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Abstract—A divide-and-conquer cryptanalysis can often be
mounted against some keystream generators composed of several
(nonlinear) independent devices combined by a Boolean function.
In particular, any parity-check relation derived from the p eriods
of some constituent sequences usually leads to a distinguishing
attack whose complexity is determined by the bias of the relation.
However, estimating this bias is a difficult problem since the
piling-up lemma cannot be used. Here, we give two exact
expressions for this bias. Most notably, these expressionslead to a
new algorithm for computing the bias of a parity-check relation,
and they also provide some simple formulae for this bias in some
particular cases which are commonly used in cryptography.

I. D IVIDE -AND-CONQUER ATTACKS AGAINST SOME

STREAM CIPHERS

Parity-check relations are extensively used in cryptanalysis
for building statistical distinguishers. For instance, they can be
exploited in divide-and-conquer attacks against some stream
ciphers which consist of several independent devices whose
output sequences are combined by a nonlinear function. Here,
we focus on such keystream generators as depicted on Fig-
ure 1. All then constituent devices are updated independently
from each other. The only assumption which will be used
in the whole paper is that each sequencexi = (xi(t))t≥0

generated by thei-th device is periodic with least periodTi.

Devicen

Device 2

Device 1

...
f

@@R

���

- - s keystream

x1

x2

xn

Fig. 1. Keystream generator composed of several independent devices
combined by a Boolean function

The simplest case of a generator built according to the
model depicted in Figure 1 is the combination generator, where
all devices are LFSRs. However, our work is of greater interest
in the case where the next-state functions of the constituent
devices are nonlinear. The eSTREAM candidate Achterbahn
and its variants [1], [2], designed by Gammel, Gttfert and
Kniffler, follow this design principle: all these ciphers are
actually composed of several nonlinear feedback shift registers
(NLFSRs) with maximal periods. This design is very attractive
since the use of independent devices enables to accommodate
a large internal state with a small hardware footprint.

However, the main weakness of this design is obviously
that it is inherently vulnerable to divide-and-conquer attacks.
As originally pointed out by Siegenthaler [3], the cryptanalyst
may actually mount an attack which depends on a small
subset of the constituent devices only. This can be done if
there exists a smaller generator which involvesk constituent
devices whose output is correlated to the keystream. This
equivalently means that there exists a correlation betweenthe
output of the combining function and the output of a Boolean
function depending onk variables. The smallest numberk of
devices that have to be considered together in the attack is then
equal to(t + 1) wheret is the correlation-immunity order (or
resiliency order) of the combining functionf . Recall that a
Boolean function is said to bet-th order correlation-immune
if its output distribution does not change when anyt input
variables are fixed. Moreover, at-resilient function is at-th
order correlation-immune function which is balanced.

Now, we recall how parity-check relations can be used
for mounting a divide-and-conquer attack against such a
keystream generator. This technique has been introduced by
Johansson, Meier and Muller [4] for cryptanalysing the first
version of Achterbahn [1]. Then, it has been extensively
exploited in several attacks against the following variants of
the cipher [5], [6], [7], [8]. By analogy with coding theory,a
parity-check relation for a binary sequencex = (x(t))t≥0 is
a linear relation between some bits ofx at different instants
(t + τ) whereτ varies in a fixed set andt takes any value:

⊕

τ∈T

x(t + τ) = 0, ∀t ≥ 0.

Then, the indexesτ corresponding to the nonzero coefficients
of the characteristic polynomial of a linear recurring sequence
provide a parity-check relation. A two-term parity-check rela-
tion,

x(t) ⊕ x(t + τ) = 0, ∀t ≥ 0,

obviously corresponds to a period of the sequence. In the
following, we only focus on parity-check relations between
2s instants which are defined as follows.

Definition 1: Let x1, . . . ,xn be n sequences and letf be
a Boolean function ofn variables. Then, for any set

T =
{

s
∑

i=1

ciMi, ci ∈ {0, 1}
}



whereM1, . . . , Ms are some non-negative integers,PCf,T is
the binary sequence defined by

PCf,T (t) =
⊕

τ∈T

f(x1(t + τ), . . . , xn(t + τ)), ∀t ≥ 0.

In the following, eachMi corresponds to a multiple of
the least common multiple of the periods of some constituent
sequences. Moreover, in order to simplify the notation, we will
assume without loss of generality that the input variables are
ordered in such a way that each integerMi corresponds to a
multiple of lcm(Tℓi+1, . . . , Tℓi+1

) with ℓ1 = 0 andℓs+1 = k.
This notably implies thatT involves the periods of the first
k sequences,x1 . . . , xk.

Proposition 2: Let x1, . . . ,xn be n sequences with least
periodsT1, . . . , Tn and

T =
{

s
∑

i=1

ciMi, ci ∈ {0, 1}
}

whereMi = qilcm(Tℓi+1, . . . , Tℓi+1
) with qi > 0 andℓ1 = 0

and ℓs+1 = k. Let g be any Boolean function ofk variables
of the form

g(x1, . . . , xk) =

s
∑

i=1

gi(xℓi+1, . . . , xℓi+1
)

where eachgi is any Boolean function of(ℓi+1−ℓi) variables.
Then, for allt ≥ 0, we have

PCg,T (t) =
⊕

τ∈T

g(x1(t + τ), . . . , xn(t + τ)) = 0.

In the whole paper, we use the following notation.
Definition 3: Let f be a Boolean function ofn variables.

Then, thebias of f is

E(f) = 2−n
∑

x∈Fn

2

(−1)f(x).

This quantity is also called the imbalance off (e.g. in [9],
[10]) or the correlation betweenf and the all-zero function
(e.g. in [11]).

The underlying principle of the attack presented by Jo-
hansson, Meier and Muller [4] consists in exhibiting a biased
approximationg of the combining functionf which involves
k input variables, and a parity-check relationPCg,T = 0 for
the sequenceg(x1, . . . ,xk). Then, the associated parity-check
relation applied tof(x1, . . . ,xn) does not vanish but it is
biased in the sense that it is not uniformly distributed whenthe
(T1+ . . .+Tn) bits x1(0), . . . , x1(T1−1), x2(0), . . . , x2(T2−
1), . . . , xn(Tn − 1) are randomly chosen. The bias ofPCf,T ,
denoted byE(PCf,T ) is then defined as the bias of a Boolean
function with (T1 + . . . + Tn) input variables corresponding
to the concatenation of the first periods of the sequences. It
follows that

Pr[PCf,T (t) = 0] =
1

2
(1 + E(PCf,T ))

with E(PCf,T ) > 0. Then, computing

PCf,T (t) =
⊕

τ∈T

s(t + τ)

wheres is the keystream for different values oft ≥ 0 enables
the attacker to distinguish the keystream from a random
sequence. The complexity of this distinguishing attack depends
on the biasε of PCf,T . More precisely, the time complexity
of the attack corresponds toε−22s where2s is the number of
elements inT since the biasε can be detected from at least
ε−2 occurrences of the biased relation. The data complexity,
i.e. the number of consecutive keystream bits required for the
attack is then the maximal value which must be considered
for (t + τ), i.e.

ε−2 + maxT .

Many variants of this attack can be derived [5], [6], [7],
[8]. However, determining the complexity of all these attacks
requires an estimation of the bias ofPCf,T . In several at-
tacks [4], [5], [2], it was assumed that the piling-up lemma [12]
holds, i.e.

E(PCf,T ) = [E(f ⊕ g)]
2s

.

But it clearly appears that this result does not apply since the
termsf(x1(t + τ), . . . , xn(t + τ)) for the different values of
τ ∈ T are not independent. Actually, Naya-Plasencia [6] and
Hell and Johansson [7] have independently pointed out that
the so-calledpiling-up approximation[10] is far from being
valid in some cases.

For instance, the11-variable Boolean function used in
Achterbahn-80 is6-resilient. An exhaustive search for the
initial states ofx1 andx2 and a decimation byT7 enable the
attacker to use parity-check relations forf ′ = f+x1+x2+x7,
which is 3-resilient. Then, the quadratic approximation

g = x3x10 + x4x9 with E(f ′ ⊕ g) = 2−5

has been considered, corresponding to the set

T = {c1T3T10 + c2T4T9, c1, c2 ∈ {0, 1}}.

It has been deduced that the bias ofPCf ′,T was (2−5)4 =
2−20, leading to an infeasible attack which exceeds the
keystream length limitation [2]: the data complexity must be
at least240 and must be multiplied byT7 = 228. But, Naya-
Plasencia in [6] used another approximation, namely

g = x3 + x10 + x4 + x9 with E(f ′ ⊕ g) = 2−3.

This linear approximation leads toE(PCf,T ) = 2−12 for the
same setT , and to a feasible attack with an overall data
complexity close to252 (see [6] for a precise estimation of
the complexity).

From this concrete example, it clearly appears that esti-
mating the bias ofPCf,T may be a difficult problem. This
issue has been raised in [6], [13] which have identified some
cases where the piling-up approximation holds. However, since
these equality cases are quite rare, a much more extensive
study is needed in order to evaluate the resistance of such
keystream generators to distinguishing attacks. In this paper,
we first emphasize that, even if most attacks based on parity-
check relations use an explicit correspondence between the
setT and an approximationg of f depending onk variables,



the bias ofPCf,T does not depend on this approximation.
Most notably, we show in the next section that the piling-
up lemma applied to any approximationg compatible withT
provides a lower bound onE(PCf,T ). Then, Section III gives
two exact expressions forE(PCf,T ), one involving the biases
of some restrictions off , and the other one by means of its
Walsh coefficients. These expressions lead to an algorithm for
computing the bias of a parity-check relation with a much
lower complexity than the usual approach, and they also
provide some simple formulae for this bias in some particular
cases which are commonly used in cryptography, especially
whenf is a plateaued function.

II. A LOWER BOUND ON THE BIAS OF PARITY-CHECK

RELATIONS

However, we can prove that the piling-up approximation
provides a lower bound on the bias ofPCf,T .

Theorem 4:Let x1, . . . ,xn be n sequences with least pe-
riods T1, . . . , Tn, f a Boolean function ofn variables and
s = f(x1, . . . ,xn). Let

T = {

s
∑

i=1

ciMi, ci ∈ {0, 1}}

whereMi = qilcm(Tℓi+1, . . . , Tℓi+1
) with qi > 0, ℓ1 = 0 and

ℓs+1 = k. Then, for any Boolean functiong of k variables of
the form

g(x1, . . . , xk) =

s
∑

i=1

gi(xℓi+1, . . . , xℓi+1
) (1)

where eachgi is a Boolean function of(ℓi+1 − ℓi) variables,
we have

E(PCf,T ) ≥ [E(f ⊕ g)]2
s

.

The keypoint in the previous theorem is thatE(f ⊕ g)
provides a lower bound on the bias on the parity-check relation
for any choice of the approximationg of the form (1). The
linear approximation off by the sum of the firstk input
variables is usually considered, but any linear approximation
involving these variables can be chosen, as stated in the next
corollary. In the following, for anyα ∈ F

n
2 , ϕα denotes the

linear function ofn variables:x 7→ α · x, wherex · y is the
usual scalar product.

Corollary 5: With the notation of Theorem 4, we have

E(PCf,T ) ≥ max
α∈Vk

[E(f ⊕ ϕα)]
2s

whereVk is the subspace spanned by the firstk basis vectors.
It is worth noticing that this corollary leads to a lower bound
on the bias of the parity check relation even if the functions
f and x 7→ x1 ⊕ . . . ⊕ xk are not correlated (i.e., if the
Walsh coefficient off at point 1k vanishes, where the first
k coordinates of1k are1 and the other(n−k) are zero). This
is the first known result in such a situation; the impossibility
of deducing any estimation of the bias of the relation in such
cases has been stressed in Example 1 in [13].

However, some other approximationsg with a higher degree
may lead to a better bound. But, since any Boolean function

is completely determined by its Walsh transform,i.e. by
the biases of all its linear approximations, it appears that
E(PCf,T ) can be computed from the biases of the linear
approximations off only.

III. E XACT FORMULAE FOR THE BIAS OF THE

PARITY-CHECK RELATION

In some situations, especially when the designer of a gen-
erator has to guarantee that the system resists distinguishing
attacks, the previous lower bound on the bias of a parity-
check relation is not sufficient, and its exact value must
be computed. However, since a parity-check relation with
2s terms involvesn2s variables wheren is the number of
variables off , computing its bias requires2n2s

evaluations
of f , which is out of reach in many practical situations.
For instance, Achterbahn-128 uses a combining functionf

of 13 variables, and the biases of parity-check relations with
8 terms (i.e. with s = 3) must be estimated; this requires
2104 operations. Here, we give two exact expressions of the
bias of a parity-check relation, which can be computed with
much fewer operations,e.g. with 243 evaluations off in the
previous case. The first expression makes use of the biases
of the restrictions off when its firstk inputs are fixed; the
second one, which is related to a theorem due to Nyberg [11],
is based on the Walsh coefficients of the combining function.
A similar technique is also used in another context in [14].

A. Expression by means of the restrictions off

Definition 6: Let f be a Boolean function ofn variables and
let Vk andVn−k be two subspaces such thatVk ×Vn−k = F

n
2

and dim(Vk) = k. Then, the restriction off to the affine
subspacea + Vn−k, a ∈ Vk, denoted byfa+Vn−k

, is the
Boolean function of(n − k) variables defined by

fa+Vn−k
: x ∈ Vn−k 7→ f(x + a).

Now, for computing the exact value ofE(PCf,T ), we de-
composePCf,T according to the values of the firstk variables
in f since the other(n− k) sequencesxi, k + 1 ≤ i ≤ n, are
supposed to be such thatxi(t + τ) is statistically independent
from xi(t) for anyτ ∈ T . Amongst thek2s variablesxi(t+τ),
1 ≤ i ≤ k andτ ∈ T , we can easily see that each variable is
repeated once. Indeed, forj such thatℓi < j ≤ ℓi+1 we have
xj(t + τ) = xj(t + τ ′) if and only if |τ − τ ′| = Mi.

It follows that the values ofxj(t+τ), 1 ≤ j ≤ k andτ ∈ T
are determined by ak2s−1-bit word α. Let us splitα into k

words (α1, . . . , αk) of 2s−1 bits. We use the correspondence
between the values ofτ =

∑s

i=1 ciMi in T and the integers
c, 0 ≤ c ≤ 2s − 1 defined byc =

∑s

i=1 ci2
i−1. Then, the

value of thek-bit word (x1(t + τ), . . . , xk(t + τ)) is equal to
χ(c, α) = (χ1(c, α), . . . , χk(c, α)) where, for anyj such that
ℓi < j ≤ ℓi+1, we have

χj(c, α) =

{

χj(c − 2i, α) if ci 6= 0
αj,2iq+r if c = 2i+1q + r, r < 2i.

Clearly, if ci 6= 0, we have thatc andc′ = c − 2i correspond
to a pair(τ, τ ′) with τ − τ ′ = Mi. SinceMi is a period of
xj , we deduce thatχj(c, α) = χj(c

′, α).



If ci = 0, the corresponding value ofxj(t+τ) is statistically
independent from the previous ones and must be defined by a
bit of α which has not been used for smaller values ofc. The
number of bits ofαj which has been used for previous vectors
χj(c

′, α) for c′ < 2i+1q is 2iq since the set{0, . . . , 2i+1q−1}
is composed of2iq pairs of the form(c′, c′ +2i) with c′i = 0.
Moreover, allc′ in {2i+1q, . . . , 2i+1q + r − 1} satisfyc′i = 0
becauser < 2i. Therefore, exactly(2iq + r − 1) bits of αj

have been used forχj(c
′, α), c′ < 2i+1q + r.

Example. Let us consider a setT composed of23 elements
which involve the periods of4 sequences:

T =
{

c1T1T2 + c2T3 + c3T4, c1, c2, c3 ∈ {0.1}
}

.

Then, the4-bit wordsχ(c, α), 0 ≤ c < 8, are defined by the
16-bit word α as follows, where the bold elements correspond
to those which have already been used for a smaller value ofc:

χ(0, α) = (α00α10α20α30) χ(4, α) = (α02α12α22α30)

χ(1, α) = (α00α10α21α31) χ(5, α) = (α02α12α23α31)

χ(2, α) = (α01α11α20α32) χ(6, α) = (α03α13α22α32)

χ(3, α) = (α01α11α21a33) χ(7, α) = (α03α13α23α33)

The definition ofχ(c, α) enables us to express the bias of
PCf,T by means of the biases of the restrictions off to all
cosets of the subspaceVn−k spanned by the last(n−k) basis
vectors.

Theorem 7:Let x1, . . . ,xn be n sequences with least pe-
riods T1, . . . , Tn, f a Boolean function ofn variables and
s = f(x1, . . . ,xn). Let

T = {

s
∑

i=1

ciMi, ci ∈ {0, 1}}

whereMi = qilcm(Tℓi+1, . . . , Tℓi+1
) with qi > 0, ℓ1 = 0 and

ℓs+1 = k. Assume thatT does not contain any multiple of
Tj, for anyk < j ≤ n. Let Vn−k be the subspace spanned by
the last(n − k) basis vectors. Then, we have

E(PCf,T ) =
1

2k2s−1

∑

α∈Fk2s−1

2

2s−1
∏

c=0

E(fχ(c,α)+Vn−k
).

Proof:

Pr[PCf,T (t) = 0] =
1

2k2s−1

∑

α∈Fk2s−1

2

Pr[PCf,T (t) = 0|

(x1(t + τ), . . . , xk(t + τ)) = χ(c, α)].

When the values of the firstk input variables in every term
of PCf,T are fixed, the piling-up lemma can be applied since
the remaining(n−k)2s variables are statistically independent.
The reason is thatτ is not a multiple of the periodTi, for any
k < i ≤ n. Then, we deduce that the term corresponding toα

in the previous sum equals

1

2

[

1 +
∏

τ∈T

E(f(x(t + τ), y(t + τ))|x(t + τ) = χ(c, α))

]

=

1

2

[

1 +

2s−1
∏

c=0

E(fχ(c,α)+Vn−k
)

]

.

We then deduce that

Pr[PCf,T (t) = 0] =
1

2






1+

1

2k2s−1

∑

α∈Fk2s−1

2

2s−1
∏

c=0

E(fχ(c,α)+Vn−k
)






.

This result provides an algorithm for computing the exact
value ofE(PCf,T ). The precomputation step consists in com-
puting and storing in a table the2k values ofE(fa+Vn−k

) =
1
2k

∑

y∈V n−k(−1)f(a+y), for all a ∈ Vk. This step requires2n

evaluations off . Then, computing the bias of the parity-check
relation needs to compute, for allα ∈ F

k2s−1

2 , the product of
2s precomputed values whose indexes are given byχ(c, α), for
0 ≤ c < 2s. This requires2k2s−1

×2s operations over integers.
This leads to an overall complexity of2k2s−1+s + 2n which
is much lower than the complexity of the trivial computation,
2n2s

evaluations off . For instance, the13-variable function in
Achterbahn-128 is8-resilient. Estimating the bias of a parity-
check relation involving10 input variables with8 terms (i.e.
with s = 3) then requires243 operations.

B. Expression by means of the Walsh coefficients off

A similar exact expression for the bias ofE(PCf,T ) can be
obtained from the Walsh coefficients off , i.e. from all biases
E(f + ϕa), a ∈ Vk whereVk is the subspace spanned by the
first k basis vectors.

Theorem 8:Let x1, . . . ,xn be n sequences with least pe-
riods T1, . . . , Tn, f a Boolean function ofn variables and
s = f(x1, . . . ,xn). Let

T =
{

s
∑

i=1

ciMi, ci ∈ {0, 1}
}

whereMi = qilcm(Tℓi+1, . . . , Tℓi+1
) with qi > 0, ℓ1 = 0 and

ℓs+1 = k. Assume thatT does not contain any multiple of
Tj, for anyk < j ≤ n. Then, we have

E(PCf,T ) =
∑

α∈Fk2s−1

2

2s−1
∏

c=0

E(f + ϕχ(c,α)).

This expression leads to an algorithm for computing the bias
which is very similar to the one based on the biases of the
restrictions off . But, we need to precompute and to store the
Walsh coefficients off corresponding to all elements inVk.



IV. COMPUTING THE BIAS IN SOME PARTICULAR CASES

As a direct corollary of Theorem 8, we obtain the following
theorem. It shows that equality holds in Corollary 5 when,
amongst all linear functions depending on thek variables
involved in T , a single one corresponds to a biased approxi-
mation of f . With this theorem, we recover the value of the
bias of a parity-check relation involving the periods ofk input
sequences when the resiliency order off is equal to(k − 1).
This particular case of our theorem corresponds to the case
identified in [6], [13] where the piling-up approximation holds.

Theorem 9:With the notation of Theorem 8, suppose that
there exists a single linear functionϕa with a ∈ Vk such that
E(f + ϕa) 6= 0. Then, we have

E(PCf,T ) = [E(f + ϕa)]
2s

.

In particular, if f is (k − 1)-resilient, then

E(PCf,T ) = [E(f + ϕ1k
)]

2s

.

where1k is then-bit word whose firstk coordinates are equal
to 1 and the other ones are equal to0.

For at-resilient function, the bias of a parity-check relation
involving any (t + 1) inputs is given by Theorem 9 but, as
pointed out in [13], this result does not hold anymore whenT
involves(t + 2) sequences. However, this case can be treated
when the functionf is plateaued [15],i.e. when all values
taken by its Walsh transform belong to{0,±W} for some
W . Note that both combining functions in Achterbahn-80 and
in Achterbahn-128 are plateaued.

Theorem 10:With the notation and hypotheses of Theo-
rem 8, suppose thatf is (k − 2)-resilient and plateaued,i.e.
E(f + ϕa) ∈ {0,±ε} for all a ∈ F

n
2 . Let

A = {a ∈ Vk, E(f + ϕa) 6= 0}.

Then,
E(PCf,T ) ≤ |A|2

s−1

ε2s

.

Moreover, equality holds if and only if there existsi, 1 ≤ i ≤
s, such thatMi is a period of all sequencesxj for all j in
∪a∈Asupp(1k ⊕ a).
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