
HAL Id: hal-00379723
https://hal.archives-ouvertes.fr/hal-00379723

Submitted on 29 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peersum : Gestion des résumés de données dans les
systèmes P2P

Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib

To cite this version:
Rabab Hayek, Guillaume Raschia, Patrick Valduriez, Noureddine Mouaddib. Peersum : Gestion des
résumés de données dans les systèmes P2P. congrès Bases de Données Avancées (BDA’2007), Nov
2007, Marseille, France. pp.60-75. �hal-00379723�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50175789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00379723
https://hal.archives-ouvertes.fr

PeerSum: Summary Management in P2P Systems

Rabab Hayek†, Guillaume Raschia†, Patrick Valduriez‡ and Noureddine Mouaddib†

Atlas team–INRIA and LINA, University of Nantes
2 rue de la Houssiniere BP 92208, 44 322 Nantes, FRANCE

† {surname}.{name}@univ-nantes.fr, ‡ Patrick.Valduriez@inria.fr

Abstract

Sharing huge, massively distributed databases in
P2P systems is inherently difficult. As the amount of
stored data increases, data localization techniques be-
come no longer sufficient. A practical approach is to
rely on compact database summaries rather than raw
database records, whose access is costly in large P2P
systems.

In this paper, we consider summaries that are syn-
thetic, multidimensional views with two main virtues.
First, they can be directly queried and used to approx-
imately answer a query without exploring the original
data. Second, as semantic indexes, they support locat-
ing relevant nodes based on data content. The main
contribution of this paper is to define an efficient al-
gorithm for partitioning an unstructured P2P network
into domains, in order to optimally distribute sum-
maries in the network. Then, we propose a distributed
algorithm for maintaining a summary in a given do-
main. Our performance evaluation shows that the cost
of query routing is minimized, while incurring a low
cost of summary maintenance.

Keywords: P2P systems, DB summarization

1 Introduction

Research on P2P systems is focusing on supporting
advanced applications which must deal with semanti-
cally rich data (e.g. XML documents, relational tables,
etc.) using a high-level SQL-like query language. As a
potential example of applications, consider the cooper-

ation of scientists who are willing to share their private
data for the duration of a given experiment. Such co-
operation may be efficiently supported by improving
the mechanisms of data localization and data descrip-
tion.

In unstructured P2P systems, query routing relies
on flooding mechanisms which suffer from high query
execution cost and poor recall. To improve perfor-
mance, several techniques have been proposed to lo-
cate data relevant to a user query. These techniques
can be grouped in three classes: data indexing, me-
diation and content-based clustering. Data indexing
maintains the location (e.g. [1], [2]) or the direction
(e.g. [3]) to nodes storing relevant data. However, effi-
cient data indexes must be small, distributed and re-
fer to data based on their content, without compro-
mising peer autonomy or mandating a specific net-
work structure. Mediation consists in exploiting struc-
tural information on database schemas to guide query
propagation. For instance, in Piazza [4], a query is
propagated along pre-existing pairwise mappings be-
tween peer schemas. However, many limitations pre-
vent these techniques from scaling up. Content-based
clustering consists in organizing the network such that
“similar” peers, e.g. peers answering similar queries,
are grouped together ([5], [6]). Similarity between
peers may be computed using techniques of the two
preceding classes (e.g. similarity between indexes [7]).

With the ever increasing amount of information
stored into databases, data localization techniques are
no longer sufficient to support P2P data sharing. To-
day’s decision-support and collaborative applications
are typically exploratory. Thus, a user may prefer

1

a fast, approximate answer to a long, exact answer.
In other words, reasoning on compact data descrip-
tions rather than raw database records, whose access
is costly in large P2P systems, may be much more effi-
cient. For instance, a doctor asking queries like “young
and fat male patients diagnosed with disease X” may
prefer descriptions of result tuples to rapidly make a
decision based on similar situations, treated by other
doctors.

Our work aims at managing summaries over shared
data in P2P systems. Data summaries are synthetic,
multidimensional views with two main virtues. First,
they provide an intelligible representation of the un-
derlying data such that an approximate query can be
processed entirely in their domain; that is, inputs and
outputs are summaries. Second, as indexing struc-
tures, they support locating relevant nodes based on
their data descriptions.

This paper makes the following contributions. First,
we define an efficient algorithm for partitioning an un-
structured P2P network into domains, in order to opti-
mally distribute summaries in the network. Then, we
propose a distributed algorithm for managing a sum-
mary in a given domain. We validated our algorithmic
solutions through simulation, using the BRITE topol-
ogy generator and SimJava. The performance results
show that the cost of query routing is minimized, while
incurring a low cost of summary maintenance.

The rest of this paper is organized as follows. Sec-
tion 2 describes our summary model for P2P systems.
Section 3 presents the algorithm for network organiza-
tion, while section 4 presents the algorithm for sum-
mary management. Section 5 discusses query process-
ing in the context of summaries. Section 6 gives a
performance evaluation with a cost model and a sim-
ulation model. Section 7 compares our solution with
related work. Section 8 concludes.

2 Summary Model for P2P Systems

In this section, we first present our summary model
architecture and the principle of summary construction
in P2P systems. Second, we describe the summariza-
tion process that is integrated to a peer DataBase Man-
agement System (DBMS), to allow generating sum-
maries of a relational database. Then, we formally de-
fine the notion of data summary in a P2P network.

Figure 1. Summary Model Architecture

2.1 Model Architecture

As for any indexing structure in P2P systems, the
main issue is how to build and maintain summaries in
the network. The data indexing techniques that have
been proposed so far fall in two main categories: lo-
cal and global indexing. In Gnutella-style systems [8],
each node maintains a local index over the data it
owns, and query routing relies on flooding mecha-
nisms. Though simple and robust, this approach suf-
fers from high query execution cost and poor recall. A
second approach consists in constructing a global in-
dex over the shared data, which can be either central-
ized or distributed in the network. Napster [9] provides
search facilities by using a central server that contains
an index of all the files every node is sharing. Such a
centralized search is very efficient since a single mes-
sage allows resolving the query. However, a central
index is vulnerable to attack and it is difficult to keep
it up-to-date.

A distributed-index approach, which we adopt in
this paper, maintains indexes at each node. Structured
systems (e.g. Pastry [10], Chord [1] and CAN [2])
build a distributed hash table (DHT) on the top of the
overlay to organize data in the network. These systems
offer an efficient search, but they compromise peer au-
tonomy. Data placement and overlay topology are both
tightly controlled. Furthermore, data is located using
unique and globally known data identifiers. Thus com-
plex queries are hard to support. Therefore, we lever-
age the idea of improving the scalability of unstruc-
tured P2P systems, rather than turning to DHT-based
systems.

2

Our approach consists in organizing the network
into domains. Each node maintains a local summary
over its own data, and the nodes which are in one do-
main build a merged (global) summary over the data
they share in the domain (Figure 1). The set of global
materialized summaries and some links between nodes
of their domains, provide a virtual complete summary,
which ideally describes the content of all data shared
in the network. Unlike [11], we do not suppose that
nodes are assigned to domains at random. However,
we propose a method that partitions the network into d
domains, without mandating a specific structure or re-
stricting peer autonomy. As recommended in [12], our
method accounts for node heterogeneity, relying on
self-inspection to exploit the differences in the nodes’
characteristics (e.g. node connectivity). This method
is presented in Section 3. However, we will first give
a brief description of the summarization process that
generates summaries of relational databases with in-
teresting features, making it scalable in a distributed
environment.

2.2 Summarization Process

A summarization process is integrated to each
peer’s DBMS to allow constructing the local summary
level of Figure 1. Our approach is based on SAINTE-
TIQ [13], an online linguistic approach for summariz-
ing databases. The summarization process performs
a semantic compression of a relational database, that
is, it deals with intentional characterization of groups
of tuples, using linguistic variables [14]. This seman-
tic compression respects the original dataset schemas,
and can directly be queried or used as an alternative
dataset for any operation that requires a reduced view
of the database (e.g. querying, data mining, browsing,
etc.).

A service-oriented architecture of the summary sys-
tem has been designed thanks to autonomous agents
that interact through one-way messages. Figure 2
shows the overall organization of the system into two
separate web services. The translation service corre-
sponds to the pre-processing step that prepares data for
summarization while the summarization service pro-
duces summaries [15]. In the following we describe
these two services. Then, we study the scalability of
our summarization process.

Figure 2. Service-Oriented Architecture of the
Summarization Process

2.2.1 Translation Service

A unique feature of the summary system is its ex-
tensive use of Background Knowledge (BK), a priori
built on each attribute. It supports the translation of de-
scriptions of database tuples into a user-defined vocab-
ulary. To best reflect the way users manipulate knowl-
edge about their data, the summary system relies on
Zadeh’s fuzzy set theory [16] and, more specifically
on linguistic variables [14] and fuzzy partitions [17] in
order to grasp the inherent imprecision and vagueness
of natural language. Descriptors used for summary
content representation are defined as linguistic vari-
ables on the attribute domain. For example, Figure 3
shows a user-defined vocabulary on the attribute age
of a patient relation1, where descriptor adult is
defined as being plainly satisfactory to describe values
between 23 and 50 and less satisfactory as the age is
out of this range. As shown by Figure 2, the transla-
tion service takes as input raw data and transforms it
to cooked data. It supports the process in finding the
best representation of an original database tuple, ac-
cording to the BK provided by the user. Basically, the
operation consists in replacing the original value of all
the attributes by the set of descriptors defined in the
BK that have a non-zero matching value. The flexibil-
ity in the vocabulary definition of the BK permits to
express any single value with more than one descrip-
tor; in this case, a tuple can be rewritten into several

1Body Mass Index (BMI) attribute is defined as the patient’s
body weight divided by the square of the height.

3

Figure 3. Fuzzy Linguistic Partition on age

candidate tuples, as it is exemplified in the Figure 2.
Cooked data are documents that contain a single or a
collection of candidate tuples and are the input of the
summarization service.

2.2.2 Summarization Service

The summarization service performs a clustering
task. It takes cooked data as input, and outputs a
collection of summaries hierarchically arranged, and
incrementally maintained from the root (the most
generic summary) to the leaves (the most specific
ones). Within this structure, any non-leaf summary
generalizes the content of its children nodes. New
data, prepared in the form of candidate tuples, are first
incorporated in the root node of the hierarchy one at
a time. Then, in a top-down conceptual clustering ap-
proach based on Fisher’s Cobweb algorithm [18], data
are processed from the root to the leaves. At each node
z, the algorithm considers incorporating the current
candidate tuple ct into each child node of z as well as
creating a new child node accommodating ct. Further-
more, the system evaluates the preference of merging
the two best children nodes of z and splitting the best
child node. Then, we use a heuristic objective function
to determine the best operator to apply at each level of
the hierarchy. More details are available in [13], [15].

2.2.3 Scalability Issues

Memory consumption and time complexity are the
two main factors that need to be taken care off in or-
der to guaranty the capacity of the summary system
to handle massive datasets. First, the time complex-
ity of the SAINTETIQ process is in O(n), where n
is the number of candidate tuples to incorporate into
a hierarchy of summaries. However, the number of
candidate tuples that are produced by the translation
service is dependent only on the fuzziness of the BK
definition. A crisp BK will produce exactly as many
candidate tuples as there are original tuples. Besides,

an important feature is that in the summary algorithm,
raw data have to be parsed only once, and this is per-
formed with a low time cost. Second, the system re-
quires low memory consumption for performing the
summary construction algorithm as well as for storing
the produced summaries. Moreover, a cache manager
is in charge of summary caching in memory and it can
be bounded to a given memory requirement. Usually,
less than a hundred of summaries are needed in the
cache since this number covers the two or three top
levels of even a wide hierarchy. Least recently used
summaries are discarded when a required summary is
not found in the cache.

On the other hand, the parallelization of the sum-
mary system is a key feature to ensure smooth scal-
ability. As mentioned before, the implementation of
the system is based on the Message-Oriented Pro-
gramming paradigm. Each sub-system is autonomous
and collaborates with the others through disconnected
asynchronous method invocations. It is among the
least demanding approaches in terms of availability
and centralization. The autonomy of summary com-
ponents allows for a distributed computing of the sum-
mary process. Once a component completes the treat-
ment and evaluates the best operator for the hierarchy
modification, if needed, a similar method is succes-
sively called on children nodes. The cache manager is
able to handle several lists of summaries residing on
different computers [15].

To summarize, our summary system combines ad-
vantages such as linear time complexity, controlled
memory consumption, and a parallelized computing
of the summarization process. Thanks to these advan-
tages, we believe that this summary system is scalable
in a distributed environment, and promises a success-
ful integration in P2P systems.

2.3 Summary Representation

A summary z is a pair (Iz, Rz) where Iz is the in-
tentional content of the summary and Rz is its extent,
that is the group of database tuples described by Iz .
The intent Iz provides a short description of z in terms
of linguistic labels defined in the BK and used in the
pre-processing step. Each descriptor is associated with
two measures. First, a Satisfaction degree whose value
reflects the accuracy of the descriptor regarding the ac-

4

tual content of the summary. Second, a Support that
reflects the number of tuples within the summary that
are actually represented by this descriptor.

For our purpose, we consider a summary as an in-
dexing structure over distributed data in a P2P system.
Thus, we add a third dimension to the definition of a
summary z: a peer-extent Pz , which provides the set
of peers having data described by z.

Definition 1 Peer-extent. Let z be a node in a given
hierarchy of summaries S, and P the set of all peers
who participated to the construction of S. The peer-
extent Pz of the summary z is the subset of peers
owning, at least, one record of its extent Rz: Pz =
{p ∈ P | Rz ∩Rp 6= ∅} , where Rp is the view over
the database of node p, used to build summaries.

Due to the above definition, we extend the notion
of data-oriented summary in a given database, to a
source-oriented summary in a given P2P network. In
other words, our summary can be used as a database
index (e.g. referring to relevant tuples), as well as a se-
mantic index in a distributed system (e.g. referring to
relevant nodes).

As it was mentioned before, a summary is an edge
in the tree structure finally produced by the summa-
rization service. The summary hierarchy S will be
characterized by its Coverage in the P2P system; that
is, the number of data sources described by S. Relative
to the hierarchy S, we call Partner Peer a peer whose
data is described by at least a summary node of S.

Definition 2 Partner peers. The set of Partner peers
PS of a summary hierarchy S is the union of peer-
extents of all the summary nodes: PS = {∪z∈SPz} .

In the rest of this paper, we designate by “summary”
a hierarchy of summaries maintained in a P2P system,
unless otherwise specified.

3 Network Self-Organization

Intuitively, the term “self-organization” describes
the ability of a P2P network to organize its partici-
pants into a cooperative framework, without the need
of external intervention or control. For our purposes,
we will understand self-organization as the capability
of partitioning the network into domains, to optimally

distribute data summaries, without using global infor-
mation or restricting peer autonomy. In this section,
we begin with an overview of the reasoning behind our
solution, and then provide the algorithm for a network
self-organization.

3.1 Rationale

A number of recent studies [12], [19] have shown
that the existing networks have complex network char-
acteristics, including power law degree distributions,
small diameter, tolerance to node deletions, etc. Like
the networks that it is designed for, our algorithm
is completely decentralized, and mainly exploits the
power-law link distribution in the node degree. Fur-
thermore, in highly unstructured networks efficient al-
gorithms should rely on local information in order to
avoid a dependence on a central point of failure. In our
solution, we suppose that a node knows only about the
identities and the connectedness of its neighbors.

The key idea behind the solution is that random
walks in power-law networks naturally gravitate to-
ward the high degree nodes. A random walk is a tech-
nique proposed by [20] to replace flooding in unstruc-
tured P2P systems. At each step, a query message is
forwarded to a randomly chosen neighbor until suffi-
cient responses to the query are found. Although it
makes better utilization of the P2P network than flood-
ing, a random walk is essentially a blind search in that
it does not take into account any indication of how
likely it is the chosen node will have responses for the
query. Adamic et al. [21] addressed this problem and
showed that a better scaling is achieved by intention-
ally choosing high degree nodes. We will refer to this
routing technique as “selective walk”.

Our solution consists in identifying summary peers
in a power law network with an exponent β, and
maximum degree kmax2. Summary peers are defined
as high-degree peers, which will serve as centers of
summary-attraction. Using a selective walk which nat-
urally and rapidly gravitates toward high degree nodes,
a peer p finds the nearest summary peer SP to which
it sends a duplicate of its local summary LS. The set
of peers that discover the same summary peer SP are
grouped around it and form a domain. These peers

2A distribution is said to be a power law distribution, if P (k) ∝
k−β , where β is called the exponent of the distribution

5

become partners relative to a global summary GS ob-
tained by merging their local summaries. In [22], any
node with degree k is considered as a high-degree node
if k ≥ kmax/2. However, kmax scales like O(N1/β)
[23] and is a global information. In the next section,
we propose an IS SUMPEER function that is executed
locally at each peer to decide whether it is a summary
peer or not, using minimum local information.

3.2 Algorithm

To our purpose, we have extracted a general model
of a high-degree node in a power law network. Thus,
the IS SUMPEER function consists in matching this
model with each node of the network. Algorithm 3.2
shows the steps involved in making this matching.
First, we check if the current peer p is among the
highest-degree peers in its neighborhood. In other
words, the degree k of peer p should be greater than
the median value of the set of its neighbor’s degrees
(i.e. |subset inf | � |subset sup|). Then, we verify if
the local maximum degree max in p’s neighborhood
does not exceed 2 · k. Finally, we examine if k is
larger than the mean value of neighbor’s degrees by
a constant ct. This condition makes a difference in the
matching result when the neighbor’s degrees follow an
asymmetric distribution with a positive skew, i.e. there
are a small number of very large degrees. In that case,
the mean value is greater than the median. The con-
stant ct permit to tune the selectivity of the matching
function. The larger ct, less is the total number of sum-
mary peers.

Algorithm 1 Is SumPeer
1: function Is SumPeer(k, NL)
2: k is the degree of the current peer p, and NL is

the Neighboring List that contains the identifiers of p’s
neighbors and their degrees.

3: subset inf := pi ∀ 1 ≤ i ≤ |NL| such that ki ≺ k
4: subset sup := pi ∀ 1 ≤ i ≤ |NL| such that ki � k
5: max := max (ki), ∀ 1 ≤ i ≤ |NL|
6: mean := mean (ki), ∀ 1 ≤ i ≤ |NL|
7: if (|subset inf | � |subset sup|) and (k �
max/2) and (k � ct ·mean) then

8: Is SumPeer := true
9: else Is SumPeer := false

10: end if
11: end function

Figure 4. Number of summary peers vs. num-
ber of peers

Figure 4 shows the number of summary peers iden-
tified by our algorithm, in function of the total number
of peers n. We see that this number is proportional to√
n for network sizes smaller than 1024, and is pro-

portional to n for larger networks. Since our domains
are formed around the summary peers, thus figure 4
gives directly the number d of domains obtained in
the network. The shown results are similar to those
found in [11]. It has been proved [11], theoretically
and by simulation, that the optimal number of domains
required to distribute a global index, is in O(

√
n) for

total-lookup queries and in O(n) for partial-lookup
queries. A total-lookup query requires all results that
are available in the system, whereas a partial-lookup
query requires anym results, for some constantm. We
believe that a total-lookup query is very difficult and
costly in large P2P networks, and thus all queries are
processed as being partial-lookup queries. Therefore,
we conclude that using a local degree-based function,
we can organize the network into an optimal number of
domains: for total-lookup queries in small-sized net-
works, and for partial-lookup queries in larger-sized
networks.

4 Summary management

In this section, we present our algorithms for sum-
mary construction and maintenance in a given domain.
First, we work in a static context where all participants
remain connected. Then we address the volatility of
peers and propose appropriate solutions.

6

4.1 Summary Construction

We assume that each global summary is associated
with a Cooperation List (CL) that provides informa-
tion about its partner peers. An element of CL is com-
posed of two fields. A partner identifier PeerID, and a
2-bit freshness value v that provides information about
the description freshness as well as the availability of
the corresponding database.

• value 0 (initial value): the descriptions are fresh
relative to the original data,

• value 1: the descriptions need to be refreshed,

• value 2: the original data are not available. This
value is used while addressing peer volatility in
Section 4.3.

Algorithm 4.1 shows the messages exchanged between
peers in order to build a global summary GS. A sum-
mary peer SP broadcasts a SUMPEER message that
contains its identifier, to indicate its ability to host
summaries. Since SP is supposed to have high con-
nectivity, a small value of TTL (Time-To-Live) is suf-
ficient to cover a large number of peers (e.g. TTL =
2). The message contains also a hop value h, initial-
ized to 0, which is used to compute the distances be-
tween SP and the receiving peers.

A peer p who received a first SUMPEER message,
maintains information about the corresponding sum-
mary peer SP (i.e. Line 16). Then, p sends to SP a
LOCALSUM message that contains its local summary
LS, and thus becomes a partner peer in the SP ’s do-
main. Upon receiving this last message, SP merges
LS to its current global summary GS, and adds a new
element in the cooperation list. However, a peer p
who is already a partner may receive a new SUMPEER

message. In that case, only if the new summary peer is
nearer than the old one (based on latency), it chooses
to drop its old partnership through a DROP message
(i.e. Line 14), and it proceeds to participate to a new
domain.

We now suppose that a peer p does not belong
to any domain (is not a partner peer), and wants to
participate to a global summary construction. Using
a selective walk, it can rapidly find a summary peer
SP (i.e. FIND message). The information about SP ,
which is maintained at each of its partners, makes

Algorithm 2 Global Summary Construction
1: // Definition of different types of messages
2: SUMPEER=〈sender〉 〈id, h, TTL〉
3: FIND=〈sender〉 〈h, TTL〉
4: LOCALSUM=〈sender〉 〈LS〉
5: DROP=〈sender〉 〈〉
6: // Treatment of messages
7: Treat(msg)
8: Switch msg.type
9: // Receiving information about a summary peer

10: Case (SumPeer): msg.h++

11: msg.TTL−−

12: if (this.SumPeer=null) or (this.SumPeer.h�msg.h)
then

13: if (this.IsPartner) then
14: Send DROP message to this.SumPeer.id
15: end if
16: this.SumPeer := 〈msg.id,msg.h〉
17: LOCALSUM := new msg (this.LS)
18: Send LOCALSUM to msg.sender
19: IsPartner := True
20: end if
21: if msg.TTL > 0 then
22: Send msg to all neighbors
23: end if
24: end Case
25: // Searching for a summary peer
26: Case (Find): msg.h++

27: msg.TTL−−

28: if (this.Is SumPeer) then
29: PEERSUM := new msg (this.id, msg.h, 1)
30: Send PEERSUM to msg.sender
31: else
32: if (this.SumPeer 6= null) then
33: PEERSUM := new msg (this.SumPeer.id,

(msg.h + this.SumPeer.h), 1)
34: Send PEERSUM to msg.sender
35: else
36: if (msg.TTL > 0) then
37: p′← highest degree peer in N(p)
38: Send msg to p′

39: end if
40: end if
41: end if
42: end Case
43: // arrival of a new partner
44: Case (LocalSum): CoopList.add (msg.sender, 0)
45: GlobalSum := merge (GlobalSum, msg.LS)
46: end Case
47: // departure of a partner
48: Case (Drop): CoopList.remove (msg.sender)
49: end Case

7

the selective walk even shorter. Once a partner or a
summary peer is reached, the FIND message is stopped
(i.e. Line 32).

In the above algorithm, peers exchange summaries
that are produced using local Background Knowl-
edges (BKs). Thus, they may be represented in
different user-defined vocabularies, making difficult
their shared exploitation (e.g. merging operation). In
this work, we assume that the participants to a col-
laborative database application agree on a Common
Background Knowledge (CBK) that will be used lo-
cally by each summarization process. An example
of such a CBK is the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) [24], which
is a comprehensive clinical terminology covering dis-
eases, clinical findings, and procedures. On the other
hand, several works have addressed the problem of
semantic heterogeneity in advanced P2P applications
(e.g. [25], [4]). Since our summaries are data struc-
tures that respect the original database schemas, we
can assume that the techniques they proposed for a de-
centralized schema management can be also used to
overcome the heterogeneity of summary representa-
tions, in the context of different BKs.

4.2 Summary Maintenance

A critical issue for any indexing structure is to
maintain the index, relative to the current data in-
stances, without incurring high costs. For a local sum-
mary, it has been demonstrated that the summarization
process guarantees an incremental maintenance, us-
ing a push mode for exchanging data with the DBMS,
while performing with a low complexity [15]. In this
section, we propose a strategy for maintaining a global
summary in a given domain, based on both push and
pull techniques, in order to minimize the number of
messages exchanged in the system. The appropriate
algorithm is divided into two phases: data modifica-
tion and summary reconciliation.

4.2.1 Push: Data Modification

Let GS be a global summary and PGS the set of its
partner peers. Each peer in PGS is responsible for re-
freshing its own element in the GS’s cooperation list.
A partner peer p observes the modification rate issued

on its local summary LS. When LS is considered as
enough modified, the peer p sets its freshness value
v to 1, through a push message to the corresponding
summary peer SP . The value 1 indicates that the lo-
cal summary version being merged while constructing
GS does no longer correspond to the current instance
of the database.

An important feature is that the frequency of push
messages depends on modifications issued on local
summaries, rather than on the underlying databases. It
has been demonstrated in [15] that, after a given pro-
cess time, a summary hierarchy becomes very stable.
As more tuples are processed, the need to adapt the hi-
erarchy decreases and hopefully, once all existing at-
tribute combinations have been processed, incorporat-
ing new tuple consists only in sorting it in a tree. A
summary modification can be detected by observing
the appearance/disappearance of descriptors in sum-
mary intentions.

4.2.2 Pull: Summary Reconciliation

The summary peer SP , in its turn, observes the
fraction of old descriptions (i.e. number of ones) in
the cooperation list. Whenever this fraction exceeds
a threshold value, the global summary GS must be re-
freshed. In that case, SP pulls all the partner peers to
merge their current local summaries into the new ver-
sion of GS, which will be then under reconstruction.
The algorithm is described as follows.
SP initiates a reconciliation message that contains

a new summary NewGS (initially empty). The mes-
sage is propagated from a partner to another (started at
SP). When a partner p receives this message, it first
merges NewGS with its local summary. Then, it sends
the message to another partner (chosen from the coop-
eration list CL). If p is the last visited peer, it sends
the message to SP who will store the new version of
the gobal summary. All the freshness values in CL are
reset to zero. This strategy distributes the charge of
summary merging on all partners, instead of imposing
on SP to receive all local summaries and to make the
merging calculations alone. Furthermore, this strategy
guarantees a high availability of the global summary,
since only one update operation is performed at the
end by SP .

8

4.3 Peer Dynamicity

In large P2P systems, a peer connects mainly to
download some data and may leave the system with-
out any constraint. Therefore, the shared data can be
submitted with a low modification rate, while the rate
of node arrival/departure is very important. We now
study the effect of this peer dynamicity on our sum-
mary management algorithms, and propose appropri-
ate solution.

4.3.1 Partner Peer Arrival/Departure

In unstructured P2P systems, when a new peer p
joins the system, it contacts some existing peers to de-
termine the set of its neighbors. If one of these neigh-
bors is a partner peer, p sends its local summary LS
to the corresponding summary peer SP , and thus be-
comes a new partner in the SP ’s domain. SP adds
a new element to the cooperation list with a freshness
value v equal to one. Recall that the value 1 indicates
the need of pulling peer p to get new data descriptions.

When a partner peer p decides to leave the system,
it first sets its freshness value v to two in the coopera-
tion list, through a push message. This value reminds
the participation of the disconnected peer p to the cor-
responding global summary, but also indicates the un-
availability of the original data. There are two alterna-
tives to deal with such a freshness value. First, we can
keep the data descriptions and use it, when a query is
approximately answered using the global summary. A
second alternative consists in considering the data de-
scriptions as expired, since the original data are not ac-
cessible. Thus, a partner departure will accelerate the
summary reconciliation initiating. In the rest of this
paper, we adopt the second alternative and consider
only a 1-bit freshness value v: a value 0 to indicate the
freshness of data descriptions, and a value 1 to indicate
either their expiration or their unavailability.

However, if peer p failed, it could not notify its sum-
mary peer by its departure. In that case, its data de-
scriptions will remain in the global summary until a
new summary reconciliation is executed. The recon-
ciliation algorithm does not require the participation
of a disconnected peer. The global summary GS is re-
constructed, and descriptions of unavailable data will
be then omitted.

4.3.2 Summary Peer Arrival/Departure

In section 3, we have presented our IS SUMPEER

function that is executed at each peer to decide whether
it is a summary peer or not. This function is based on
node connectivity, and thus variations of node degrees
may incur modifications in the function results. There-
fore, we suppose that a peer executes periodically the
IS SUMPEER function.

However, we believe that the results of the
IS SUMPEER function do not change frequently thanks
to two characteristics of P2P networks. First, connec-
tions tend to be formed preferentially because peers
tend to discover high-degree nodes in the network
overlay [12]. Second, although the nodes join and
leave the network with a high rate, we suppose that
each node leave is very probably accompanied by a
new node join such the the total number of nodes re-
mains the same. Thus, the cases in which a summary
peer becomes an ordinary peer, or a node is submitted
to a significant degree variation rarely occur. However,
when a new highly-available peer attracts many peer
connections and becomes a summary peer, it simply
diffuses this information as described in section 4.1,
and a new domain starts to appear around it.

Now, when a summary peer SP decides to leave
the system, it sends a release message to all its part-
ners using the cooperation list. Upon receiving such a
message, a partner p makes a selective walk to find a
new summary peer. However, if SP failed, it could not
notify its partners. A partner p who has tried to send
push or query messages to SP will detect its departure
and thus search for a new one.

4.4 Capacity-based Summary Distribu-
tion

So far, we have considered a centralized approach
for storing a global summary in a given domain. Each
summary peer SP is in charge of storing the global
summaryGS of its domain. However, this implies that
each query posed by a partner p will be sent to SP ,
which may be then overloaded. Here we give a sim-
ple solution to distribute GS, and thus the query load,
based on node capacity. In [], capacities are assigned
to nodes based on a distribution that is derived from
the measured bandwidth distributions for Gnutella, as

9

Capacity level percentage of nodes
1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%

Table 1. Gnutella-like node capacity distributions

reported by Saroiu et al []. The capacity distribution
has five levels of capacity, each separated by an order
of magnitude (Table 1). A node i is modeled as pos-
sessing a capacity Ci, which represents the number of
queries that it can process per unit time. In addition to
its capacity, each node i is assigned a query generation
rate qi, which is the number of queries that it generates
per unit time. Therefore, a node i is represented by:
i = (Ci, qi).

Now, we suppose that each summary peer SP del-
egates an Assistant Peer AP , which is the highest-
capacity neighbor that belongs to the same domain.
The summary peer SP accepts n1 peers as part-
ners among the nd peers of its domain d such that:∑n1
i=1 qi ≺ CSP . If n1 is greater than nd, SP is con-

sidered as a high-capacity peer, and thus will host the
global summary of the entire domain. Otherwise, we
adopt a deviation method to distribute the charge be-
tween the summary peer and its assistant. When SP
receives a LOCALSUM message (see algorithm 4.1)
and it cannot support the query generation rate of the
sender, it deviates the message to the assistant AP . In
this case, the summary peer SP serves as a guide. Us-
ing a selective walk, a peer p rapidly finds SP that
sends him to the assistant AP , in order to handle a
duplicate of its local summary. However, the global
summaryGS of the domain d is divided into two sum-
maries: GS1 and GS2, maintained by SP and AP re-
spectively. Thus, to allow each partner peer exploiting
both summaries, we replicate GS2 at SP and GS1 at
AP , as shown by Figure 5.

5 Query Processing

In this section, we describe how a query Q, posed
at a peer p, is processed. For query routing, we adopt
a hybrid approach: intra-domain summary querying,

Figure 5. capacity-based summary distribu-
tion

and inter-domain query flooding. For query answer-
ing, our mechanism is able to achieve two distinct
tasks depending on the user/application requirements:
peer localization to return the original result records,
and summary answering to return approximate an-
swers.

Peer p first sends the query Q to the summary peer
SP of its domain. SP proceeds then to query the
available global summary GS, which is considered as
a semantic index over the data shared in the domain.
This allows efficient peer localization since we exploit
data descriptions rather than structural information on
database schemas (e.g. [25]). Summary querying is di-
vided into two phases: 1) query extension and 2) query
evaluation.

5.1 Query Extension

First, the query Q must be extended to a flexible
query Q∗ in order to be handled by the summary
querying process. For instance, consider the following
selection query Q:
SELECT BMI FROM PATIENT WHERE age < 30 AND

DISEASE = “MALARIA”

This phase consists in replacing the original value
of each selection predicate by the corresponding
descriptors defined in the Background Knowledge
(BK). According to the fuzzy partition of Figure 3, the
above query is transformed to Q∗:

10

SELECT BMI FROM PATIENT WHERE AGE IN

{YOUNG, ADULT} AND DISEASE = “MALARIA”

Let QS (resp.QS∗) be the Query Scope of query Q
(resp.Q∗) in the domain, that is, the set of peers that
should be visited to answer the query. Obviously, the
query extension phase may induce false positives in
query results. To illustrate, a 35 years old patient will
be returned as an answer to the query Q∗, while the
selection predicate on the attribute age of the origi-
nal query Q is not satisfied. However, false negatives
cannot occur, which is expressed by the following in-
clusion: QS ⊆ QS∗.

In the rest of this paper, we suppose that a user
query is directly formulated using descriptors defined
in the BK (i.e. Q = Q∗). As we discussed in the in-
troduction of this work, a doctor that participates to
a given medical collaboration, may ask query Q like
“the BMI of young and adult patients diagnosed with
malaria”. Thus, we eliminate potential false positives
that may result from query extension.

5.2 Query Evaluation

This phase deals with matching a set of summaries
organized in a hierarchy S, against the query Q. The
query is transformed into a logical proposition P used
to qualify the link between a summary node and the
query. Proposition P is under a conjunctive form in
which all descriptors appears as literals. In conse-
quence, each set of descriptors yields on correspond-
ing clause. For instance, the above query Q is trans-
formed to P = (young OR adult) AND (malaria).

A valuation function has been defined to valuate the
proposition P in the context of a summary node z.
Then, a selection algorithm performs a fast exploration
of the hierarchy and returns the set ZQ of most pre-
cise summaries that satisfy the query. For more details
see [26]. Once ZQ determined, the query evaluation
process is able to achieve two distinct tasks: 1) Peer
localization, and 2) Summary answering.

5.2.1 Peer Localization

Since the extended definition of a summary node
z provides a peer-extent, i.e. the set of peers Pz hav-
ing data described by its intent (see Definition 1), we
can define the set PQ of relevant peers for the query

Q as follows: PQ = {∪z∈ZQPz}. The query Q is di-
rectly propagated to these relevant peers. However, the
efficiency of this query routing depends on the com-
pleteness and the freshness of summaries, since stale
answers may occur in query results. We define a False
Positive as the case in which a peer p belongs to PQ
and there is actually no data in the p source that satis-
fies Q (i.e. p /∈ QS). A False Negative is the reverse
case in which a p does not belong to PQ, whereas there
exists at least one tuple in the p data source that satis-
fies Q (i.e. p ∈ QS).

5.2.2 Summary Answering

A distinctive feature of our approach is that a query
can be processed entirely in the summary domain. An
approximate answer can be provided from summary
descriptions, without having to access original, dis-
tributed database records. The selected summaries
ZQ are aggregated according to their interpretation of
proposition P : summaries that have the same required
characteristics on all predicates (i.e. age and disease)
form a class. The aggregation in a given class is a
union of descriptors: for each attribute of the selection
list (i.e. BMI), the querying process supplies a set of
descriptors which characterize summaries that respond
to the query through the same interpretation [26]. For
example, for the class {young,malaria}, we can ob-
tain an output set BMI = {underweight, normal}.

Now, we suppose that processing a query Q in a
given domain di returns Ci results, while the user re-
quires Ct results. We note that, if Ct is less than the
total number of results available in the network, Q is
said to be a partial-lookup query. Otherwise, it is a
total-lookup query. Obviously, when Ci is less than
Ct, the query should be propagated to other domains.
To this end, we adopt the following variation of the
flooding mechanism.

Let Pi the subset of peers that have answered the
query Q in the domain di: |Pi| = (1− FP) · |PQ|,
where FP is the fraction of false positives in query
results. The query hit in the domain is given by:
(|Pi| / |di|). As shown by many studies, the exist-
ing P2P networks have small-world features [27]. In
such a context, users tend to work in groups. A group
of users, although not always located in geographi-
cal proximity, tends to use the same set of resources

11

(i.e. group locality property). Thus, we assume that
the probability of finding answers to query Q in the
neighborhood of a relevant peer in Pi, is very high
since results are supposed to be nearby. This proba-
bility is also high in the neighborhood of the origina-
tor peer p since some of its neighbors may be inter-
ested in the same data, and thus have cached answers
to similar queries. Therefore, the summary peer SPi
of domain di sends a flooding request to each peer in
Pi as well as to peer p. Upon receiving this request,
each of those peers broadcasts the query with a limited
value of TTL. Once a new domain is reached or TTL
becomes zero, the query is stopped.

Besides, the summary peer SP which is a high-
degree peer may have some long-range links, that is,
links to other domains. Thus, SP also sends the flood-
ing request to the subset of its neighbors that do not be-
long to its current domain (neighbors that do not figure
in its cooperation list). This will accelerate covering a
large number of domains. In each visited domain, the
query is processed as described above. When the num-
ber of query results becomes sufficient (i.e. larger than
Ct), or the network is entirely covered, the query rout-
ing is terminated.

6 Performance evaluation

In this section, we devise a simple model of the
summary management cost. Then, we evaluate and
analyze our model with a simulation using the BRITE
topology generator and SimJava.

6.1 Cost Model

A critical issue in summary management is to trade
off the summary updating cost against the benefits ob-
tained for queries.

6.1.1 Summary Update Cost

Here, our first undertaking is to optimize the update
cost while taking into account query accuracy. In the
next section, we discuss query accuracy which is mea-
sured in terms of the percentage of false positives and
false negatives in query results. The cost of updating
summaries is divided into: usage of peer resources,
i.e. time cost and storage cost, and the traffic overhead
generated in the network.

Time Cost A unique feature of SAINTETIQ is that
the changes in the database are reflected through an
incremental maintenance of the summary hierarchy.
The time complexity of the summarization process is
in O(n) where n is the number of tuples to be incor-
porated in that hierarchy [15].

For a global summary update, we are concerned
with the complexity of merging summaries. The
MERGING method that has been proposed is based
on the SAINTETIQ engine. This method consists in
incorporating the leaves of a given summary hierar-
chy S1 into an another S2, using the same algorithm
described by the SAINTETIQ summarization service
(referenced in Section 2.2.3). It has been proved that
the complexity CM12 of the MERGING(S1, S2) pro-
cess is constant w.r.t the number of tuples. More pre-
cisely, CM12 depends on the maximum number of
leaves of S1 to incorporate into S2. However, the num-
ber of leaves in a summary hierarchy is not an issue
because it can be adjusted by the user according to
the desired precision. A detailed Background Knowl-
edge (BK) will lead to a greater precision in summary
description, with the natural consequence of a larger
summary. Moreover, the hierarchy is constructed in a
top-down approach and it is possible to set the sum-
marization process so that the leaves have any desired
precision.

Storage Cost We denote by k the average size of a
summary node. In the average-case assumption, there
are

∑d
i=0 Bi = (Bd+1 − 1)/(B − 1) nodes in a

B-arity tree with d, the average depth of the hierar-
chy. Thus the average space requirement is given by:
Cm = k.(Bd+1 − 1)/(B − 1). Based on real tests,
k = 512 bytes gives a rough estimation of the space
required for each summary node. An important issue
is that the size of the hierarchy is quite related to its
stabilization (i.e. B and d). As more tuples are pro-
cessed, the need to adapt the hierarchy decreases and
incorporating a new candidate tuple may consist only
in sorting a tree. Hence, the structure of the hierar-
chy remains stable and no additional space is required.
On the other hand, when we merge two hierarchies S1

and S2 having sizes of Cm1 and Cm2 respectively, the
size of the resultant hierarchy is always in the order of
themax (Cm1, Cm2). However, the size of a summary
hierarchy is limited to a maximum value which corre-

12

sponds to a maximum number of leaves that cover all
the possible combinations of the BK descriptors. Thus,
storing the global summary at the summary peer is not
a strength constraint.

According to the above discussion, the usage of
peer resources is optimized by the summarization pro-
cess itself, and the distribution of summary merging
while updating a global summary. Thus, we restrict
now our focus to the traffic overhead generated in the
P2P network.

Network Traffic Recall that there are two types of
exchanged messages: push and reconciliation. Let lo-
cal summaries have an average lifetime of L seconds
in a given global summary. Once L expired, the node
sends a (push) message to update its freshness value
v in the cooperation list CL. The reconciliation algo-
rithm is then initiated whenever the following condi-
tion is satisfied:

∑
v∈CL v/|CL| ≥ α, where α is a

threshold that represents the ratio of old descriptions
tolerated in the global summary. During reconcilia-
tion, only one message is propagated among all partner
peers until the new global summary version is stored at
the summary peer SP . Let Frec be the reconciliation
frequency. The update cost is:

Cup = 1/L+ Frec messages per node per second (1)

In this expression, 1/L represents the number of
push messages which depends either on the modifi-
cation rate issued on local summaries or the connec-
tion/disconnection rate of peers in the system. Higher
is the rate, lower is the lifetime L, and thus a large
number of push messages are entailed in the system.
Frec represents the number of reconciliation messages
which depends on the value of α. This threshold is our
system parameter that provides a trade-off between the
cost of summary updating and query accuracy. If α is
large, the update cost is low since a low frequency of
reconciliation is required, but query results may be less
accurate due both to false positives stemming from the
descriptions of non existent data, and to false negatives
due to the loss of relevant data descriptions whereas
they are available in the system. If α is small, the up-
date cost is high but there are few query results that
refer to data no longer in the system, and nearly all
available results are returned by the query.

6.1.2 Query Cost

When a query Q is posed at a peer p, it is first
matched against the global summary available at the
summary peer SP of its domain, to determine the set
of relevant peers PQ. Then, Q is directly propagated
to those peers. The query cost in a domain d is given
by:

Cd = (1 + |PQ|+ (1− FP) · |PQ|) messages,

where (1− FP) · |PQ| represents the query responses
messages (i.e. query hit in the domain).

Here we note that, the cooperation list CL as-
sociated with a global summary provides informa-
tion about the relevance of each database descrip-
tion. Thus, it gives more flexibility in tuning the re-
call/precision trade-off of the query answers in domain
d. The set of all partner peers PH in CL can be di-
vided into two subsets: Pold = {p ∈ PH | p.v = 1},
the set of peers whose descriptions are considered old,
and Pfresh = {p ∈ PH | p.v = 0} the set of peers
whose descriptions are considered fresh according to
their current data instances. Thus, if a queryQ is prop-
agated only to the set V = PQ∩Pfresh, then precision
is maximum since all visited peers are certainly match-
ing peers (no false positives), but recall depends on the
fraction of false negatives in query results that could
be returned by the set of excluded peers PQ\Pfresh.
On the contrary, if the query Q is propagated to the
extended set V = PQ ∪ Pold, the recall value is maxi-
mum since all matching peers are visited (no false neg-
atives), but precision depends on the fraction of false
positives in query results that are returned by the set of
peers Pold.

Now we consider that the selectivity of query Q is
very high, such that each relevant peer has only one
result tuple. Thus, when a user requires Ct tuples,
we have to visit Ct relevant peers. The cost of inter-
domain query flooding is given by:

Cf = ((1− FP) · |PQ|+ 2) ·
TTL∑
i=1

ki messages,

where k is the average degree value in an unstruc-
tured P2P system (e.g. average degree of 3.5, simi-
lar to Gnutella-type graphs). Remember that, the set
of relevant peers who have answered the query (i.e.
(1−FP) · |PQ|), the originator and the summary peers
participate to query flooding. In this expression, we

13

Parameter value
Network configuration

local summary lifetime L skewed distribution,
Mean=3h, Median=1h

number of peers n 16–5000
Workload configuration

number of queries q 200
matching nodes/query hits 10%

System parameter
freshness threshold α 0.3–0.8

Table 2. Simulation Parameters

consider that a summary peer has on average k long-
range links. As a consequence, the total cost of a query
is:

CQ = Cd · Ct

(1−FP)·|PQ| + Cf · (1− Ct

(1−FP)·|PQ|) (2)

In this expression, the term Ct/((1 − FP) · |PQ|)
represents the number of domains that should be vis-
ited. For example, when Ct = ((1− FP) · |PQ|), one
domain is sufficient and no query flooding is required.

6.2 Simulation

We evaluated the performance of our solutions
through simulation, based on the above cost model.
First, we describe the simulation setup. Then we
present simulation results to evaluate various perfor-
mance dimensions and parameters: scale up, query ac-
curacy, effect of the freshness threshold α.

6.2.1 Simulation Setup

For our simulation, we used the SimJava pack-
age [28] and the BRITE universal topology genera-
tor [29]. We simulate a n-node P2P system, assigning
a data source with t tuples to each node. We calibrate
our simulator using real data gathered by Saroiu et
al. [12], in a study of the Gnutella file-sharing network.
The simulation parameters are shown in Table 2 and
fall into three categories: network parameters, work-
load parameters, and system parameters.

In our tests, we consider that local summary life-
times are quite related to the node lifetimes, since the
rate of node connection/disconnection is supposed to

Figure 6. Stale answers vs. domain size

be greater than the modification rate issued on local
summaries, and this for two reasons. First, in large
P2P systems, we mainly deal with selection queries to
locate and download required data. Thus, the original
data are submitted to a low modification rate. Second,
our summaries are even more stable than the original
data (as we discussed before). Thus, the volatility of
peers is, in reality, the main reason for a global sum-
mary reconciliation. Under this assumption, we con-
sider that local summary lifetimes, like node lifetimes,
follow a skewed distribution with a mean lifetime of 3
hours, and a median lifetime of 60 minutes.

Our workload has 200 queries. The query rate is
0.00083 queries per node per second (one query per
node per 20 minutes) as suggested in [30]. Each query
is matched by 10% of the total number of peers. Fi-
nally, Our system parameter α that decides of the rec-
onciliation frequency varies between 0.1 and 0.8.

6.2.2 Update Cost

In this set of experiments, we quantify the trade-
off between query accuracy and the cost of updating a
global summary in a given domain. Figure 6 depicts
the fraction of stale answers in query results for differ-
ent values of the threshold α. Here, we illustrate the
worst case. For each partner peer p having a freshness
value equal to 1, if it is selected in the set PQ then it
is considered as false positive. Otherwise, it is con-
sidered as false negative. However, this is not the real
case. Though it has a freshness value equal to 1, the
peer p does not incur stale answers unless its database
is changed relative to the posed query Q. Thus, Fig-
ure 6 shows the worst, but very reasonable values. For
instance, the fraction of stale answers is limited to 11%

14

Figure 7. False negative vs. domain size

Figure 8. Max domain size vs. network size

for a network of 500 peers when the threshold α is set
to 0.3 (30% of the peers are tolerated to have old/non
existent descriptions).

Moreover, Figure 8 shows the maximum domain
sizes obtained in our self-organized network, for dif-
ferent TTL values. Recall that the TTL value is used
to broadcast a SUMPEER message (see Algorithm 4.1).
The maximum domain size is approximatively less
than 25% of the total number of peers. Thus, in Fig-
ure 6, the fraction of stale answers measured for a do-
main size of 256 peers, corresponds to a network of
size 1024.

As mentioned in Section 6.1.2, if we choose to
propagate the query only to the set V = PQ ∩ Pfresh
we eliminate the possible false positives in query re-
sults. However, this may lead to additional false nega-
tives. Figure 7 shows the fraction of false negatives in
function of the domain size. Here we take into account
the probability of the database modification relative to
the query, for a peer having a freshness value equal to
1. We see that the fraction of false negatives is limited
to 3% for a domain size less than 2000 (i.e. network

Figure 9. number of messages vs. domain
size

size less than 8000). The real estimation of stale an-
swers shows a reduction by a factor of 4.5 with respect
to the preceded values.

Figure 9 depicts the update cost in function of the
domain size, and this for two threshold values. The
total number of messages increases with the domain
size, but not surprisingly, the number of messages per
node remains almost the same. In the update cost
equation 6.1.1, the number of push messages for a
given peer is independent of domain size. On the other
hand, the number of reconciliation messages decreases
slowly with the number of peers, for a given value of
the threshold α. More interestingly, when the thresh-
old value decreases (from 0.8 to 0.3) we notice a lit-
tle cost increasing of 1.2 on average. For a domain
of 1000 peers, the update cost increases from 0.01056
to 0.01296 messages per node per minute (not shown
in figure). However, a small value of the threshold α
allows to reduce significantly the fraction of stale an-
swers in query results, as seen in Figure 6. We con-
clude therefore that tuning our system parameter, i.e.
the threshold α, do not incur additional traffic over-
head, while improving query accuracy.

6.2.3 Query Cost

In this set of experiments, we compare our al-
gorithm for query processing against centralized-
index and pure non-index/flooding algorithms. A
centralized-index approach is very efficient since a sin-
gle message allows locating relevant data. However, a
central index is vulnerable to attack and it is difficult to
keep it up-to-date. Flooding algorithms are very used

15

in real life, due to their simplicity and the lack of com-
plex state information at each peer. A pure flooding
algorithm consists in broadcasting the query in the net-
work till a stop condition is satisfied, which may lead
to a very high query execution cost. Here, we limit the
flooding by a value 3 of TTL (Time-To-Live).

According to Table 2, the query hit is 10% of the
total number of peers. For our query processing ap-
proach, which is mainly based on summary querying
(SQ), we consider that each visited domain provides
10% of the number of relevant peers (i.e. 1% of the
network size). In other words, we should visit 10 do-
mains for each query Q. From equation 6.1.2, we ob-
tain: CQ = (10 · Cd + 9 · Cf) messages. Figure 10
depicts the number of exchanged messages to process
a query Q, in function of the total number of peers. The
centralized-index algorithm shows the best results that
can be expected from any query processing algorithm,
when the index is complete and consistent, i.e. the in-
dex covers the totality of data available in the system,
and there are no stale answers in query results. In that
case, the query cost is: CQ = 1 + 2 · ((0.1) · n) mes-
sages, which includes the query message sent to the
index, the query messages sent to the relevant peers
and the query response messages returned to the orig-
inator peer p.

In Figure 10, we observe that our algorithm SQ
shows good results by significantly reducing the num-
ber of exchanged messages, in comparison with a pure
query flooding algorithm. For instance, the query cost
is reduced by a factor of 3.5 for a network of 2000
peers, and this reduction becomes more important with
a larger-sized network. We note that in our tests, we
have considered the worst case of our algorithm, in
which the fraction of stale answers of Figure 6 occurs
in query results (for α = 0.3).

7 Comparison with Related Work

Traditionally, there have been two categories of
P2P search systems: Gnutella-style unstructured sys-
tems [8] and structured systems. The first relies on
flooding mechanism and its variations to propagate a
query. Though simple and robust, this approach suf-
fers from high query execution and poor query recall.
Distributed Hash Tables have been proposed for a va-
riety of distributed applications. Systems such as Pas-

Figure 10. Query cost vs. number of peers

try [10], Chord [1] and CAN [2] build a distributed
hash table on the top of the overlay to organize data
in the network. Although these systems offer an effi-
cient search, they compromise peer autonomy. Fur-
thermore, data is located using unique and globally
known data identifiers; complex queries are difficult
to support.

Other works have focused on schema mediation in
P2P systems. In Edutella [31], each peer stores lo-
cally data described in RDF relatively to some ex-
isting reference ontologies. However, the system re-
quires a strict topology with hypercubes and the use
of super peers. Piazza [4] offers a more decentral-
ized approach for schema management. A query is
propagated along pre-existing pairwise mappings be-
tween peer schemas. However, when the number of
peer increases, the number of possible mapping paths
increases and thus, not all matching peers are visited.
Furthermore, longer mapping paths require to refor-
mulate a query many times which lead to semantic
loss.

So far, research on P2P systems has focused on pro-
viding distributed data management techniques (e.g.
query processing, schema management, data replica-
tion, etc.) that can scale with the number of partic-
ipants in the network. However, an emergent issue
is that new advanced P2P applications generate huge
amount of data, which requires other data management
techniques such as “data summarization”. Downsizing
massive data sets allows to address some critical issues
such as individual data obfuscation, optimization of
the usage of system resources like storage space and
network bandwidth, as well as effective approximate
answers to queries.

16

However, the work on database summarization has
been done in a centralized environment. The ap-
proaches that have been proposed in the literature can
be classified into three categories. The first one fo-
cuses on aggregate computation (e.g. [32, 33]). A
second class of approaches extends the previous one
in that it tries to produce more compact representa-
tions of aggregates (e.g. [13, 34]). the main challenge
for such methods is to keep expressiveness of the pro-
vided access methods (aggregate queries) to the items
without any need to uncompress the structure. The
third family of approaches (e.g. [35, 36]) deals with
intentional characterization of groups of individuals
based on usual mining algorithms. This work consists
in introducing database summaries in P2P networks,
to address their scalability in terms of both amount
of shared data and number of participants. Our ap-
proach for database summarization is based on SAIN-
TETIQ [13] that uses the fuzzy set theory [16] to build
robust summaries, using linguistic variables [14].

8 Conclusion

In this paper, we proposed a model for summary
management in unstructured P2P systems. The in-
novation of this proposal consists in combining the
P2P and database summarization paradigms, in order
to support data sharing on a world wide scale. The
database summarization approach that we proposed
provides efficient techniques for data localization as
well as for data description in P2P systems. In fact,
our summaries are semantic indexes that support lo-
cating relevant data based on their content. Besides,
an important feature is that these summaries are com-
pact data descriptions that can approximately answer
a query without retrieving original records from huge,
highly distributed databases.

We made two main contributions. First, we defined
a new function for organizing the network into do-
mains, in order to distribute summaries built over the
shared data. This function is completely decentralized
and uses only local information, which avoids a de-
pendence on a single point of failure. Our simulation
results showed that this function allows partitioning
the network into an optimal number of domains: for
total-lookup queries in small-sized networks, and for
partial-lookup queries in larger-sized networks. Sec-

ond, we proposed efficient algorithms for summary
management in a given domain. Our performance
evaluation showed that the cost of query routing in
the context of summaries is significantly reduced in
comparison with flooding algorithms, without incur-
ring high costs of summary maintenance.

References

[1] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek,
H.Balakrishnan: Chord: A scalabale peer-to-
peer lookup service for internet applications. In:
Proc SIGCOMM. (2001)

[2] S.Ratnasamy, P.Francis, M.Handley, R.M.Karp,
S.Shenker: A scalable content–addressable net-
work. In: Proc SIGCOMM. (2001)

[3] A.Crespo, H.G.Molina: Routing indices for
peer-to-peer systems. In: Proc Conference on
Distributed Computing Systems. (2002)

[4] I.Tartinov, et al: The Piazza peer data manage-
ment project. In: Proc SIGMOD. (2003)

[5] A.Crespo, H.G.Molina: Semantic overlay net-
works for p2p systems. Technical report, Com-
puter Science Department, Stanford University
(2002)

[6] A.Oser, F.Naumann, W.Siberski, W.Nejdl,
U.Thaden: Semantic overlay clusters within
super-peer networks. In: Proc of the Interna-
tional Workshop on Databases, Information
Systems and Peer-to-Peer Computing in Con-
junction with the VLDB. (2003)

[7] G.Koloniari, Y.Petrakis, E.Pitoura: Content–
based overlay networks of XML peers based on
multi-level bloom filters. In: Proc VLDB. (2003)

[8] http://www.gnutella.com

[9] http://www.napster.com

[10] A.Rowstron, P.Druschel: Storage management
and caching in PAST, a large–scale, persistent
peer-to-peer storage utility. In: Proc Symposium
on Operating Systems Principles(SOSP). (2001)

17

[11] P.Ganesan, Q.Sun, H.G.Molina: Adlib: a self-
tuning index for dynamic peer-to-peer systems.
In: Proc ICDE. (2005)

[12] S.Saroiu, P.Gummadi, S.Gribble: A measure-
ment study of peer-to-peer file sharing systems.
In: Proc of Multimedia Computing and Network-
ing (MMCN). (2002)

[13] G.Raschia, N.Mouaddib: A fuzzy set-based ap-
proach to database summarization. Fuzzy sets
and systems 129(2) (2002) 137–162

[14] L.A.Zadeh: Concept of a linguistic variable and
its application to approximate reasoning-I. Infor-
mation Systems 8 (1975) 199–249

[15] R.Saint-Paul, G.Raschia, N.Mouaddib: Gen-
eral purpose database summarization. In: Proc
VLDB. (2005)

[16] L.A.Zadeh: Fuzzy sets. Information and Control
8 (1965) 338–353

[17] L.A.Zadeh: Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems 100 (1999)
9–34

[18] K.Thompson, P.Langley: Concept formation
in structured domains. In: Concept forma-
tion: Knowledge and experience in unsupervised
learning. Morgan Kaufmann, CA 127–161

[19] M.Ripeanu, I.Foster, A.Iamnitchi: Mapping the
gnutella network: Properties of large-scale peer-
to-peer systems and implications for system de-
sign. IEEE Internet Computing Journal 6(1)
(2002)

[20] Q.Lv, et al: Search and replication in un-
structured peer-to-peer networks. In: Proc
Int.conference on Supercomputing. (2005)

[21] L.Adamic, et al: Search in power law networks.
Physical Review E 64 (2001) 46135–46143

[22] N.Sarshar, P.Boykin, V.Roychowdhury: Percola-
tion search in power law networks: Making un-
structured peer-to-peer networks scalable. P2P

(2004) 2–9

[23] W.Aiello, F.Chung, L.Lu: A random graph
model for massive graphs. In: Proc symposium
on Theory of computing (STOC). (2000)

[24] : http://www.snomed.org/snomedct

[25] R.Akbarinia, V.Martins, E.Pacitti, P.Valduriez:
Design and implementation of APPA. In: Global
Data Management (Eds. R. Baldoni, G. Cortese
and F. Davide). (2006)

[26] W.A.Voglozin, G.Raschia, L.Ughetto,
N.Mouaddib: Querying the SAINTETIQ
summaries–a first attempt. In: Proc Int.Conf.On
Flexible Query Answering Systems (FQAS).
(2004)

[27] A.Iamnitchi, M.Ripeanu, I.Foster: Locating data
in (small-world?) peer-to-peer scientific collab-
orations. In: Proc IPTPS: Revised Papers from
the First International Workshop on Peer-to-Peer
Systems. (2002)

[28] F.Howell, R.McNab: Simjava: a discrete event
simulation package for java with the applications
in computer systems modeling. In: Proc Int.
Conf on Web-based Modelling and Simulation,
Society for Computer Simulation. (1998)

[29] http://www.cs.bu.edu/brite/

[30] B.Yang, H.G.Molina: Comparing hybrid peer-
to-peer systems. In: Proc VLDB. (2001)

[31] W.Nedjl, et al: Edutella: a p2p networking in-
frastructure based on rdf. In: WWW02. (2002)

[32] A.Shoshani: Statistical databases: Character-
istics, problems, and some solutions. In: Proc
VLDB, Morgan Kaufmann (1982)

[33] A.Shoshani: OLAP and statistical databases:
Similarities and differences. In: Proc SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems. (1997)

[34] L.Lakshmanan, J.Pei, J.Han: Quotient cube:
How to summarize the semantics of a data cube.
In: Proc VLDB. (2002)

18

[35] H.Jagadish, R.Ng, B.Ooi, A.Tung: Itcompress:
An iterative semantic compression algorithm. In:
Proc ICDE. (2004)

[36] S.Babu, M.Garofalakis, R.Rastogi: Spartan: A
model-based semantic compression system for
massive data tables. In: Proc SIGMOD. (2001)

19

