
HAL Id: inria-00381525
https://hal.inria.fr/inria-00381525

Submitted on 5 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lambda-calculus Structure Isomorphic to
Gentzen-style Sequent Calculus Structure

Hugo Herbelin

To cite this version:
Hugo Herbelin. A Lambda-calculus Structure Isomorphic to Gentzen-style Sequent Calculus Structure.
Computer Science Logic, Sep 1994, Kazimierz, Poland. pp.61–75. �inria-00381525�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50174244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00381525
https://hal.archives-ouvertes.fr

A �-calculus Structure Isomorphic toGentzen-style Sequent Calculus StructureHugo Herbelin ?LITP, University Paris 7, 2 place Jussieu, 78252 Paris Cedex 05, FranceINRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, FranceHugo.Herbelin@inria.frAbstract. We consider a �-calculus for which applicative terms haveno longer the form (:::((u u1) u2)::: un) but the form (u [u1; :::;un]), forwhich [u1; :::;un] is a list of terms. While the structure of the usual�-calculus is isomorphic to the structure of natural deduction, this newstructure is isomorphic to the structure of Gentzen-style sequent calculus.To express the basis of the isomorphism, we consider intuitionistic logicwith the implication as sole connective. However we do not considerGentzen's calculus LJ, but a calculus LJT which leads to restrict thenotion of cut-free proofs in LJ. We need also to explicitly consider, ina simply typed version of this �-calculus, a substitution operator and alist concatenation operator. By this way, each elementary step of cut-elimination exactly matches with a �-reduction, a substitution propaga-tion step or a concatenation computation step.Though it is possible to extend the isomorphism to classical logic and toother connectives, we do not treat of it in this paper.1 IntroductionBy the Curry-Howard isomorphism between natural deduction and simply-typed�-calculus, and using Prawitz's standard translation [11] of cut-free LJ into nat-ural deduction, we get an assignment of LJ proofs by �-terms.Zucker [14] and Pottinger [10] have studied the relations between normali-sation in natural deduction and cut-elimination in LJ. They were consideringnormalisation without paying special attention to the computational cost of thesubstitution of a proof in place of an hypothesis. But in sequent calculus, amongthe di�erent uses of the cut rule, there is one which stands for an explicit oper-ator of substitution and among the elementary rules for cut-elimination, thereare rules to compute the propagation of substitution. Therefore, Zucker andPottinger were led to consider proofs up to the equivalence generated by thesesubstitution propagation computation rules.Here, we consider a �-calculus with an explicit operator of substitution andwith appropriated substitution propagation rules. This allows to have a more? This research was partly supported by ESPRIT Basic Research Action \Types forProofs and Programs" and by Programme de Recherche Coordonn�ees \M�ecanisationdu raisonnement".

precise correspondence with the elementary rules for cut-elimination. However,there are two problems. The �rst one is that several cut-free proofs of LJ areassociated to the same normal simply-typed �-terms. An answer to this problemis to rather consider a restriction of LJ, called LJT, having the same structureand same strength as LJ but for which there is a one-to-one correspondence withnormal simply-typed terms. The second problem is that Gentzen-style sequentcalculus and �-calculus (or natural deduction) have not the same structure.Consequently, the reduction rules in one and the other calculi do not match. Ananswer to this second problem is to consider an alternative syntax for �-calculusof which, this time, the simply-typed fragment is isomorphic to LJT.Note that a radically di�erent approach of the computational content ofGentzen's sequent calculus appears in Breazu Tanen et al [1], Gallier [4] andWadler [13]. Each of them interprets the left introduction rules of sequent cal-culus as pattern construction rules.2 A Motivated Approach to LJT and �-calculus2.1 The Sequent Calculus LJWe consider a version of LJ with the implication as sole connective. The for-mulas are de�ned by the grammarA ::= X j A!Awhere X ranges over VF , an in�nite set of which the elements are calledpropositional variable names. In the sequel, we reserve the letters A, B, C,... to denote formulas.Sequents of LJ have the form � ` A. To avoid the need of a structural rulewe de�ne � as a set. To avoid confusion between multiple occurrences of thesame formula, this set is a set of named formulas. We assume the existence of anin�nite set of which the elements are called names. Then, a named formulais just the pair of a formula and a name. Usually, we do not mention the namesof formulas (anyway, no ambiguity occurs in the sequents we consider here).Under the condition that A, with its name, does not belong to � , the notation�;A stands for the set-theoretic union of � and fAg.To avoid the need of a weakening rule, we admit irrelevant formulas in axioms.The rules of LJ are: �;A ` A Ax �;A;A ` C�;A ` C Cont� ` A �;B ` C�;A!B ` C IL �;A ` B� ` A!B IR� ` A �;A ` B� ` B Cut

2.2 The Usual Interpretation of LJ Cut-free Proofs by Normal�-termsThere is a standard way to interpret cut-free proofs of LJ as �-terms, see forinstance Prawitz [11] or, for a more formal presentation, Zucker [14], Pottinger[10] or Mints [9]. To express the interpretation, it is cumbersome to choose theset of �-variables names as set of names. We then mention explicitly the namex of a formula A under the form x :A. The interpretation is by induction on theproofs and we mention the associated �-terms on the right of the symbol `.�; x :A ` x :A Ax �; x :A; y :A ` u :C�; x :A ` ufy := xg :C Cont� ` u :A �; y :B ` v :C�; x :A!B ` vfy := (x u)g :C IL �; x :A ` u :B� ` �x:u :A!B IRfor which vfx := ug denotes the term v in which each occurrence of x hasbeen replaced by u.2.3 Towards the Calculus LJTHowever di�erent proofs may be associated to the same �-term. For instance:A;C ` A Ax A;C;B ` B AxA!B;A;C ` B ILA!B;A ` C!B IRand A ` A Ax A;C;B ` B AxA;B ` C!B IRA!B;A ` C!B ILare both associated to the Church-like typed �-term �z :C:(x y) :C!B fora context in which x :A!B and y :A.We decide to restrict LJ in order to get a bijective correspondence betweennormal simply-typed �-terms and cut-free proofs. For this purpose, we restrictthe use of the IL rule in order to forbid the second proof. The calculus we obtainhas two kind of sequents. We call it LJT, since it appears as the intuitionisticfragment of a calculus called LKT and de�ned by Danos, Joinet, Schellinx [2].A sequent of LJT has either the form � ;` A or the form � ;A ` B. In bothcases, � is de�ned as a set of named formulas. The semi-colon delimits a place onits right. A uniform notation for sequents of LJT is the following one: � ;� ` Bwhere � is a notation to say that the place on the right of the semi-colon maybe either empty or �lled with one (not named) formula. The idea of using thesekinds of sequents comes from Girard [5] who called \stoup" the special placebetween the symbols \;" and \`".

The rules of LJT are� ;A ` A Ax �;A;A ` B�;A;` B Cont� ;` A � ;B ` C� ;A!B ` C IL �;A;` B� ;` A!B IRRemarks: 1) With these rules, the �rst proof above is not directly a proof inthe restriction: the axiom rule of LJ has to be encoded in the restriction by anaxiom rule followed by a contraction rule.2)This calculus appears also in Danos et al [2] with a slight di�erence inthe treatment of structural rules. Like its classical version LKT, it has beenconsidered by Danos et al for its good behaviour w.r.t. embedding into linearlogic. The calculus LJT appears also as a fragment of ILU, the intuitionisticneutral fragment of uni�ed logic described by Girard in [6]. The calculus ILUis itself a form of LJ constrained with a stoup, for which Girard pointed outthat \the formula [in the stoup] (if there is one) is the analogue of the familiarhead-variable for typed �-calculi".Recently, Mints de�ned in [9] a notion of normal form for cut-free proofs ofLJ which also coincides with the notion of cut-freeness in LJT.We have also to mention the de�nition of a cut-free sequent calculus similarto the cut-free LJT in the paper of Howard [12] on the interpretation of naturaldeduction as a �-calculus. Howard mentions that the proofs of this cut-freecalculus are in one-to-one correspondence with the normal simply-typed �-terms.The proofs of the cut-free LJT are e�ectively in one-to-one correspondencewith the normal simply-typed �-terms. For instance, a normal term of the form�x1:::�xn:(y u1 :::up) and of type A1 ! ::: ! An ! B, in which y is of typeD = C1! :::!Cp!B, is unambiguously associated to a proof of the form� ;` u1 :C1 � ;` up :Cp � ; y :B ` y :B Ax� ; yp :Cp!B ` (yp up) :B IL....� ; y2 :C2! :::!Cp!B ` (y2 u2 :::up) :B� ; y1 :D ` (y1 u1 :::up) :B IL� ; ` (y u1 :::up) :B Cont�nfxng; ` �xn:(y u1 :::up) :An!B IR....�nfx2; :::; xng; ` �x2:::�xn:(y u1 :::up) :A2! :::!An!B�nfx1; :::; xng; ` �x1:::�xn:(y u1 :::up) :A1! :::!An!B IRwhere � contains y :D;x1 :A1; :::; xn :An.

Remark: The construction of the applicative part of the term starts from up andends with u1 in contrast with the usual way of building a term (u u1 ::: up) in �-calculus. This is why we have not an exact correspondence with the substitutionoperator when we consider the cut rule.2.4 Cut and Reduction Rules: Towards the �-calculusAccording to the place of the cut formula (in the stoup or not), there are twokinds of cut rules in LJT:head-cut rule mid-cut rule� ;� ` A � ;A ` B� ;� ` B CH � ;` A �;A;� ` B� ;� ` B CMfor which � means one or zero formula in the stoup.The mid-cut rule is naturally interpreted as an operator of explicit substitu-tion: � ;` v :A �; x :A;� ` u :B� ;� ` u[x := v] :B CMA standard way to eliminate cuts is to apply rewriting rules to proofs inorder to propagate the cuts towards smaller proofs. Here is an example of sucha rewriting rule (we let C = A2! :::!An!B):� ; ` v :A �;x :A;` u1 :A1 �; x :A; y :C ` (y u2 ::: un) :B�; x :A;y :A1!C ` (y u1 ::: un) :B IL� ; y :A1!C ` (y u1 ::: un)[x := v] :B CMreduces to� ;` v :A �; x :A;` u1 :A1� ;` u1[x := v] :A1 CM � ; ` v :A �;x :A; y :C ` (y u2 ::: un) :B� ; y :C ` (y u2 ::: un)[x := v] :B CM� ; y :A1!C ` (y u1[x := v] ::: un)[x := v] :B ILIt seems \natural" that such a rewriting rule is in correspondence with a ruleof substitution propagation. But it is not the case. Indeed it corresponds to thereduction of (y u1 ::: un)[x := v] into (y u1[x := v] ::: un)[x := v] while we wouldlike to get ((y u1 :::un�1)[x := v] un[x := v]).This is because the structure of a proof in sequent calculus is di�erent fromthe structure of the associated �-term and this suggests to consider an alternativeformalism for the �-calculus in which an applicative term is no longer of the form((u u1):::un), but of the form (u [u1; :::;un]), i.e. considered as the applicationof a function to the list of its arguments. We call �-calculus this alternativeformalism for �-calculus.

2.5 Digression: How to Recover LJ ?LJT is as strengthful as LJ since a proof of a sequent � ` A in LJ can be compo-sitionnally translated into a proof of � ;` A in LJT. To express the translation,it is more convenient to consider a variant of LJ with the IL rule and the Contrules mixed (i.e. we assume that A!B is already in � for the second item). Wenote ; the translation.�;A ` A Ax ; �; A;A ` A Ax�; A;` A Cont....� ` A�;B ` C� ` C IL ;� ; ` A � ;B ` B Ax� ;A!B ` B IL� ; ` B Cont�; B;` C� ; ` C CM....�; A ` B� ` A!B IR ;�; A;` B� ; ` A!B IR....� ` A�;A ` B� ` B Cut ;� ; ` A�; A;` B� ; ` B CMThus we have an interpretation of LJ into LJT. However, following this in-terpretation, cut-free proofs in LJ may no more be cut-free in LJT.3 The �-calculus3.1 The �-expressionsWe assume the existence of an in�nite set V of which the elements are calledterm variables names and here denoted by the letters x, y, z, ...The set of �-expressions, including the �-terms (or shortly terms) and thelists of arguments are mutually de�ned by the following grammar for whichx ranges over VTerms: t ::= (x l) j (�x:t) j (t l) j (t[x := t])Argument lists: l ::= [] j [t :: l] j (l @ l) j l[x := t]We use the letters t, u, v,... to denote terms and the (possibly quoted) letterl to denote lists of arguments.The notation [] stands for the empty list of arguments and [t :: l] stands forthe adjunction of the term t to the list of arguments l, while (l @ l0) stands forthe explicit concatenation of the lists l and l0 of arguments.

The syntax (t[x := u]) stands for an operator of explicit substitution in terms(a \let x=u in t" operator) and (l[x := u]) stands for an operator of explicitsubstitution in lists of arguments.We usually abbreviate an argument list [t1 :: [::: :: [tn :: []]:::]] by [t1; :::; tn].Terms such as ((:::(t t1) :::) tn) are abbreviated (t t1 ::: tn). Sometimes (x []) isshortened into x. Also, the expressions (�x:t), (t[x := u]) and (l @ l0) may bewritten respectively �x:t, t[x := u] and l @ l0 when there is no ambiguity.Subexpressions of �-expressions are de�ned as usual, but, in our case, by asimultaneous recursion on terms and arguments lists.Bound variables are de�ned as usual. We say that two �-expressions are�-equal if they di�er only in the names (assumed distinct the one from theothers) of bound variables. This notion of equality does not a�ect the structureof expressions and, in the sequel, we consider �-expressions up to this �-equality.3.2 Normal �-expressionsA �-expression is normal if and only if it does not contain any operator ofexplicit concatenation or explicit substitution and if all applicative subterms areof the form (x l) with l normal.Otherwise said, a �-expression, is normal if it is construed using this restrictedgrammar: t ::= (x l)j(�x:t)l ::= []j[t :: l]An approximation of normality is weak normality. A �-expression is calledweakly normal if it is of the form (x l) or �x:t or [] or [t :: l], where t and ldenotes respectively any term and any list of arguments.Remark: Usual �-calculus can be embedded in �-calculus, since there is, in �-calculus, the possibility to consider terms of the form (:::(x [u1]) ::: [un]) havinga structure similar to the structure of applicative terms in �-calculus. However,such a �-term is not normal. Indeed, its normal form is (x [u1; :::;un]).3.3 Reduction RulesThe presence of explicit substitution and concatenation operators entails thepresence of appropriated reduction rules:{ �-reduction (�x:u [v :: l]) r! (u[x := v] l) �cons(�x:u []) r! �x:u �nil{ concatenation of the arguments of a term((x l) l0) r! (x (l @ l0)) Cvar

{ concatenation computation rules[u :: l] @ l0 r! [u :: (l @ l0)] Ccons[] @ l0 r! l0 Cnil{ propagation of substitution through weakly normal terms(x l)[x := v] r! (v l[x := v]) Syes(y l)[x := v] r! (y l[x := v]) Sno(�y:u)[x := v] r! �y:(u[x := v]) S�warning to a possible variable capture in rule S�{ propagation of substitution through weakly normal arguments[][x := v] r! [] Snil[u :: l][x := v] r! [u[x := v] :: l[x := v]] SconsIf u r! v, then u is called a redex. We note 1! the one step reduction ob-tained from r! by congruence. Since the system of reduction rules is left linear(if one takes an in�nite family of rules Syes, Sno and S�, one for each possiblecombination of distinct x and y in V) and without critical pairs, according toHuet [7], 1! is con
uent. We stay unprecised about the �-equality problem stem-ming from the rule S�. Solutions exist, for instance by adding an extra explicitrenaming rule to the rewriting system.Remark: The absence of critical pairs may be quite restricting. For instance,it is not possible to simulate usual �-reduction using these rules for the reasonthat substitutions are not allowed to go through �-redexes. However, the set ofrules is enough to reach a normal form, when this one exists.4 Cut-elimination in the Calculus LJTWe say that two proofs are equal if they di�er only by the names of formula inthe proved sequent or by addition of irrelevant formulas to the left part of theproved sequents. We consider proofs up to this notion of equality. In particular,if p is a proof of � ;� ` A, then, for any named formula B not in � , p is a proofof �;B;� ` A, even if it becomes necessary to change the name of anothersimilarly named occurrence of B throughout p.4.1 Cut-eliminationProposition1. (Strong and con
uent cut-elimination)There exists a con
uent system of rewriting rules which allows to derive a cut-free proof of � ;� ` A from any proof of the same sequent.

Such a system of rewriting rules is listed hereafter. It is easy to see that itis complete, since it exhausts all possible patterns having a cut rule as headsymbol. Its con
uence comes from its left linearity (if one takes one di�erentrule for each di�erent variable name) and from the absence of critical pairs, asfor the system of reduction rules of the �-calculus. As for its strong termination,the proof is done in a next section.Reduction of CH Rules.{ logical counterpart of �-reduction�; A;` B� ; ` A!B IR � ;` A � ;B ` C� ;A!B ` C IL� ; ` C CH LJT�! � ;` A �;A;` B� ; ` B CM � ;B ` C� ; ` C CH�; A;` B� ; ` A!B IR � ;A!B ` A!B Ax� ; ` A!B CH LJT�! �; A;` B� ; ` A!B IR{ logical counterpart of concatenation of the arguments of a term�; B;B ` A�;B;` A Cont �;B;A ` C�;B;` C CH LJT�! �; B;B ` A �;B;A ` C�;B;B ` C CH�; B;` C Cont{ logical counterpart of concatenation computation rules� ; ` D � ;B ` A� ;D!B ` A IL � ;A ` C� ;D!B ` C CH LJT�! � ;` D � ;B ` A � ;A ` C� ;B ` C CH� ;D!B ` C IL� ;A ` A Ax � ;A ` C� ;A ` C CH LJT�! � ;A ` CReduction of CM Rules.{ logical counterpart of propagation of substitutions through weakly normalterms� ; ` A �;A;A ` C�;A;` C Cont� ; ` C CM LJT�! � ; ` A � ;` A �;A;A ` C� ;A ` C CM� ; ` C CH

�; B;` A �;A;B;B ` C�;A;B;` C Cont�; B;` C CM LJT�! �;B;` A �;A;B;B ` C�;B;B ` C CM�;B;` C Cont� ; ` A �;A;B;` C�;A;` B!C IR� ; ` B!C CM LJT�! �; B;` A �;A;B;` C�;B;` C CM� ;` B!C IRnote that, if B already occurs with the same name somewhere in the proof of� ;` A, then this latter name has to be changed throughout the proof.{ logical counterpart of propagation of substitution through weakly normallist of arguments� ;` A �;A;B ` B Ax� ;B ` B CM LJT�! � ;B ` B Ax� ; ` A �;A;` B �;A;C ` D�;A;B!C ` D IL� ;B!C ` D CMLJT�! � ;` A �;A;` B� ; ` B CM � ;` A �;A;C ` D� ;C ` D CM� ;B!C ` D IL5 The Assignment of LJT Proofs by �-expressionsProofs of LJT are isomorphic to �-expressions. We show it by �rst assigning�-expressions to proofs of LJT. It remains just to check that, through this as-signment, the reduction rules for �-expressions are in exact correspondence withthe rewriting rules for proofs of LJT.To describe the assignment, we identify the set of formula names with theset of �-term variable names and we write the named formulas under the formx :A. It is also cumbersome to consider arguments lists as applicative contexts:An applicative context is a list of arguments written under the form (: l)where : is a special notational symbol. Also, we call hole declaration a formulawritten under the form : :A.We express the assignment by judgments.A judgement is something of the form � ;� ` t :A. In this writing � iseither nothing, in which case t is a term, or a hole declaration in which case t isan applicative context.

Otherwise said, in the assignment, proofs of sequents with an empty stoupare interpreted by terms while proofs of sequents with a non empty stoup areinterpreted by applicative contexts.Applicative context formation Term formation� ; : :A ` (: []) :A Ax �; x :A; : :A ` (: l) :B�; x :A;` (x l) :B Cont� ;` u :A � ; : :B ` (: l) :C� ; : :A!B ` (: [u :: l]) :C IL �; x :A;` u :B� ;` �x:u :A!B IR� ; : :C ` (: l) :A � ; : :A ` (: l0) :B� ; : :C ` (: (l @ l0)) :B CH � ;` u :A � ; : :A ` (: l) :B� ;` (u l) :B CH� ;` u :A �; x :A; : :C ` (: l) :B� ; : :C ` (: l[x := u]) :B CM � ;` u :A �; x :A;` v :B� ;` v[x := u] :B CMRemark: The rules with an non empty stoup are polymorphic in the role of theformula in the stoup. So, there is a strong relation between a judgement� ; : :A1! :::!An!B ` (: [u1; :::;un]) :Band a judgement � ` [u1; :::;un] :A1 ^ :::^Anwhere A1 ^ ::: ^ An is de�ned as 8B:(A1! :::!An!B)!B (encoding oftuples in second order �-calculus).A �-expression e such that we have x1 :A1; :::; xn :An ` e :A for some termvariable names x1, ..., xn and for some formulas A1, ..., An, A is said simply-typed of type A, or shortly, typable by A.6 Strong TerminationBy the isomorphism, the strong termination of cut-elimination for LJT (using theabove rewriting system) and the strong termination of reduction for typable �-expressions are equivalent. We show hereafter the strong termination for typable�-expressions.Proof of Strong Termination. Let e be a �-expression and R! a notion of reduc-tion. We say that e is strongly normalisable w.r.t. R! in the following cases:{ e is not reducible w.r.t. R!{ for all e0 such that e R! e0, we have e0 strongly normalisable

Let e be a �-expression. If e is typable, then it is strongly normalisable w.r.t.the reduction 1!. To prove that, we prove something stronger, the strong E-normalisability.This latter is preserved by the various operations of �-expressionsconstruction.We de�ne a notion of reduction h! which removes the head constructor of a�-expression. The reduction h! is de�ned by the following cases:�x:u h! u [u :: l] h! u(x l) h! l [u :: l] h! lwhere u ranges over the set of �-terms and l over the set of argument lists.We note E!, and we call E-reduction, the notion of reduction de�ned bye E! e0 either because e 1! e0 or because e h! e0 (without considering the closureof h! by congruence). We say that e is strongly E-normalisable (shortly SEN)if it is strongly normalisable w.r.t. E!.Lemma2. If the �-term u and the argument list l are SEN then �x:u, (x l) and[u :: l] are SEN.Proof. By induction on the proof that u is SEN then by induction on the proofthat l is SEN. Let us treat of the case [u :: l]. If [u :: l] E! e0 then, either e0 is uor l, in which case, by hypothesis, e0 is SEN, or e0 is [u0 :: l] with u 1! u0 , or[u :: l0] with l 1! l0 in which cases e0 is SEN by induction hypothesis. Therefore,in any case, e reduces to a SEN �-expression. This implies that e is itself SEN.Lemma3. Let e and u be SEN �-expressions. If, for all l SEN, the typability of(u l) implies that (u l) is SEN, then, also the typability of e[x := u] implies thate[x := u] is SEN.Proof. It works by induction on the proof that e is SEN then by induction onthe proof that u is SEN.Let us assume that e[x := u] 1! w. If the reduction touchs a redex in u thenw has the form e[x := u0] with u 1! u0. The proof of SEN for u0 is smaller thanthe one for u, thus, by induction hypothesis, e[x := u0] is SEN. Similarly, if thereduction is in e.It remains the case where e[x := u] is itself a redex and where it is this redexwhich is reduced. We look at the di�erent possible forms for e.{ The case where e is (x l0) { in which case w denotes (u l0[x := u]) { is themore delicate one. But since e h! l0, the proof of SEN for l0 is smaller than theone for e. Therefore, by induction hypothesis, l0[x := u] is SEN. And since wehave assumed that for all l SEN, (u l) was SEN, we infer that (u l0[x := u])is SEN.

{ If e is (y l) then w is (y l[x := u]). Here again, l[x := u] is SEN by inductionhypothesis. Then, by lemma 2, we get that w is SEN.{ If e is the term �y:v, up to a change of the variable name y in �y:v { andthis does not change the structure of the proof of SEN {, we may assumethat y and x are distinct variable names. We may then a�rm that w is�y:(v[x := u]). Since �y:v E! v, by induction hypothesis, (v[x := u]) is SENand by lemma 2, w is SEN.{ If e is [v :: l] then w denotes [v[x := u] :: l[x := u]]. But we have both[v :: l] E! v and [v :: l] E! l. Therefore, by induction hypothesis, we have thatv[x := u] and l[x := u] are SEN. Then, by lemma 2, we get that w is alsoSEN.{ If e is [] then w is [] which is directly SEN.Thus, whatever the form of e, the reducts of e[x := u] are all SEN. This isenough to say that e[x := u] is SEN.Lemma4. Let A be a formula. Let e be a �-expression, SEN and typable by A.Let l be a SEN arguments list. If the expression (e l) (if e is a �-term) or theexpression e @ l (if e is an arguments list) is typable, then it is SEN.Proof. We proceed by induction on A, then on the proof that e is SEN, then onthe proof that l is SEN.Let us assume that (e l) 1! w (if e is a �-term) or e @ l 1! w (if e is anarguments list).If the reduction a�ects a redex in e then w has the form (e0 l) or e0 @ l withe 1! e0. Since the proof of SEN for e0 is smaller that the one for e, by inductionhypothesis, w is SEN. Similarly if the reduction is in l.It may also happen that (e l) or e @ l is a redex and that this redex is thereduced one.{ The more delicate case is when e has the form �x:u while l has the form[v :: l0]. In this case, the type of A has the form B ! C, the �-term v istypable by B and w denotes (u[x := v] l0). Since B is smaller than A, byinduction hypothesis, the typability of (v l00) implies that it is SEN whateverl00 SEN. It is then possible to use lemma 3 in order to infer that u[x := v]is SEN. But this latter is typable by C which is also smaller than A. Byinduction hypothesis, again, (u[x := v] l0) is SEN.{ If e is (x l0) then w denotes (x (l0 @ l)). But (x l0) E! l0, therefore, byinduction hypothesis, (l0 @ l) is SEN. By lemma 2, w is SEN.{ If e is �x:u and l denotes [] then w is e which, by hypothesis, is SEN.{ If e is [] then w denotes l which is directly SEN.{ If e is [v :: l0] then w denotes [v :: (l0 @ l)]. But [v :: l0] E! l0, therefore, byinduction hypothesis, l0 @ l is SEN. As for v, it is also SEN by inductionhypothesis. Then, by lemma 2, w is SEN.

Thus, whatever reduction of (e l) or e @ l we consider, we get a SEN �-expression. This means that (e l) (if e is a �-term) or e @ l (if e is an argumentslist) is SEN.Proposition5. Typable �-expressions are SEN.Proof. Let e be a typable �-expression. The proof works by induction on e. Thecases �v, (p l) and (v :: l) come directly from the lemma 2. The cases (u l) and(l @ l0) come from the lemma 4. As for the cases v[x := u] and l[x := u], theycome from the lemma 3 applied to the lemma 4.The strong E-normalisability directly implies the strong normalisability.Corollary 6. Simply-typed �-expressions are strongly normalizable.Remarks: 1) A similar proof has been done by Dragalin [3] for the system ofreduction rules given in the seminal paper of Gentzen on the cut-eliminationtheorem for LK. The di�erence is that Dragalin's proof does not work by struc-tural induction on the proof of strong E-normalisability, but rather by inductionon the length of these proofs. Our proof has been done independently, extendinga proof from Coquand that the elimination of cuts according to an outermoststrategy of reduction terminates.Note that this kind of strong cut-elimination proof applies also to non-con
uent systems of reduction rules (it is the case of Gentzen's system of re-duction rules) but not to system including rules a�ecting the order of cuts. Thisis contrast with the cut-elimination procedures that Zucker or Pottinger andhave considered.2) An interesting result would be to prove the strong normalisation of thesimply-typed �-calculus with the additional reduction rule (�x:t u)[y := v] r!((�x:t)[y := v] u[y := v]). As a corollary of this result, we would get the strongnormalisation of the usual simply-typed �-calculus and even the strong normal-isation for the simply-typed �-calculus with an explicit \let in "-like substitu-tion operator (see for instance Lescanne [8]).ConclusionThe isomorphism known as the Curry-Howard isomorphism expresses a struc-tural correspondence between Hilbert-like axiomatic systems and combinatorylogic and between natural deduction and �-calculus. The isomorphism betweenLJT and the �-calculus can be seen as the extension of this correspondence intothe framework of sequent calculi and this shows that sequent calculus is no lessrelated to functional features than natural deduction.Among the di�erent forms of sequent calculi, the calculus LJT has clearlya special place. Since the Modus Ponens rule of intuitionistic natural deductioncan be split into a head-cut rule and an implication left introduction rule, LJT

can even be seen as a strict re�nement of natural deduction. Similarly the �-calculus can be seen as a strict re�nement of the usual �-calculus, but, in orderto make more precise this embedding relation, it would be necessary to extendthe strong normalisation of the simply-typed �-calculus by considering the extrareduction rule (�x:t u)[y := v] r! ((�x:t)[y := v] u[y := v]).AcknowledgementsSimpli�cations in the proof of strong normalisation are due to Thierry Coquand.I thank also the Paris 7 computer science logic group, Phil Wadler and VivianaBono for echoes on this work.References1. V. Breazu Tanen, D. Kesner, L. Puel: \A typed pattern calculus", IEEE Symposiumon Logic in Computer Science, Montr�eal, Canada, June 1993, pp 262-274.2. V. Danos, J-B. Joinet, H. Schellinx: \LKQ and LKT: Sequent calculi for secondorder logic based upon dual linear decompositions of classical implication", inProceedings of the Workshop on Linear Logic, Cornell, edited by J-Y. Girard, Y.Lafont, L. R�egnier, 1993.3. A. G. Dragalin: Mathematical Intuitionism: Introduction to Proof Theory, Trans-lations of mathematical monographs, Vol 67, Providence, R.I.: American Mathe-matical Society, 1988.4. J. Gallier: \Constructive logics, part I: A tutorial on proof systems and typed�-calculi", Theoretical Computer Science, Vol 110, 1993, pp 249-339.5. J.-Y. Girard: \A new constructive logic: classical logic", Mathematical Structuresin Computer Science, Vol 1, 1991, pp 255-296.6. J-Y. Girard: \On the Unity of Logic", Annals of Pure and Applied Logic, Vol 59,1993, pp 201-217.7. G. Huet: \Con
uent Reductions: Abstract Properties and Applications to TermRewriting Systems", Journal of the Association for Computing Machinery, Vol 27,1980, pp 797-821.8. Z. Benaissa, D. Briaud, P. Lescanne, J. Rouyer-Degli, \��, a calculus of explicitsubstitutions which preserves strong normalisation", submitted to Journal of Func-tional Programming, 1995.9. G. Mints: \Normal forms for sequent derivations", Private communication, 1994.10. G. Pottinger: \Normalization as a homomorphic image of cut-elimination", Annalsof mathematical logic), Vol 12, 1977, pp 323-357.11. D. Prawitz: Natural Deduction, a Proof-Theoretical Study, Almquist and Wiksell,Stockholm, 1965, pp 90-9112. W. A. Howard, \The Formulae-as-Types Notion of Constructions", in J.P. Seldinand J.R. Hindley Eds, To H.B. Curry: Essays on Combinatory Logic, LambdaCalculus and Formalism, Academic Press, 1980 (unpublished manuscript of 1969).13. P. Wadler: \A Curry-Howard isomorphism for sequent calculus", Private commu-nication, 1993.14. J. I. Zucker: \Correspondence between cut-elimination and normalization, part Iand II", Annals of mathematical logic, Vol 7, 1974, pp 1-156.This article was processed using the LaTEX macro package with LLNCS style

