;

rc = comp.getFcInterface(RECONFIGURATION_CONTROLLER_NAME);

/* assigns an interpreter to the component */

rc.setInterpreter(FSCRIPT_INTERPRETER);

/*loads the reconfiguration action specified in the script SCRIPT_NAME */

rc.loadScript(SCRIPT_NAME);

/*triggers on the component the reconfiguration action ACTION_1 defined

in the script SCRIPT_NAME previously loaded */

rc.executeAction(ACTION_1, arguments);

Figure 2: Code necessary for loading a script

4 An Extension to the FScript language

This section presents an extension of the reconfiguration language allowing re-
mote invocation of reconfiguration scripts. Our approach relies on adding a
new primitive triggering remote interpretation of reconfiguration script. An
alternative approach would consist in detecting whether a component has a re-
configuration controller, and automatically triggering the invocation of a remote
primitive if such a controller exists. Our choice is driven by the following rea-
sons. First, it avoids many distributed tests that would slow down execution.
Second, we want the script programmer to be able to control which reconfigu-
ration procedures are executed locally or remotely. Third, we can add a target
component as a parameter to the remote invocation procedure; this parameter
specifies the component where the reconfiguration is to be executed. However,
we consider that our framework could also be a good basis for the automatic
distributed evaluation of reconfiguration scripts if necessary. In this section we
also study the passing of parameters to remotely invoked script.

4.1 Remote Script Execution

If a component has a reconfiguration controller, it provides local control of recon-
figuration since it is capable of performing its own script interpretation. Also,
with the availability of a reconfiguration controller in its membrane, the compo-
nent exposes interpretation features to its neighbours. A script that reconfigures
a complex component system may be partially delegated to a subcomponent or
to another neighbouring component. In order to delegate interpretation, we
define a new primitive remote call, shown in Figure 3.

The primitive remote_call triggers the execution of the reconfiguration ac-
tion action_1 by the interpreter associated with the component target_component.
The target component is given by its node, specified as a FPath expression.

INRIA

A Reconfiguration Framework for Distributed Components 9

remote_call(target_component, action_1, arguments_list...)

Figure 3: Primitive Remote call

The second argument is a string that gives the reconfiguration action name;
the name of the remotely invoked reconfiguration procedure. The arguments
in arguments_list are passed as parameters of the remotely invoked action.
Arguments are locally evaluated, then they are passed to the remote script in-
terpreter. Upon remote script invocation, if no remote interpreter is available
then one is automatically created by calling the setInterpreter method on the
remote reconfiguration controller.

After this call, the target component becomes in charge of the interpreta-
tion of the reconfiguration. Unless the action is a primitive, the reconfigura-
tion should be defined in the context of the target interpreter. Thus, if neces-
sary, the action is automatically loaded in the remote reconfiguration controller
(loadScript primitive).

The calling interpreter does not have to wait for the completion of the recon-
figuration by the target component. Once the delegation of the reconfiguration
action is complete, the calling interpreter continues the execution of its local
script. Such a strategy allows reconfigurations to occur in parallel.

When the reconfiguration action finishes, no automatic notification mecha-
nism is specified here. Consequently it is not possible to know directly whether
a remotely invoked script succeeded or not. However, call-backs can be used to
return the status of the remote script, and further synchronisation primitives
could also be added to the language to synchronise the different reconfiguration
controllers.

Figure 4: Distributed interpretation of the reconfiguration action action name

Figure 4 illustrates the remote interpretation of the reconfiguration action
action_1 by a target component, in this case a subcomponent. As components
are deployed on different hosts, they are distributed: the composite component
is deployed on the host K, while de subcomponent is deployed on the host

RR n° 6911

10 Bennour & Henrio & Rivera

L. In Figure 4, an FScript script reconfigures, in a decentralised manner, the
subcomponent by executing the action action_1. This remote script invocation
is shown in Figure 5.

remote_call($CompositeReference/child::subcomponent_name,’action_1’);

Figure 5: An example of remote script invocation.

In this script, $CompositeReference is a variable defined in the calling inter-
preter. It contains a reference to the composite component executing the calling
script. subcomponent_name is the name of the remote subcomponent where the
action will be executed. In Figure 4, the delegation of the reconfiguration ac-
tion is represented by a thick arrow from the calling interpreter to the target
interpreter. To performs the action remote_call, the interpreter of the caller
first retrieves a reference on the reconfiguration controller RC of the subcompo-
nent; then, it calls the method executeAction exposed by RC. This triggers the
remote interpretation of the reconfiguration action by the interpreter associated
with the subcomponent.

4.2 Passing Parameters to a Remotely Invoked Script

Distributed script interpretation raises two issues in relation with the recon-
figuration action parameters. First, it can be impossible to transmit some of
those parameter along the network; and a possible second issue is the context
of interpretation of these parameters. We present solutions to those two closely
related problems in the following.

Let us first detail the problem of parameter communication. When the
calling interpreter triggers the remote execution of the reconfiguration action,
the parameters of this action are transferred from the calling execution context
to the target execution context. So they are expected to be serialisable. Method
parameters in FScript are either primitive types, which are serialisable, or nodes,
which were made nodes serialisable objects. The object nodes are consequently
serialised using the object serialisation mechanism of the Java platform. The
passing of parameters to the target context is therefore done by value. Note
that, a node is a reified reference to a part of the component structure. It is
this reified reference that is transmitted when the node is serialisable. Declaring
FScript nodes as serialisable is thus sufficient for allowing the transmission of
action parameters to the remote reconfiguration controller.

Let us now focus on the other half of the problem, and in fact propose a
solution solving both issues mentioned above.

In some applications, it is more adequate to evaluate an FPath expression
at the receiving side, because a path is expressed in the context of the recon-
figuration controller performing the action. We show here how to avoid the
evaluation of the parameters by the calling interpreter. Instead of passing the
parameters as serialisable nodes, the target interpreter receives them as string
objects, which are serialisable. These string objects represent the FPath ex-
pressions that target FScript interpreter can evaluate. Such expressions must
contain only global variables known by the interpreter.

INRIA

A Reconfiguration Framework for Distributed Components 11

At the receiver side, the string parameter must be evaluated explicitly; for
this purpose, we enrich the FScript language with a primitive for the evaluation
of strings representing FPath as shown in Figure 6.

node|string|boolean|... eval(fpath_expression_string)

Figure 6: Signature of the eval primitive

This primitive, shown in Figure 6, evaluates the string received as an argu-
ment and returns the result of evaluation. This may be a node or a primitive
type (FScript is dynamically typed). The eval primitive allows the evaluation
of FPath strings passed as arguments to the reconfiguration action. Parameters
can then be interpreted by the interpreter that uses them instead of the one
that invokes them. This behaviour is very helpful when using generic scripts
taking a relative path as parameter.

The following example illustrates local versus remote parameter evaluation;
Figure 7 shows the transmission of an evaluated FPath expression, leading to a
node that has been turned into a serialisable object. In Figure 8, we use the eval

primitive, and thus rely on the transmission of the FPath as a string parameter.

action reconfigureComposite(){

argument1 = $CompositeReference/interface::interface_name;

remote_call($CompositeReference/child::subcomponent_name,

’action_1’,argument1);

}

action action_1(argument){

interface = argument;

...

}

Figure 7: Parameter evaluation by the calling component interpreter

action reconfigureComposite(){

argument2 = ’$SubComponentReference/parent::compositecomponent_name/

interface::interface_name’;

remote_call($CompositeReference/child::subcomponent_name,

’action_1’,argument2);

}

action action_1(argument){

interface = eval(argument);

...

}

Figure 8: Parameter evaluation by the target component interpreter

Consider the distributed interpretation of the reconfiguration action
action_1 in the 2 figures above. This action receives as argument a functional
interface interface_name: the functional interface of the calling component. In
both cases, the effect of the reconfiguration action is the same. However, in
the first case the target interpreter receives a reference to the interface. In the
second case, the target interpreter calculates the reference by evaluating the
FPath expression using the primitive eval (argument1 is dynamically typed as
string and argument2 is of type interface node). For the second approach, the
FScript interpreter does not evaluate FPath expressions as serialisable object

RR n° 6911

12 Bennour & Henrio & Rivera

nodes. The target interpreter receives a FPath expression string and performs
its own evaluation of the parameters, returning a node.

5 Prototype and Experiments

We have tested our approach on GCM/ProActive components. In this section,
we discuss the implementation of the distributed reconfiguration mechanism
over the middleware ProActive and the FScript language. We describe then an
experiment on an application, made up of hierarchical and distributed compo-
nent, which demonstrates the feasibility of our approach.

5.1 An Implementation in GCM/ProActive

The ProActive Middleware provides an implementation of the GCM model.
The components are thus hierarchical and distributed. Each component en-
capsulates an active object. Components communicate through asynchronous
method calls. Predefined controllers and custom controllers compose the mem-
brane (non-functional manager) of a GCM/ProActive component.

We have extended the component framework of GCM/ProActive to sup-
port distributed reconfiguration. We added the reconfiguration controller as
a custom controller in the membrane. Therefore, the application programmer
can specify entry points for reconfigurations: this is possible by configuring only
some components to include reconfiguration controllers. In the GCM/ProActive
framework, some/all components are now able to host script interpreters and ex-
pose minimal script interpretation capabilities for reconfiguration. To optimise
the performance of the application, it is crucial to determine the granularity of
reconfiguration, together with the distributed reconfiguration mechanism.

We used the FScript interpreter designed for Fractal components, extended
by the primitives described above. As the GCM Model is an extension of the
Fractal Model, it is also reconfigurable by FScript; the FScript interpreter can be
encapsulated, into GCM components to reconfigure them. The FScript language
contains predefined actions corresponding to the Fractal API such as adding a
component to a composite component add, binding two compatible component
interfaces bind, etc. We have also implemented the remote call primitive as a
predefined action remote_call. In addition, the FScript expression evaluation
eval has been implemented to improve the passing of parameters.

5.2 Experiment: Distributed reconfiguration of a compo-
nent system

Our approach has been tested on the model of a Turntable Production Cell,
described [5]. The Turntable Production Cell is illustrated in Figure 9. It
consists of a rotary disc with four product slots. A product is loaded into a
slot at position 0, and is then rotated to position 1 where it is drilled. After
that, it is rotated into position 2 where it is tested, and finally it is rotated at
position 3 where it is unloaded. All slots of the rotary disc may be occupied at
the same time, and the products are processed in parallel. We assume that the
system works without faults and there is no product loss, because those issues
are unrelated with our contribution.

INRIA

A Reconfiguration Framework for Distributed Components 13

Load
Test

U
nl

oa
d

3

0

1

2

Drill

Figure 9: Schematic diagram of a Turntable system

Controller

Loader Unloader

Turntable2

Driller Tester

Loader

Driller Tester

Turntable1

Unloader Manager

Manager

Factory

Reconfiguration Controller RC

Script Interpreter

Figure 10: A component system for experiment

We consider a Factory that has two Turnable Systems; the component sys-
tem representing the Factory is shown in Figure 10. We can identify three
subcomponent of Factory: Controller (for synchronising the two other com-
ponents), Turntable1 and Turntable2. Each of the components Turntable1

and Turntable2 has five subcomponents: Manager, Loader, Driller, Tester and
Unloader.

The execution of each turntable operation requires a certain amount of time,
because the duration of the turntable operations has not been defined. For
that, the component Manager must synchronise and coordinate the other four
components. Note that the components are distributed since they are deployed
on different hosts.

The script of Figure 11 defines the reconfiguration action change_driller

which creates a component Driller2. The action replaces the component
Driller of a given composite component by the new component. Also the script
defines the reconfiguration action reconfigure_factory; this action locally per-
forms the action change_driller, and triggers the distributed interpretation of
the change driller action by the component Turntable. Three instances of re-
configuration controller (RC) are installed: one on the factory, and one on each
turntable.

The experiment consists of two remote script invocations. The
reconfigure_factory action should be triggered on the RC of the factory. It

RR n° 6911

14 Bennour & Henrio & Rivera

action change_driller(factory){
driller = $factory/child::Driller;

intf-tester-r = $factory/child::Tester/interface::r;
unbind($driller/interface::s);

unbind($intf-tester-r);
driller2 = new(’DrillerImpl);
set-name($driller2,"Driller2");

add($factory,$driller2);
intf-driller2-r = $driller2/interface::r;

intf-driller2-s = $driller2/interface::s;
bind($intf-driller2-s,$factory/child::Manager/interface::s);

bind($intf-tester-r,$intf-driller2-r);
}

action reconfigure_factory(factory){
remote_call($factory/child::Turntable1,’change_driller’,$factory/child::Turntable1);

remote_call($factory/child::Turntable2,’change_driller’,$factory/child::Turntable2);
}

Figure 11: An experimental reconfiguration script

delegates the action change_driller to the RC of component Turntable1. This
action is loaded and executed in the interpreter of Turntable1. The arguments
of this action are evaluated locally in the factory. The second action is executed
similarly in component Turntable2. After the reconfiguration, the components
Factory, Turntable1 and Turntable2 have been successfully reconfigured and the
application features the behaviour of the new driller.

The interpreter does not wait for the completion of the first remote_call.
Once the reconfiguration action is delegated, the interpreter continues with the
next remote_call; therefore, the reconfiguration in Turntable1 and the reconfig-
uration in Turntable2 occur in parallel. The experiment shows that the recon-
figuration operations are processed in a distributed and parallel manner relying
on the distributed interpretation of the reconfiguration script.

6 Conclusion

In this work we proposed an extension of a framework for distributed recon-
figuration of components. The main objective is to increase the support for
reconfiguration capabilities in distributed component models.

We extended an existing scripting language (FScript) for reconfiguring a
component system in a distributed manner. Our extension consists first of a
new component controller able to interpret scripts. Second, we defined new
primitives which allow the remote invocation of reconfiguration scripts. This
way, we enhanced the support for independent reconfiguration procedures. We
showed that the introduction of a remote invocation primitive leads to two
problems: the evaluation context of arguments, and the possibility to send
script arguments. A prototype of the distributed FScript interpreter has been
implemented and experiments involving distributed reconfiguration have been
performed.

The originality of our approach is that it requires a minimal extension to
an existing component framework and its associated reconfiguration language.
Additionally, it has been specifically designed to provide the key operations for
the programmer of reconfiguration procedures.

Our work should impact the design of adaptation procedures, especially
in the context of autonomic adaptation. Indeed autonomic adaptation of dis-
tributed components require components to self-adapt in a non-centralised man-

INRIA

A Reconfiguration Framework for Distributed Components 15

ner. Without contributing to the design of self-adaptation procedures them-
selves, this work allows their fast and straightforward implementation.

In the future, we plan on designing primitives for directly triggering syn-
chronisation inside the reconfiguration scripts.

RR n° 6911

16 Bennour & Henrio & Rivera

References

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Peter
Kilpatrick, Patrizio Dazzi, Domenico Laforenza, and Nicola Tonellotto. Be-
havioural skeletons in gcm: Autonomic management of grid components.
In PDP, pages 54–63. IEEE Computer Society, 2008.

[2] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto,
Vladimir Getov, Ludovic Henrio, and Christian Pérez. GCM: A Grid Ex-
tension to Fractal for Autonomous Distributed Components. Annals of
Telecommunications, accepted for publication, 2008.

[3] Michael Beisiegel, Henning Blohm, Dave Booz, Mike Edwards,
and Oisin Hurley. SCA service component architecture, as-
sembly model specification. Technical report, March 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications.

[4] Gaël Blondelle, Philippe Merle, Vivien Quema, Samir Tata, Daniel
Hagimont, and et al. SCOrWare Project, SCA Platform Specifi-
cations - version 1.0. Technical report, EBM WebSourcing, IN-
RIA Adam team, INRIA Sardes team, INT, IRIT, September 2007.
http://www.scorware.org/projects/en/deliverables.

[5] E. Bortnik, N. Trcka, A.J. Wijs, B. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing a [chi] model
of a turntable system using spin, cadp and uppaal. Journal of Logic and
Algebraic Programming, 65(2), 2005.

[6] Eric Bruneton. Fractal ADL tutorial. France Telecom, 2004.
http://fractal.objectweb.org/tutorials/adl/index.html.

[7] Eric Bruneton, Thierry Coupaye, and Jean Bernard Stefani. Recursive
and dynamic software composition with sharing. In Proceedings of the
7th ECOOP International Workshop on Component-Oriented Program-
ming (WCOP’02), 2002.

[8] CCA-Forum. The Common Component Architecture (CCA) Forum home
page, 2005. http://www.cca-forum.org/.

[9] Philippe David and Thomas Ledoux. Safe dynamic reconfigurations of Frac-
tal Architectures with FScript. In Proceeding of Fractal CBSE Workshop,
Nantes, France, 2006.

[10] Maciej Malawski, Tomasz Gubala, Marek Kasztelnik, Tomasz Bartynski,
Marian Bubak, Francoise Baude, and Ludovic Henrio. High-level scripting
approach for building component-based applications on the grid. In Core-
GRID Workshop on Grid Programming Model Grid and P2P Systems Ar-
chitecture Grid Systems, Tools and Environments, Heraklion, Crete, June
2007. Springer.

[11] Object Management Group, Inc. (OMG). CORBA Compo-
nent Model Specification, omg headquarters edition, April 2006.
http://www.omg.org/cgi-bin/apps/doc?formal/06-04-01.pdf.

INRIA

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.scorware.org/projects/en/deliverables
http://fractal.objectweb.org/tutorials/adl/index.html
http://www.omg.org/cgi-bin/apps/doc?formal/06-04-01.pdf

A Reconfiguration Framework for Distributed Components 17

[12] OMG. Deployment and configuration of component-based distributed ap-
plications, v4.0. Document formal/2006-04-02 Edition, Apr. 2006.

[13] omg.org team. CORBA Component Model, V3.0.
http://www.omg.org/technology/documents/formal/components.htm,
2005.

[14] OW2.Consortium. FraSCAti, Open SCA middleware platform.
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti,
2009.

RR n° 6911

http://www.omg.org/technology/documents/formal/components.htm
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Context
	Objective and Contribution

	Related Works and Positioning
	A Controller for Reconfiguration
	An Extension to the FScript language
	Remote Script Execution
	Passing Parameters to a Remotely Invoked Script

	Prototype and Experiments
	An Implementation in GCM/ProActive
	Experiment: Distributed reconfiguration of a component system

	Conclusion

