
HAL Id: inria-00380048
https://hal.inria.fr/inria-00380048

Submitted on 29 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TAGED Approximations for Temporal Properties
Model-Checking

Roméo Courbis, Pierre-Cyrille Heam, Olga Kouchnarenko

To cite this version:
Roméo Courbis, Pierre-Cyrille Heam, Olga Kouchnarenko. TAGED Approximations for Temporal
Properties Model-Checking. Proceedings of the 14th International Conference on Implementation and
Application of Automata - CIAA’09, Jul 2009, Sydney, Australia. �inria-00380048�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50175481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00380048
https://hal.archives-ouvertes.fr

TAGED Approximations for Temporal Properties

Model-Checking⋆

R. Courbis1, P.-C. Héam1,2, and O. Kouchnarenko1

INRIA/CASSIS
LIFC/University of Franche-Comté LSV CNRS/INRIA/ENS Cachan
16 route de Gray 61 av. du Président Wilson
F-25030 Besançon Cedex F-94235 Cachan Cedex
{rcourbis,okouchnarenko}@lifc.univ-fcomte.fr pcheam@lsv.ens-cachan.fr

Abstract. This paper investigates the use of tree automata with global
equalities and disequalities (TAGED for short) in reachability analysis
over term rewriting systems (TRSs). The reachability problem being in
general undecidable on non terminating TRSs, we provide TAGED-based
construction, and then design approximation-based semi-decision proce-
dures to model-check useful temporal patterns on infinite state rewriting
graphs. To show that the above TAGED-based construction can be ef-
fectively carried out, complexity analysis for rewriting TAGED-definable
languages is given.

1 Introduction

Model-checking techniques [26,25] are commonplace in computer aided verifica-
tion. Model checking refers to the following problem: given a desired property,
expressed as a temporal logic formula ϕ, and a structure M with initial state s,
decide if M, s |= ϕ. The use of model-checking techniques and tools is however
limited to systems whose state space can be finitely and concisely represented.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by term rewriting
systems (TRSs for short). In the rewriting theory, the reachability problem is
the following: given a TRS R and two terms s and t, can we decide whether
s→∗

R t or not? This problem, which can easily be solved on strongly terminating
TRSs, is undecidable on non terminating TRSs. However, on the one hand,
there exist several syntactic classes of TRSs for which this problem becomes
decidable [16,20,33]. On the other hand, in addition to classical proof tools of
rewriting, given a set E ⊆ T (F) of initial terms, provided that s ∈ E , one can
prove s 6→∗

R t by using over-approximations of R∗(E) [22,16] and proving that t
does not belong to these approximations. Recently, the verification of temporal
properties of systems modeled by TRSs has been investigated [15,29,28]. To
apply these very interesting and promising theoretical results to applications
in practice, the authors look for finite abstractions to model-check temporal

⋆ This work has been funded by the French ANR-06-SETI-014 RAVAJ project.

properties, and use proof theory methods. Unlike these works, we develop an
approximation and tree automata based approach, which can provide a fully
automatic verification framework.
Motivations. Recently, some of the most successful experiments using reach-
ability analysis were done on cryptographic protocols, [18,7], and on Java byte
code programs [6]. Presently, Java MIDLet applications security properties are
verified through R∗(E) over-approximations 1. To this end, following works on
CEGAR [8], we developed in [5] over-approximations refinement depending on
a security property to be verified. To go further, we are interested in verifying
temporal properties.
Contributions. The main question is: Is it possible to exploit rewriting ap-
proximations for model-checking temporal properties on infinite state rewriting
graphs? This paper addresses this question and offers a solution for three useful
patterns of temporal properties. This solution automatically attempts to show
that M, s |= ϕ by exploiting TAGED approximations over M , without building
M .

More precisely, the present paper makes the following contributions: Given
an LTL formula (of a certain pattern) to be evaluated over M , the first contribu-
tion is the feasibility of a systematic translation of this formula into a language
rewriting equality to be checked. Language equalities being undecidable in gen-
eral, the second contribution is approximation-based semi-decision procedures
to model-check temporal properties of three useful patterns coming from static
analysis domain and having practical applications. This contribution is obtained
using the recent TAGED model (Tree Automata with Global Equality and Dis-
equality Constraints) in [17].

Structure of the paper. Section 2 introduces preliminary notions on TRSs,
tree-automata, and rewriting-based linear temporal logic. Section 3 explains the
interest of the proposed approach via three temporal property patterns and
relates them to language rewriting equations. The main contribution in Section 4
concerns rewriting-based (semi-)decision procedures and complexity analysis for
rewriting related TAGED-definable languages. Then, semi-algorithms, including
approximation steps are given. Finally, Section 5 concludes and sums up related
works. Appendix contains omitted proofs and examples to illustrate theoretical
underpinnings.

2 Preliminaries

2.1 Terms, TRSs and Tree Automata

Comprehensive surveys can be found in [13,2] for TRSs, in [10,19] for tree au-
tomata and tree language theory, and in [17] for TAGEDs.

Terms and TRSs. Let F be a finite set of symbols, associated with an arity
function ar : F → N, and let X be a countable set of variables. T (F ,X) denotes

1 in the framework of the French ANR Ravaj project.

the set of terms, and T (F) denotes the set of ground terms (terms without
variables). The set of variables of a term t is denoted by Var(t). A substitution
is a function σ from X into T (F ,X), which can be extended uniquely to an
endomorphism of T (F ,X). A position p for a term t is a word over N. The empty
sequence ǫ denotes the top-most position. The set Pos(t) of positions of a term
t is inductively defined by Pos(t) = {ǫ} if t ∈ X and by Pos(f(t1, . . . , tn)) =
{ǫ}∪{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes
the subterm of t at position p and t[s]p denotes the term obtained by replacement
of the subterm t|p at position p by the term s. We also denote by t(p) the symbol
occurring in t at position p. Given a term t ∈ T (F ,X), we denote PosA(t) ⊆
Pos(t) the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF (t) is the set of functional positions of t. A TRS R is a set of rewrite
rules l → r, where l, r ∈ T (F ,X) and l 6∈ X . A rewrite rule l → r is left-linear
(resp. right-linear) if each variable of l (resp. r) occurs only once within l (resp.
r). A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R
is left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation →R on terms whose reflexive transitive
closure is written →⋆

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→⋆

R t}. Symmetrically, the set of R-ancestors
of a set of ground terms E is R−1⋆(E) = {s ∈ T (F) | ∃t ∈ E s.t. s→⋆

R t}.

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. In general, the set R∗(E) is not computable [19]. However, it is possible
to over-approximate it [16] using completion procedure over tree automata, i.e.
a finite representation of infinite (but regular) sets of terms.

Tree automata. Let Q be a finite set of symbols, of arity 0, called states such
that Q ∩ F = ∅. T (F ∪Q) is called the set of configurations. A transition is a
rewrite rule c→ q, where c ∈ T (F ∪Q) is of the form c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

A bottom-up non-deterministic finite tree automaton (tree automaton for
short) over F is a 3-tuple A = (Q,Qf , ∆), Qf ⊆ Q and ∆ is a finite set of
transitions. The rewriting relation on T (F ∪Q) induced by ∆ of A is denoted
→∆ or →A. The tree language {t ∈ T (F) | t→⋆

A q} is denoted L(A, q) and called
the tree language recognised by A in q. The language recognised by A, denoted
L(A), is the language

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it is

recognised by a tree automaton. A run of a tree automaton A = (Q,Qf , ∆) on a
term t ∈ T (F) is a function ρ : Pos(t) → Q such that ρ(p) = q for all p ∈ Pos(t),
where q ∈ Q and t|p = f(t1, . . . , tn), ar(f) = n, f(ρ(p.1), . . . , ρ(p.n)) → q ∈ ∆.
A run is successful if ρ(ǫ) ∈ Qf .

Positive TAGEDs. A positive TAGED[17] is a 4-tuple A = (Q, E, F,∆), where
(Q, F,∆) is a tree automaton over F , and E ⊆ Q×Q is a binary reflexive sym-
metric relation on a subset of Q. The tree automaton (Q, F,∆) is denoted ta(A).
A successful run of a positive TAGED A = (Q, E, F,∆) on a term t ∈ T (F) is
a successful run ρ of ta(A) on t satisfying: for all positions p1, p2 ∈ Pos(t), if

(ρ(p1), ρ(p2)) ∈ E then t|p1
= t|p2

. For positive TAGEDs, the emptiness prob-
lem is in EXPTIME [17, Theorem 1], and universality and inclusion problems
are both undecidable [17, Proposition 5]. Following the respective definitions of
runs, it is straightforward that for every positive TAGED A, L(A) ⊆ L(ta(A)).

2.2 Linear Temporal Logic and Term Rewriting

In this section, linear temporal properties are put in a rewriting context. The
approach is based on the well-known and widely used Linear Temporal Logic
(LTL for short) [31]. Our goal is to express and to verify temporal constraints
on the order of rewriting rules in →∗

R. The approach is very close to that in [27]
when reducing the equational theory to the identity.

Let R be a TRS and L0 be a set of terms. We denote by G(L0,R) the R-

labelled graph (T (F), L0, ∆) where ∆ = {ti
l→r
→ tj | l → r ∈ R and tj ∈ {l →

r}(ti)}. A path π in G(L0,R) is a (finite or infinite) sequence (p1, a1, q1) . . .
(pi, ai, qi) . . . of elements of ∆ such that p1 ∈ L0, for every i ≥ 1 if pi+1 exists,
then qi = pi+1. The (finite or infinite) word a1 . . . ai . . . over the alphabet R is
called the label of π. A path π is full if it is either infinite or if there exists an
integer i such that π = (p1, a1, q1), . . . , (pi, ai, qi) and {p | ∃a ∈ R, (qi, a, p) ∈ ∆}
is empty.

LTL formulas over R are inductively defined by: R0 ⊆ R is an LTL formula,
and if ϕ and ψ are LTL formulas over R, then ⊤, ¬ϕ, (ϕ∨ ψ), ◦ϕ and ϕUψ are
also LTL formulas. Following formulas are classically defined: �ϕ = ¬(⊤U¬ϕ),
(ϕ ∧ ψ) = ¬(¬ϕ ∨ ¬ψ) and ϕ⇒ ψ = (¬ϕ ∨ ψ).

Let w be a finite or infinite word over R (considered as an alphabet). The
i-th letter of w, if it exists, is denoted w(i). We inductively define the satisfaction
of an LTL formula ϕ by w at position i, denoted (w, i) |= ϕ by:

(w, i) |= ⊤ iff w(i) exists,
(w, i) |= R0, with R0 ⊆ R iff w(i) exists and w(i) ∈ R0,
(w, i) |= ¬ϕ iff (w, i) 6|= ϕ,
(w, i) |= (ϕ1 ∨ ϕ2) iff (w, i) |= ϕ1 or (w, i) |= ϕ2 ,
(w, i) |= ◦ϕ iff (w, i+ 1) |= ϕ,
(w, i) |= (ϕ1Uϕ2) iff there exists j ≥ i such that (w, i) |= ϕ2

and for every i ≤ k < j, (w, k) |= ϕ1.
We say that w is a model of ϕ if (w, 1) |= ϕ. A graph G(L0,R) satisfies an LTL
formula ϕ, denoted G |= ϕ, if and only if the label of each full path in G(L0,R)
satisfies ϕ. Illustrated examples are given in Section 3.

3 Three LTL Patterns and Related Language Equalities

In this section, we study three LTL formula patterns which are useful to express
security requirements when performing Java MIDLet applications static analysis.

– Formula �(R1 ⇒ ◦R2) intuitively means that if an accessible term is rewrit-
ten using a rule in R1, then the obtained term can be rewritten using a rule

in R2 and only by a rule in R2, as illustrated on an abstract graph in Fig. 1.
In our application domain, this temporal pattern is used to express that if
a method m1 is invoked, then a method m2 must be invoked just after. For
instance, if the method asks the user to authentify using his PINCODE, then
the next invoked method is either the authentication or the cancellation of
the authentication.

– Formula ¬R2 ∧ �(◦R2 ⇒ R1) is the dual of the above temporal pattern: if
an accessible term is rewritten using a rule in R2, then just before it was
rewritten using a rule in R1, as illustrated on an abstract graph in Fig. 2.
For instance, this temporal formula pattern expresses that if a SMS is sent,
then the user has just before provided his agreement.

– Formula �(R1 ⇒ �¬R2) encodes that if a rule in R1 is used in a rewriting
derivation, then no rule of R2 can be used in the future, as shown in Fig. 3.
Thanks to this temporal formula pattern, one can express that if a particular
application accesses to the user’s private data, like his address book, no
message can be sent by this application in the future. So, the user’s private
data cannot be exploited unbeknown to him. Notice that, according to [14],
this formula pattern appears to be commonly used for system specification.

3.1 Formula �(R1 ⇒ ◦R2)

We explore in this section how the model-checking of the formula �(R1 ⇒ ◦R2)
can be translated into language equations. A R-labelled graph satisfying this
formula is depicted in Fig. 1.

t0

ti

tj

. . .

tk

ui

uj

. . .

uk

vi

vj

. . .

vk

X

X

X

X

R∗

R∗

R∗

R∗

R1

R1

R1

R1

R2

R2

R2

R2

Fig. 1. A graph satisfying �(R1 ⇒ ◦R2)

Proposition 1. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ ◦R2) iff (R\R2)(R1(R

∗(L0))) = ∅ and R1(R
∗(L0))∩

R−1
2 (T (F)) = R1(R

∗(L0)).

Example 1. Let F = {⊥, a, b, c, f, g} where ar(⊥) = 0, ar(a) = ar(b) = ar(c) =
1, and ar(f) = ar(g) = 2. Let consider the TRS R = {r1, . . . , r5} with r1 =

f(b(x), b(x)) → g(x, x), r2 = a(x) → a(a(x)), r3 = a(⊥) → b(⊥), r4 = a(b(x)) →
b(b(x)) and r5 = g(x, y) → c(g(x, y)). Finally, let L0 = {f(a(u(⊥)), v(a(⊥))) |
u ∈ {a, b}∗ and v ∈ a∗}. One has {r1}(R

∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)). Thus (R \
{r5})({r1}(R

∗(L0))) = ∅.Moreover, {r5}
−1(T (F)) is the set of terms where g oc-

curs once at least. Consequently, {r1}(R
∗(L0))∩{r5}

−1(T (F)) = {r1}(R
∗(L0)).

It follows that G(L0,R) |= �({r1} ⇒ ◦{r5}).

3.2 Formula ¬R2 ∧ �(◦R2 ⇒ R1)

In this section the formula ¬R2 ∧ �(◦R2 ⇒ R1) is compiled to into a language
equation to be checked. A R-labelled graph satisfying this formula is depicted
in Fig. 2.

Proposition 2. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language.
One has G(L0,R) |= ¬R2 ∧ �(◦R2 ⇒ R1) iff R2((R \ R1)(R

∗(L0))) = ∅ and
R2(L0) = ∅.

Example 2. In the setting of Example 1, one has {r5}(L0) = ∅. Moreover, one
can check that g does not occur in terms of R \ {r1, r5}(R

∗(L0)), proving that
{r5}(R \ {r1, r5}(R

∗(L0))) = ∅. Consequently, G(L0,R) |= ¬{r5} ∧ �(◦{r5} ⇒
{r1, r5}).

t0

ci

cj

. . .

ck

ti

tj

. . .

tk

ui

uj

. . .

uk

vi

vj

. . .

vk

X

X

X

X

R∗ \ R2

R∗ \ R2

R∗ \ R2

R∗ \ R2

R∗

R∗

R∗

R∗

R1

R1

R1

R1

R2

R2

R2

R2

Fig. 2. A graph satisfying ¬R2 ∧ �(◦R2 ⇒ R1)

3.3 Formula �(R1 ⇒ �¬R2)

This section shows how the model-checking of the formula �(R1 ⇒ �¬R2) can
be done thanks to language equations. A R-labelled graph satisfying this formula
is depicted in Fig. 3.

Proposition 3. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ �¬R2) if and only if R2(R

∗(R1(R
∗(L0)))) = ∅.

Example 3. In Example 1 setting, one has {r1}(R
∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)).

It follows that a never occurs in terms of R∗({r1}(R
∗(L0))). Consequently,

{r2}(R
∗({r1}(R

∗(L0)))) = ∅, proving that G(L0,R) |= �({r1} ⇒ �¬{r2}).

t0

ti

tj

. . .

tk

ui

uj

. . .

uk

vi

vj

. . .

vk

R∗

R∗

R∗

R∗

R1

R1

R1

R1

R∗

R∗

R∗

R∗

X
R2

X
R2

X
R2

X
R2

Fig. 3. A graph satisfying �(R1 ⇒ �¬R2)

4 Semi-decision Procedures

In Section 4.1, we first show that for the above properties, model-checking is un-
decidable; That is not surprising. To obtain semi-decision procedures for model-
checking these properties, we then provide TAGED-based construction presented
in this section. As explained in Sect. 1, given a set E ⊆ T (F) of initial terms,
over-approximations of the set of reachable terms R∗(E) can be computed [22,16].
In Sect. 4.2, we explain how to exploit these over-approximations and use con-
structions of Sect. 4.1 to verify three rewriting temporal properties introduced
in Sect. 3.

4.1 Language Equalities and Positive TAGEDs

First we claim that the model-checking of the three pointed out formulas is
undecidable.

Proposition 4. Given a TRS R, R1,R2 ⊆ R and a term t0, one cannot decide
whether G({t0},R)) |= �(R1 ⇒ ◦R2) (resp. whether G({t0},R) |= �(◦R2 ⇒
R1)) (resp. whether G({t0},R)) |= �(R1 ⇒ �¬R2)).

Now we provide several positive TAGED-based constructions in order to cope
with the language equalities involved in Sect. 3.

Proposition 5. Let R be a TRS. One can compute in polynomial time a positive
TAGED accepting R−1(T (F)).

Notice that if R is left-linear, the obtained TAGED is a tree automaton as
for any variable x, the state qx occurs at most once in runs; This is a well-known
result. An example of the construction described in the proof of Proposition 5
can be found in Appendix, Sect. 6.6.

Proposition 6. Let A be a positive TAGED automaton and R be a TRS. De-
ciding whether R(L(A)) is empty is in EXPTIME.

Proposition 7. Let A be a tree automaton and R be a TRS. The language
R(L(A)) is accepted by a positive TAGED.

A constructive example is given in Appendix, Section 6.9

4.2 Algorithms

In order to semi-decide whether the temporal properties are satisfied or not, we
introduce the following procedures.

– Approx(A,R), where A is a tree automaton and R is a TRS, returns a tree
automaton B such that R∗(L(A)) ⊆ L(B). This can be done using the
procedure defined in [7].

– ta(A), where A is a positive TAGED, returns the tree automaton ta(A).
– OneStep(A,R), where A is a tree automaton and R is a TRS, returns the

positive TAGED B accepting R(L(A)) built as in Proposition 7.
– Backward(R), where R is a TRS, returns the positive TAGED B accepting

R−1(T (F)) built as in Proposition 5.
– IsEmpty(A,R), where A is a positive TAGED and R is a TRS, returns true

if R(L(A)) is empty and false, otherwise.

The above procedures and the results in Section 3 allow one to deduce the
following result.

Proposition 8. Let R be a TRS, R1,R2 ⊆ R and A be a tree automaton. The
following properties hold:

(1) If R2 is left-linear and if IsEmpty(OneStep(Approx(A,R),R1),R \R2)= true
and if OneStep(Approx(A,R),R1)⊆ Backward(R2), then G(L(A),R) |= �(R1

⇒ ◦R2).
(2) If IsEmpty(A,R2) and if IsEmpty(OneStep(Approx(A,R),R \R1),R2)= true,

then G(L(A),R) |= �(◦R2 ⇒ R1).
(3) If IsEmpty(Approx(ta(OneStep(Approx(A,R),R1)),R),R2)= true, then

G(L(A),R) |= �(R1 ⇒ �¬R2).

Notice that in (1) R2 is required to be left-linear in order to make the inclusion
test decidable.

5 Conclusion and Related Work

We proposed to exploit abstraction-based rewriting approximations to model-
check some LTL temporal properties on infinite state systems, and to combat a
combinatorial state-space blow up faced by model-checking tools. Our approach
is based on the reachability analysis through rewriting approximations as well

as tree automata with global equality constraints. We address static analysis
problems. Approximation techniques were already implemented in [3]. In the
future we plan to integrate TAGED-based algorithms into this tool in order to
treat practical applications.

Related work.

Temporal properties and rewriting. Hundreds of works exist using LTL [31] in
order to model and to verify systems properties. We refer the interested reader to
the Spin Model-Checker home page2. Also, there are tools dedicated to the ver-
ification of Java programs using finite-state systems for modelling them [11,21].

Rewriting logics [27] is a very general theoretical framework allowing one to
model various systems. In this context, rewriting graphs are considered: nodes
of these graphs are labeled by equivalence classes of an equational theory. There
is an edge between two nodes if an element of the first node can be rewritten
into an element of the second node, using a rule of TRS R. When the consid-
ered equational theory is the identity, these rewriting graphs are exactly the
graphs underlying our labeled transition systems. In this framework, the works
in [15,29,28] focus on LTL approaches. In [1] authors propose a general model for
security protocols based on the set-rewriting formalism in a decidable context
(considered underlying graphs are finite).

Tree automata with constraints. Tree automata were intensively studied in
the literature, in particular for program verification, where tree automata pro-
vide abstraction-based approximations of program configurations. In this direc-
tion, several classes of extended automata were defined in order to provide finer
approximations [4,12,9,17,32,24,30,23].

References

1. A. Armando, R. Carbone, and L. Compagna. Ltl model checking for security
protocols. In CSF, pages 385–396, 2007.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. E. Balland, Y. Boichut, T. Genet, and P.-E. Moreau. Towards an efficient imple-
mentation of tree automata completion. In AMAST, pages 67–82, 2008.

4. B. Bogaert and S. Tison. Equality and disequality constraints on direct subterms
in tree automata. In STACS, pages 161–171, 1992.

5. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is better: Ab-
straction refinement for rewriting approximations. In Rewriting Techniques and
Application, RTA’08, volume 5117 of Lecture Notes in Computer Science, pages
48–62. Springer, 2008.

6. Y. Boichut, Th. Genet, Th. Jensen, and L. Le Roux. Rewriting approximations
for fast prototyping of static analyzers. In Rewriting Techniques and Applications,
RTA’07, Lecture Notes in Computer Science 4533, pages 48–62. Springer, 2007.

7. Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Approximation-based tree regular
model-checking. Nordic Journal of Computing, 2009. To appear.

2 http://spinroot.com/spin/whatispin.html

8. E. M. Clarke. Counterexample-guided abstraction refinement. In TIME-ICTL,
page 7. IEEE Computer Society, 2003.

9. H. Comon and V. Cortier. Tree automata with one memory set constraints and
cryptographic protocols. Theoretical Computer Science (TCS’05), 331, 2005.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. 2002. Available at
http://www.grappa.univ-lille3.fr/tata/.

11. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby,
and H. Zheng. Bandera: extracting finite-state models from java source code. In
ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, pages 439–448, New York, NY, USA, 2000. ACM.

12. M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Automata for reduction properties
solving. J. Symb. Comput., 20(2):215–233, 1995.

13. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers
B. V, 1990.

14. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for
finite-state verification. In Proceedings of the Second Workshop on Formal Methods
in Software Practice, pages 7–15. ACM Press, 1998.

15. S. Escobar and J. Meseguer. Symbolic model checking of infinite-state systems
using narrowing. In Rewriting Techniques and Applications, RTA’07, pages 153–
168, 2007.

16. G. Feuillade, Th. Genet, and V. VietTriemTong. Reachability analysis over term
rewriting systems. Journal on Automated Reasoning, 33 (3-4), 2004.

17. E. Filiot, J.-M. Talbot, and S. Tison. Tree automata with global constraints. In
Developments in Language Theory, pages 314–326, 2008.

18. Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In
Conference on Automated Deduction, CADE’00, volume 1831 of Lecture Notes in
Computer Science, pages 271–290. Springer-Verlag, 2000.

19. R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta
Informatica, 24(1/2):157–174, 1995.

20. P. Gyenizse and S. Vágvölgyi. Linear Generalized Semi-Monadic Rewrite Systems
Effectively Preserve Recognizability. Theoretical Computer Science, 194(1-2):87–
122, 1998.

21. K. Havelund and Th. Pressburger. Model checking java programs using JAVA
pathfinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

22. F. Jacquemard. Decidable approximations of term rewriting systems. In Rewrit-
ing Techniques and Applications, RTA’96, volume 1103, pages 362–376. Springer
Verlag, 1996.

23. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. In IJCAR, pages 557–571, 2006.

24. W. Karianto and Ch. Löding. Unranked tree automata with sibling equalities and
disequalities. In ICALP, pages 875–887, 2007.

25. L. Lamport. A temporal logic of actions. ACM Transactions On Programming
Languages And Systems, TOPLAS, 16(3):872–923, May 1994.

26. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. SV, 1992.

27. J. Meseguer. Conditioned rewriting logic as a united model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

28. J. Meseguer. The temporal logic of rewriting. Technical Report UIDCS-R-2007-
2815, Dept of Computer Science, University of Illinois at Urbana-Champaign,
September 2007.

29. J. Meseguer. The temporal logic of rewriting: A gentle introduction. Concurrency,
Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of His
65th Birthday, pages 354–382, 2008.

30. H. Ohsaki and T. Takai. ACTAS: A system design for associative and commu-
tative tree automata theory. Electronic Notes in Theoretical Computer Science,
124(1):97–111, 2005.

31. A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57, 1977.
32. H. Seidl, Th. Schwentick, A. Muscholl, and P. Habermehl. Counting in trees for

free. In ICALP, pages 1136–1149, 2004.
33. T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting

systems effectively preserve recognizability. In proceedings of RTA, volume 1833 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

6 Appendix

6.1 Proof of Proposition 1

Assume thatG(L0,R) |= �(R1 ⇒ ◦R2). Let t be a term in (R\R2)(R1(R
∗(L0))).

There exist terms t1 and t2 such that t1 ∈ R∗(L0) and

t1 →R1
t2 →(R\R2) t.

Since t1 ∈ R∗(L0), there exist terms s0, . . . , sk such that s0 ∈ L0, sk = t1 and
si+1 ∈ R(si) for every i < k. Therefore there is a path

(s0, a0, s1) . . . (sk−1, ak, t1)(t1, a, t2), (t2, b, t)

in G(L0,R) such that s0 ∈ L0, a ∈ R1 and b ∈ R \ R2. This path may be
extended to a full path whose label is not a model of �(R1 ⇒ ◦R2), a contra-
diction.

Now since R1(R
∗(L0))∩R

−1
2 (T (F)) ⊆ R1(R

∗(L0)), if R1(R
∗(L0))∩R

−1
2 (R∗(L0)) 6=

R1(R
∗(L0)), then there exists t ∈ R1(R

∗(L0)) such that t /∈ R−1
2 (T (F)). It fol-

lows there exists a term t1 ∈ R∗(L0) such that t ∈ R1(t1). Therefore there exist
terms s0, . . . , sk such that s0 ∈ L0, sk = t1 and si+1 ∈ R(si) for every i < k.
Consequently, there is a path

π = (s0, a0, s1) . . . (sk−1, ak, t1)(t1, b, t)

in G(L0,R) such that s0 ∈ L0, b ∈ R1. Since t /∈ R−1
2 (T (F)), there is no term

t2 such that t2 ∈ R2(t). Consequently, π cannot be extended using a transition
whose label is in R2. It follows that either π is maximal and its label is not a
model of �(R1 ⇒ ◦R2), or π may be extended to a full path which is not a
model of �(R1 ⇒ ◦R2), a contradiction.

Conversely, assume that (R \ R2)(R1(R
∗(L0))) = ∅ and R1(R

∗(L0)) ∩
R−1

2 (T (F)) = R1(R
∗(L0)). Let π = (t0, a0, t1) . . . (tk, ak, tk+1) . . . be a maxi-

mal path in G(L0,R) whose label is not a model of �(R1 ⇒ ◦R2). It follows
there exists i such that ai ∈ R1 and either ai+1 /∈ R2 or ai+1 does not exist
(the trace is finite). If ai+1 /∈ R2 then ti+1 ∈ (R \ R2)(R1(R

∗(L0))), a contra-
diction. If ai+1 does not exist, then ti+1 ∈ R1(R

∗(L0)) but, by maximality of π,
R2(ti+1) = ∅, proving that ti+1 /∈ R−1

2 (T (F)), a contradiction.

6.2 Proof of Proposition 2

Proof. It is straightforward that G(L0,R) |= ¬R2 iff R2(L0) = ∅. Now we will
prove that G(L0,R) |= �(◦R2 ⇒ R1) iff R2((R \R1)(R

∗(L0))) = ∅.
Assume first that G(L0,R) |= �(◦R2 ⇒ R1). Let t ∈ R2((R\R1)(R

∗(L0))).
There exist terms t1 and t2 such that t1 ∈ R∗(L0) a rule a ∈ R \ R1 such that
t2 ∈ {a}(t1) and t ∈ R2(t2). Since t1 ∈ R∗(L0), there exist terms s0, . . . , sk such
that s0 ∈ L0, sk = t1 and si+1 ∈ R(si) for every i < k. Therefore there is a path

(s0, a0, s1) . . . (sk−1, ak, t1)(t1, a, t2), (t2, b, t)

in G(L0,R) such that s0 ∈ L0, a ∈ R \ R1, and b ∈ R2. Since a ∈ R \ R1, this
path may be extended to a full path whose label is not a model of �(◦R2 ⇒ R1),
a contradiction.

Conversely, assume that R2((R \R1)(R
∗(L0))) = ∅. Let

π = (t0, a0, t1) . . . (tk, ak, tk+1) . . .

be a maximal path in G(L0,R) whose label is not a model of �(◦R2 ⇒ R1).
It follows there exists i such that ai /∈ R1 and ai+1 ∈ R2. Therefore ti+1 ∈
R2((R \R1)(R

∗(L0))) 6= ∅, a contradiction.

6.3 Proof of Proposition 3

Proof. Assume first that R2(R
∗(R1(R

∗(L0)))) 6= ∅. Let t be in R2(R
∗(R1(R

∗(L0)))).
There exist terms t0, t1, t2 such that t0 ∈ R∗(L0), and t0 →R1

t1 →∗
R t2 →R2

t.
It implies that there is a full path w in G(L0,R) such that (w, 1) 6|= �(R1 ⇒
�¬R2).

Assume now that R2(R
∗(R1(R

∗(L0)))) = ∅. Let

π = (t0, a0, t1) . . . (tk, ak, tk+1) . . .

be a maximal path in G(L0,R) whose label is not a model of �(R1 ⇒ �¬R2).
It follows there exist i such that ai ∈ R1 and j > i such that aj ∈ R2. Therefore
tj+1 ∈ R2(R

∗(R1(R
∗(L0)))), a contradiction.

6.4 Proof of Proposition 4

It is well known that the following problem, called Reachability(R, s, t,F) is
undecidable.
Input: A TRS R on T (F), two terms s and t of T (F).
Question: Does s→∗

R t?

Assume there exists an algorithm P1(R,R1,R2, L0,F) that , given a TRS
R and a set of terms L0 of T (F), decides whether G(L0,R) |= �(R1 ⇒ ◦R2).
Let R0, s0, t0,F0 be an instance of the Reachability problem. Let #, $ /∈ F0 and
F1 = F ∪{#, $}, with ar(#) = ar($) = 0. We claim that P1(R0 ∪{t0 → #, $ →
#}, {t0 → #}, {$ → #}, {s0},F1) = false if and only if Reachability(R0, s0, t0,F0)=true.
Indeed, if Reachability(R0, s0, t0,F0)=true, then there exists in G({s0},R0) a
path π from s0 to t0. By construction, π also is a path inG({s0},R∪ {t0 → #, $ → #}).
But π,(t0, {t0 → #},#) is a full path in G({s0},R∪ {t0 → #, $ → #}) whose
label does not model {t0 → #} ⇒ ◦{$ → #}. Consequently P1(R0 ∪ {t0 →
#, $ → #}, {t0 → #}, {$ → #}, {s0},F1) = false.
Conversely, if P1(R0 ∪ {t0 → #, $ → #}, {t0 → #}, {$ → #}, {s0},F1) = false,
then there exists a full path π′ in G({s0},R∪ {t0 → #, $ → #}) whose label
does not model {t0 → #} ⇒ ◦{$ → #}. Therefore, the transition {t0 → #} is
used in π′. It follows that t0 is reachable in G({s0},R∪ {t0 → #, $ → #}) from

s0. It is straightforward that Reachability(R0, s0, t0,F0)=true, which concludes
the proof.

The undecidability proofs for the two other formulas can be done with similar
reductions.

6.5 Proof of Proposition 5

Let l → r ∈ R. Let Al = (Ql, El, Fl, ∆l) be the positive TAGED defined by:

– Ql = {qi | i ∈ PosF (l)} ∪ {qx, q
a
x | x ∈ Var(l)} ∪ {qa},

– El = {(qx, qx) | x ∈ Var(l)},

– ∆l = ∆1 ∪ ∆2 with ∆1 = {l(p)(qα1
, . . . , qαn

) → qp | p ∈ Pos(l) and αi =
p.i if l(p.i) ∈ F and αi = x otherwise} ∪ {f(qa

x, . . . , q
a
x) → qa

x | f ∈ F , x ∈
Var(l)}∪{f(qa

x, . . . , q
a
x) → qx | f ∈ F , x ∈ Var(l)} and∆2 = {f(qa, . . . , qa) →

qa | f ∈ F} ∪ {f(qa, . . . , qa, qε, q
a, . . . , qa) → qε | f ∈ F},

– Fl = {qε}.

Notice first that {t | t →∗
Al

qx} = T (F). Second, {t | t →∗
∆l

qε} = {t | ∃p ∈
Pos(t), µ : X 7→ T (F) s.t. t|p = lµ}. It follows that L(Al) = {l → r}−1(T (F)).
The construction is clearly polynomial (F is considered as fixed and is not a
parameter of the problem). Polynomial time complexity results directly from [17,
Proposition 2]. However complexity is exponential relatively to the maximal arity
of a symbol in F .

6.6 Example for Proposition 5

Example 4. Let F = {⊥, h, f} where ar(⊥) = 0, ar(h) = 1 and ar(f) = 2.
The language {f(x, x) → h(x)}−1(T (F)) is accepted by the positive TAGED
Al = (Ql, El, Fl, ∆l) with

– Ql = {qε, q1, q2} ∪ {qx, q
a
x} ∪ {qa},

– El = {(qx, qx)},

– ∆l = ∆1 ∪ ∆2 with ∆1 = {f(qx, qx) → qε} ∪ {f(qa
x, q

a
x) → qa

x,⊥ →
qa
x, h(q

a
x) → qa

x}∪{f(qa
x, q

a
x) → qx,⊥ → qx, h(q

a
x) → qx} and∆2 = {f(qa, qa) →

qa,⊥ → qa, h(qa) → qa} ∪ {f(qa, qε) → qε, f(qε, q
a) → qε, h(qε) → qε}

– Fl = {qε}.

6.7 Proof of Proposition 6

It suffices to note that R(L(A)) is empty if and only if L(A)∩R−1(T (F)) = ∅.
The proposition is then a direct consequence of Proposition 5 and [17, Proposi-
tion 2 and Theorem 1].

6.8 Proof of Proposition 7

Notice that the proof is constrcutive and that an example is is given in Section 6.9

Since R(L(A)) = ∪l→r∈R{l → r}(L(A)) and since positive TAGED lan-
guages are closed by union, it suffices to prove the proposition for a single rule
l → r.

The proof is composed of three parts: first, in (Point 1), a construction of
some useful positive TAGEDs Ar,σ,q is proposed. Second, in (Point 2), we prove
that {l → r}(L(A)) is accepted by the (finite) union of the Ar,σ,q’s by showing
that L(Ar,σ,q) ⊇ {l → r}(L(A)) and that L(Ar,σ,q) ⊆ {l → r}L(A) (Point 3).
Since the class of languages accepted by positive TAGEDs is closed under finite
union, the proof is then complete.

Point 1
Let l → r ∈ R. An (l → r)-substitution is an application from PosX (l) into
Q. Let σ be a (l → r)-substitution. We denote by lσ the term of T (F ∪Q)
defined as follows: Pos(lσ) = Pos(l), and for each p ∈ Pos(l), if p ∈ PosX (l)
then lσ(p) = σ(l(p)), otherwise lσ(p) = l(p).

Set A = (Q, F,∆). Since the class of regular tree languages is closed by
intersection, for each variable x occurring in l and for each (l → r)-substitution
σ, there exists a finite tree automaton Aσ

x = (Qσ
x , F

σ
x , ∆

σ
x) such that

L(Aσ
x) =

⋂

p∈Pos{x}(l)

L(A, σ(p)).

We may assume, w.l.o.g., that states of Fσ
x do not occur in left hand sides of

transitions of ∆σ
x .

Let Ar,σ,q = (Qr,σ,q, Er,σ,q, Fr,σ,q, ∆r,σ,q) be the positive TAGED defined by:

– Qr,σ,q = Q∪ {qi | i ∈ PosF (r)} ∪ {q+ | q ∈ Q} ∪
⋃

x∈Var(r) Q
σ
x ,

– Er,σ,q = {(q1, q2) | ∃x ∈ Var(r) s.t. q1, q2 ∈ Fσ
x },

– Fr,σ,q = {q+f | qf ∈ F},
– ∆r,σ,q = ∆ ∪∆1 ∪∆2 with

∆1 = {r(p)(qα1
, . . . , qαn

) → qp | p ∈ Pos(r) and αi = p.i if r(p.i) ∈ F and qαi
∈

Fσ
r(p.i) otherwise} ∪

⋃
x∈Var(r)∆

σ
x

∆2 = {f(s1, . . . , sj , qε, sj+1, . . . , sn) → s+n+1 | si ∈ Q and
f(s1, . . . , sj−1, q, sj+1, . . . , sn) → sn+1 ∈ ∆}
∪ {f(s1, . . . , sj−1, s

+
j , sj+1, . . . , sn) → s+n+1 | si ∈ Q and

f(s1, . . . , sj−1, sj , sj+1, . . . , sn) → sn+1 ∈ ∆, ar(f) ≥ 1}.

We claim that

R(L(A)) =
⋃

lσ→∗
Aq

L(Ar,σ,q),

where the union is taken for every state q ∈ Q, every (l → r)-substitution σ such
that lσ →∗

A q and L(Aσ
x) 6= ∅ for every x ∈ Var(l).

Point 2
Assume that t ∈ R(L(A)). There exist a term t0 ∈ L(A), a substitution µ from
X into T (F) and a position p of t0 such that

t0 = t0[lµ]p and t = t0[rµ]p. (1)

Let {p1, . . . , pk} = PosX (l). Since t0 ∈ L(A) there exist q, q1, . . . , qk ∈ Q such
that

lµ→∗
A l[q1]p1

. . . [qk]pk
→∗

A q and t0[q]p →∗
A qf ∈ F. (2)

Let σ be the (l → r) substitution defined by σ(pi) = qi. By construction one has
for every x ∈ Var(l),

µ(x) ∈
⋂

p∈Pos{x}(l)

L(A, σ(p)). (3)

By definition of Aσ
x one then has

µ(x) ∈ L(Aσ
x). (4)

It follows that for every x ∈ Var(r),

µ(x) →∗
∆1

qx ∈ Fσ
x (5)

Therefore,
rµ→∗

∆1
qε (6)

Using (1) and (2) it follows that

t→∗
∆1

t0[q]p →∗
∆2

q+f , (7)

proving that t ∈ L(Ar,σ,q). Notice that the constraints defined by Er,σ,q are
satisfied: if during the reduction t→∗

∆1
t0[q]p, two states q1, q2 ∈ Fσ

x are used in
position p′1 and p′1, then t|p′

1
= t|p′

2
= µ(x).

Point 3
Assume now that t ∈ L(Ar,σ,q) for a state q ∈ Q and an (l → r)-substitution σ
such that lσ →∗

A q and L(Aσ
x) 6= ∅ for every x ∈ Var(l). Let ρ be a successful

run of Ar,σ,q on t. It is straightforward that there exists a unique position p of
t such that ρ(p) = qε. Let {p1, . . . , pk} = PosX (r). By definition of Er,σ,q, if
ρ(pi), ρ(pj) ∈ Fσ

x for a variable x occurring in r, then r|pi
= r|pj

. Therefore one
can define the substitution µ from Var(r) into T (F) by: if ρ(pi) ∈ Fσ

x , then
µ(x) = r|pi

. This construction provides

µ(x) ∈ L(Aσ
x) (8)

and
t = t[rµ]p. (9)

Remind that Var(r) ⊆ Var(l), µ is extended to Var(l) by: if z ∈ Var(l) and
z /∈ Var(r), let µ(z) be an element arbitrarily chosen in L(Aσ

x) (which is by

hypotheses non empty). Consequently, for every x ∈ Var(l) and every position
px of l such that l(px) = x,

µ(x) →∗
A σ(px) (10)

Thus

lµ(x) →∗
A lσ (11)

Since t ∈ L(Ar,σ,q) one has

t→∗
∆1

t[qε]p →∗
∆2

q+f with q+f ∈ Fr,σ,q. (12)

Since t[qε]p →∗
∆2

q+f ,

t[q]p →∗
A qf . (13)

Using (11) and (13) one has

t[lµ]p →∗
A t[lσ]p →∗

A t[q]p →∗
A qf . (14)

Therefore t ∈ R(L(A)), proving the claim.

6.9 Example for Proposition 7

Let F = {⊥, a, b, f} where ar(⊥) = 0, ar(a) = ar(b) = 1 and ar(f) = 2. We
consider the tree automaton A whose set of state is {s0, s1, s2, s4, sf}, whose
final state is sf and whose set of transition ∆ is

⊥ → s0 ⊥ → s2 f(s1, s3) → s4
a(s0) → s0 b(s2) → s3 f(s3, s4) → sf

b(s0) → s0 a(s3) → s3
a(s0) → s1 b(s3) → s3

The terms which can be reduced to s1, are those of L1 = a({a, b}∗(⊥)). The
terms which can be reduced to s3 are those of L2 = {a, b}∗(b(⊥)). The language
accepted by A is f(L2, f(L1, L2)).

Let R = {f(x, x) → a(f(x, b(x))}. We will construct a TAGED accepting
R(L(A)) using the method developed in the proof of Proposition 7.

The only variable occurring in f(x, x) is x. So we are looking for substitutions
such that L(A, σ(1))∩L(A, σ(2)) 6= ∅ and f(σ(1), σ(2)) →∗

A q, where q is a state
of A The second condition implies that only substitutions σ0 and σ1 defined by
σ0(1) = s1, σ0(2) = s3 and σ1(1) = s3, σ(2) = s4 have to be considered. Now
σ1 does not satisfy the first condition on languages intersection. It follows that
R(L(A)) = L(Aa(f(x,b(x))),σ0,s4

).

Since L(A, σ0(1))∩L(A, σ0(2)) = L1∩L2 = a({a, b}∗(b(⊥))), one can choose
for Aσ0

x the automaton whose set of states is {s5, s6, s7}, whose final state is
{s7} and whose transitions are ⊥ → s5, b(s5) → s6, a(s6) → s6, b(s6) → s6 and
a(s6) → s7.

The automaton Aa(f(x,b(x))),σ0,s4
is defined by:

– Its set of states is
{s0, s1, s2, s3, s4, sf} ∪ {q1, q1.2, qε}∪ {s+0 , s

+
1 , s

+
2 , s

+
3 , s

+
4 , s

+
f } ∪ {s5, s6, s7},

– Ea(f(x,b(x))),σ0,s4
= (s7, s7),

– Its set of final states is {s+f },
– Its set of transition is ∆ ∪∆1 ∪∆2, with ∆1 = {b(s7) → q1.2, f(s7, q1.2) →
q1, a(q1) → qε} ∪ {⊥ → s5, b(s5) → s6, a(s6) → s6, b(s6) → s6, a(s6) → s7}
and ∆2 is the union of {f(s3, qε) → s+f } and of the following set:

a(s+0) → s+0 b(s+2) → s3 f(s+3 , s4) → s+f
b(s+0) → s+0 a(s+3) → s3 f(s1, s

+
3) → s+4

a(s+0) → s+1 b(s+3) → s3 f(s3, s
+
4) → s+f

f(s+1 , s3) → s+4

