-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A Lambda-calculus Structure Isomorphic to
Gentzen-style Sequent Calculus Structure
Hugo Herbelin

» To cite this version:

Hugo Herbelin. A Lambda-calculus Structure Isomorphic to Gentzen-style Sequent Calculus Structure.
Computer Science Logic, Sep 1994, Kazimierz, Poland. pp.61-75. inria-00381525

HAL Id: inria-00381525
https://hal.inria.fr /inria-00381525
Submitted on 5 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50174244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00381525
https://hal.archives-ouvertes.fr

A X-calculus Structure Isomorphic to
Gentzen-style Sequent Calculus Structure

Hugo Herbelin *

LITP, University Paris 7, 2 place Jussieu, 78252 Paris Cedex 05, France
INRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
Hugo.Herbelin@inria.fr

Abstract. We consider a A-calculus for which applicative terms have
no longer the form (...((w u1) u2)... un) but the form (u [ui;...;uy]), for
which [u1;...;un] is a list of terms. While the structure of the usual
A-calculus 1s isomorphic to the structure of natural deduction, this new
structure is isomorphic to the structure of Gentzen-style sequent calculus.
To express the basis of the isomorphism, we consider intuitionistic logic
with the implication as sole connective. However we do not consider
Gentzen’s calculus LJ, but a calculus LJT which leads to restrict the
notion of cut-free proofs in LJ. We need also to explicitly consider, in
a simply typed version of this A-calculus, a substitution operator and a
list concatenation operator. By this way, each elementary step of cut-
elimination exactly matches with a 8-reduction, a substitution propaga-
tion step or a concatenation computation step.

Though it is possible to extend the isomorphism to classical logic and to
other connectives, we do not treat of it in this paper.

1 Introduction

By the Curry-Howard isomorphism between natural deduction and simply-typed
A-calculus, and using Prawitz’s standard translation [11] of cut-free LJ into nat-
ural deduction, we get an assignment of LJ proofs by A-terms.

Zucker [14] and Pottinger [10] have studied the relations between normali-
sation in natural deduction and cut-elimination in LJ. They were considering
normalisation without paying special attention to the computational cost of the
substitution of a proof in place of an hypothesis. But in sequent calculus, among
the different uses of the cut rule, there is one which stands for an explicit oper-
ator of substitution and among the elementary rules for cut-elimination, there
are rules to compute the propagation of substitution. Therefore, Zucker and
Pottinger were led to consider proofs up to the equivalence generated by these
substitution propagation computation rules.

Here, we consider a A-calculus with an explicit operator of substitution and
with appropriated substitution propagation rules. This allows to have a more

* This research was partly supported by ESPRIT Basic Research Action “Types for
Proofs and Programs” and by Programme de Recherche Coordonnées “Mécanisation
du raisonnement”.

precise correspondence with the elementary rules for cut-elimination. However,
there are two problems. The first one is that several cut-free proofs of LJ are
assoclated to the same normal simply-typed A-terms. An answer to this problem
is to rather consider a restriction of LJ, called LJT, having the same structure
and same strength as LJ but for which there is a one-to-one correspondence with
normal simply-typed terms. The second problem is that Gentzen-style sequent
calculus and A-calculus (or natural deduction) have not the same structure.
Consequently, the reduction rules in one and the other calculi do not match. An
answer to this second problem is to consider an alternative syntax for A-calculus
of which, this time, the simply-typed fragment is isomorphic to LJT.

Note that a radically different approach of the computational content of
Gentzen’s sequent calculus appears in Breazu Tanen et al [1], Gallier [4] and
Wadler [13]. Each of them interprets the left introduction rules of sequent cal-
culus as pattern construction rules.

2 A Motivated Approach to LJT and A-calculus

2.1 The Sequent Calculus LJ

We consider a version of LJ with the implication as sole connective. The for-
mulas are defined by the grammar

An=X | A=A

where X ranges over Vg, an infinite set of which the elements are called
propositional variable names. In the sequel, we reserve the letters A, B, C,
... to denote formulas.

Sequents of LJ have the form I' = A. To avoid the need of a structural rule
we define I' as a set. To avoid confusion between multiple occurrences of the
same formula, this set is a set of named formulas. We assume the existence of an
infinite set of which the elements are called names. Then, a named formula
is just the pair of a formula and a name. Usually, we do not mention the names
of formulas (anyway, no ambiguity occurs in the sequents we consider here).

Under the condition that A, with its name, does not belong to I, the notation
I', A stands for the set-theoretic union of I and {A}.

To avoid the need of a weakening rule, we admit irrelevant formulas in axioms.

The rules of LJ are:

4 DAARC

I''AF A T AFC Cont

I'tA T,BrC IAF B
I'A—-BrC ' TFASB

Ir

I'tA IAFB
I'FB

ut

2.2 The Usual Interpretation of LJ Cut-free Proofs by Normal
A-terms

There is a standard way to interpret cut-free proofs of LJ as A-terms, see for
instance Prawitz [11] or, for a more formal presentation, Zucker [14], Pottinger
[10] or Mints [9]. To express the interpretation, it is cumbersome to choose the
set of A-variables names as set of names. We then mention explicitly the name
x of a formula A under the form x: A. The interpretation is by induction on the
proofs and we mention the associated A-terms on the right of the symbol F.

A Nz Ajy: Ak u:C Cont
Fa:Aba:A Ne:AFuw{y:=z}:C on
I'Fu:A @Ny:BFov:C Ix:AFu:B I
INe:A-BFoly:=(zu)}:C r 't Avu:A=B B
for which v{z := u} denotes the term v in which each occurrence of « has

been replaced by u.

2.3 Towards the Calculus LJT

However different proofs may be associated to the same A-term. For instance:

acraf Teopre T

A—B,A,C+ B I
A-B AFC—B ®

and

1.0 BrB

AF A ABFC%B]R
A—B,AF C—>B L

are both associated to the Church-like typed A-term Az:C.(z y): C — B for
a context in which z: A— B and y: A.

We decide to restrict LJ in order to get a bijective correspondence between
normal simply-typed A-terms and cut-free proofs. For this purpose, we restrict
the use of the I rule in order to forbid the second proof. The calculus we obtain
has two kind of sequents. We call it LJT, since it appears as the intuitionistic
fragment of a calculus called LKT and defined by Danos, Joinet, Schellinx [2].

A sequent of LJT has either the form I';F A or the form I'; A+ B. In both
cases, I 1s defined as a set of named formulas. The semi-colon delimits a place on
its right. A uniform notation for sequents of LJT is the following one: I'; IT - B
where I is a notation to say that the place on the right of the semi-colon may
be either empty or filled with one (not named) formula. The idea of using these
kinds of sequents comes from Girard [5] who called “stoup” the special place
between the symbols “” and “F”.

X

The rules of LJT are

4 LAAFB

I''yARA T AFB Cont

I''FA I''BEC I'A;F B
I"ASBFC % TiFASB

Ir

Remarks: 1) With these rules, the first proof above is not directly a proof in
the restriction: the axiom rule of LJ has to be encoded in the restriction by an
axiom rule followed by a contraction rule.

2)This calculus appears also in Danos et al [2] with a slight difference in
the treatment of structural rules. Like its classical version LKT, it has been
considered by Danos et al for its good behaviour w.r.t. embedding into linear
logic. The calculus LJT appears also as a fragment of ILU, the intuitionistic
neutral fragment of unified logic described by Girard in [6]. The calculus ILU
is itself a form of LJ constrained with a stoup, for which Girard pointed out
that “the formula [in the stoup] (if there is one) is the analogue of the familiar
head-variable for typed A-calculi”.

Recently, Mints defined in [9] a notion of normal form for cut-free proofs of
LJ which also coincides with the notion of cut-freeness in LJT.

We have also to mention the definition of a cut-free sequent calculus similar
to the cut-free LJT in the paper of Howard [12] on the interpretation of natural
deduction as a A-calculus. Howard mentions that the proofs of this cut-free
calculus are in one-to-one correspondence with the normal simply-typed A-terms.

The proofs of the cut-free LJT are effectively in one-to-one correspondence
with the normal simply-typed A-terms. For instance, a normal term of the form
A1 AL (y ur ...up) and of type A1 — ... - A, — B, in which y is of type
D =C,—...—(,— B, is unambiguously associated to a proof of the form

Ax

b up:Cyp Iy:Bry:B 7
L

Iyp:Cp— B '_ (yp up): B

I''Fup:Cy F;y2:02—>...—>0p—.>B F(y2 uo ...up): B

I
I' ;y1:DFE (y1 w1 ...up): B . tL
r F (y ur ..up): B oln
I'\{z,}; ~ Azp.(yur ..up): A, — B R
I'\{za, ..., zn}; [/\xz...AxT.L.(y U p) Ay — . — A, — B /
I'\{z1, ...,z }; FAzi e, (yur oup): Ai—...— A, —B R

where I contains y: D, x1: Ay, ..., xn: Ap.

Remark: The construction of the applicative part of the term starts from u, and
ends with 1 in contrast with the usual way of building a term (u uy ... up) in A-
calculus. This is why we have not an exact correspondence with the substitution
operator when we consider the cut rule.

2.4 Cut and Reduction Rules: Towards the A-calculus

According to the place of the cut formula (in the stoup or not), there are two
kinds of cut rules in LJT:

head-cut rule mid-cut rule

Iii+-A I'; AR B IHFA INAIIEB
T I+ B H T I+ B
for which Il means one or zero formula in the stoup.

The mid-cut rule is naturally interpreted as an operator of explicit substitu-
tion:

Cwm

I'iFviA Na:AJlTFu:B
'+ u[z:=v]:B

M

A standard way to eliminate cuts is to apply rewriting rules to proofs in
order to propagate the cuts towards smaller proofs. Here is an example of such
a rewriting rule (we let C = Ay —...—> A, — B):

Ne:Abu: Ay et Ajy:CF (yug .o up): B

I
I'Fou:A INz:Ajy:Al=CF(yur ... up):B o L
Iiy:Ai—=CF (yup ... up)[z:=v]:B M
reduces to
tviA oAb u i Ay I'Fov:A Te:Ajy:CF (yuz ... up): B
M Cum

Ik wir = v]: Ay Iiy:CF (yug ... up)[z:=0]:B
Iy: At = CF (yuifz :=v] ... up)[z:=0]: B

1

It seems “natural” that such a rewriting rule is in correspondence with a rule
of substitution propagation. But it is not the case. Indeed it corresponds to the
reduction of (y uy ... uy)[x := v] into (y ui[x := v] ... uy)[x := v] while we would
like to get ((y w1 ...up—1)[x := v] up[z :=v]).

This is because the structure of a proof in sequent calculus is different from
the structure of the associated A-term and this suggests to consider an alternative
formalism for the A-calculus in which an applicative term is no longer of the form
((v uy)...up), but of the form (u [u1;...;uy]), i.e. considered as the application
of a function to the list of its arguments. We call A-calculus this alternative
formalism for A-calculus.

2.5 Digression: How to Recover LJ 7

LJT is as strengthful as LJ since a proof of a sequent I"' = A in LJ can be compo-
sitionnally translated into a proof of I';+ A in LJT. To express the translation,
1t 1s more convenient to consider a variant of LJ with the Iy rule and the C'ont
rules mixed (i.e. we assume that A — B is already in I' for the second item). We
note ~+ the translation.

Az T AAFA
AR A ~r T AFA Cont
: : I A anfo
reA rBrco ~ RA%BFBCL :
— T°F B ont nBrC
Tk C M
A+ B I AF B ,
Trasp ' ~ It A-B 'H
I'tA T AFB - A TVARB
Skl Cu

TFB Cut Ik B

Thus we have an interpretation of LJ into LJT. However, following this in-
terpretation, cut-free proofs in LJ may no more be cut-free in LJT.

3 The X-calculus

3.1 The X-expressions

We assume the existence of an infinite set V of which the elements are called
term variables names and here denoted by the letters z, y, z, ...

The set of A-expressions, including the A-terms (or shortly terms) and the
lists of arguments are mutually defined by the following grammar for which
x ranges over V

Terms: to=(xl) | (Aet) | ()| (tx :=1])
Avrgument lists: [=:=[] [t =] | ({ @) | [z :=1]

We use the letters ¢, u, v,... to denote terms and the (possibly quoted) letter
l to denote lists of arguments.

The notation [] stands for the empty list of arguments and [t :: {] stands for
the adjunction of the term ¢ to the list of arguments /, while (I @ {’) stands for
the explicit concatenation of the lists [and !’ of arguments.

The syntax (¢[x := u]) stands for an operator of explicit substitution in terms
(a “let x=u in t” operator) and ({[x := u]) stands for an operator of explicit
substitution in lists of arguments.

We usually abbreviate an argument list [t = [... [ty 2 []].]] by [E15 .5 t0]-
Terms such as ((...(¢ t1) ...) t,,) are abbreviated (¢ t1 ... t,). Sometimes (z []) is
shortened into #. Also, the expressions (Az.t), ({{z := u]) and (I @ ") may be
written respectively Az.t, {[z := u] and [@ I’ when there is no ambiguity.

Subexpressions of A-expressions are defined as usual, but, in our case, by a
simultaneous recursion on terms and arguments lists.

Bound variables are defined as usual. We say that two A-expressions are
a-equal if they differ only in the names (assumed distinct the one from the
others) of bound variables. This notion of equality does not affect the structure
of expressions and, in the sequel, we consider A-expressions up to this a-equality.

3.2 Normal X—expressions

A A-expression is normal if and only if it does not contain any operator of
explicit concatenation or explicit substitution and if all applicative subterms are
of the form (x !) with [normal.

Otherwise said, a A-expression, is normal if it is construed using this restricted
grammar:

(z D)|(Az.t)
(e =4

An approximation of normality is weak normality. A A-expression is called
weakly normal if it is of the form (z [) or Azt or [] or [t :: [], where ¢ and !
denotes respectively any term and any list of arguments.

{::

Remark: Usual A-calculus can be embedded in A-calculus, since there is, in A-
calculus, the possibility to consider terms of the form (...(z [u1]) ... [u,]) having
a structure similar to the structure of applicative terms in A-calculus. However,
such a A-term is not normal. Indeed, its normal form is (2 [u;...; un)).

3.3 Reduction Rules

The presence of explicit substitution and concatenation operators entails the
presence of appropriated reduction rules:

— [B-reduction

e [v) S (ufz = 0] 1) Beons
e []) D Az Brit

— concatenation of the arguments of a term

() 1) S (x (@) Cpar

— concatenation computation rules

[uszl] @U S [us (1 @U)] Coons
[ar5Lr Chit

— propagation of substitution through weakly normal terms

(x D[z :=v] 5 (vi[z = v]) Syes
(y D[z :=v] 5 (ylz:=v]) Sno
(Ay.u)[x = v] = Ay.(uz := v]) Sy

warning to a possible variable capture in rule S
— propagation of substitution through weakly normal arguments

]
]

=v] 5[] Shil
=] 5 [ufe =] =[x := v]] Seons

If u = v, then u is called a redex. We note % the one step reduction ob-
tained from —» by congruence. Since the system of reduction rules is left linear
(if one takes an infinite family of rules Syes, Sno and Sy, one for each possible
combination of distinct # and y in V) and without critical pairs, according to

Huet [7], - is confluent. We stay unprecised about the a-equality problem stem-
ming from the rule Sy . Solutions exist, for instance by adding an extra explicit
renaming rule to the rewriting system.

Remark: The absence of critical pairs may be quite restricting. For instance,
it is not possible to simulate usual g-reduction using these rules for the reason
that substitutions are not allowed to go through S-redexes. However, the set of
rules is enough to reach a normal form, when this one exists.

4 Cut-elimination in the Calculus LJT

We say that two proofs are equal if they differ only by the names of formula in
the proved sequent or by addition of irrelevant formulas to the left part of the
proved sequents. We consider proofs up to this notion of equality. In particular,
if p is a proof of I'; IT + A, then, for any named formula B not in I, p 1s a proof
of I''B; Il - A, even if it becomes necessary to change the name of another
similarly named occurrence of B throughout p.

4.1 Cut-elimination

Propositionl. (Strong and confluent cut-elimination)
There exists a confluent system of rewriting rules which allows to derive a cut-
free proof of I'; IT = A from any proof of the same sequent.

Such a system of rewriting rules is listed hereafter. It is easy to see that it
is complete, since it exhausts all possible patterns having a cut rule as head
symbol. Tts confluence comes from its left linearity (if one takes one different
rule for each different variable name) and from the absence of critical pairs, as
for the system of reduction rules of the A-calculus. As for its strong termination,
the proof is done in a next section.

Reduction of Cgr Rules.

— logical counterpart of G-reduction

LARB IiFA [BFEC A TLARB
It A-B 'H RA%BFC(TLLH‘ ;- B M LBEC
r;FC Ao r;FC "
LAFB)
FA=B " TyAsBrRASB 27
B Ty == O LI LAED
AT riFAsB R

— logical counterpart of concatenation of the arguments of a term

I'B;:BF A I'B:B+FA I,B;AFC
rBra " rparc co LT I B;BFC A
T B:FC "o rBrc cont

— logical counterpart of concatenation computation rules

I'FD IBEA

1

I"D—BFA AR C
’ ’ LJT
IDosBERC Cu LI
TAFA LARC
[AFC " LJT

Reduction of Cpyr Rules.

I'BFA T AFC

;- D LBFC Cr
IDSBFC o
I AR C

— logical counterpart of propagation of substitutions through weakly normal

terms
ILAAFC LEA LAARC
Ik A EA*C(fMtIJr Ik A LAFC M
ik C M — ik C "

[AB:BFC I'BiFA T, A,B;BFC
A A o Cont M

nBrA LABFC T B.BFrC
T B:F C Moy rB.rc cont
I A B+ C [Bi+ A I ABFC
- Jr Cu
rFA T AFB=C I BiF C
Ca LIT LB
IFB=C -3 I'F BSC

note that, if B already occurs with the same name somewhere in the proof of
I';E A then this latter name has to be changed throughout the proof.

— logical counterpart of propagation of substitution through weakly normal
list of arguments

- A E&BFng
; M LT
IBF B Ty
A B T A,CFD
Ik A [LA,B5C+ D o
Cu
I'B—>CFD
A TLARB A VA CEFD
;- B M LOFD M
LJT IB=sCFD L
—

5 The Assignment of LIT Proofs by \-expressions

Proofs of LJT are isomorphic to A-expressions. We show it by first assigning
A-expressions to proofs of LJT. It remains just to check that, through this as-
signment, the reduction rules for A-expressions are in exact correspondence with
the rewriting rules for proofs of LJT.

To describe the assignment, we identify the set of formula names with the
set of A-term variable names and we write the named formulas under the form
z:A. Tt is also cumbersome to consider arguments lists as applicative contexts:

An applicative context is a list of arguments written under the form (. [)
where . is a special notational symbol. Also, we call hole declaration a formula
written under the form . : A.

We express the assignment by judgments.

A judgement is something of the form [I';II F t: A. In this writing I7 is
either nothing, in which case ¢ is a term, or a hole declaration in which case ¢ is
an applicative context.

Otherwise said, in the assignment, proofs of sequents with an empty stoup
are interpreted by terms while proofs of sequents with a non empty stoup are
interpreted by applicative contexts.

Applicative context formation Term formation
Ie:A; cAF():B
Ax))
Iy AR []D):A T AF (2):B Cont
I'iFuw:A T';.:BF(. l):C'I Iz:Abu:B]
I's.:A=BF (. [ul]):C L I':FAzru:A—>B 'f
s :CH(QL DA I AR U):B I'iFuw:A Ty D AF(CD):B o
I, :CH(. (l@l)):B " Ik (ul):B "

I'iFwA Tae:A; . CH(D):B I'Fu:A e:AkFv:B
M Cy

I's :CF(lz:=u]):B I'iFole i =u]:B

Remark: The rules with an non empty stoup are polymorphic in the role of the
formula in the stoup. So, there is a strong relation between a judgement
I i A= .= Ay BE (L [us..5u]): B

and a judgement

T fug;sug] AT A A A,

where Ay A ... A A, is defined as YB.(4; — ... = A, = B) = B (encoding of
tuples in second order A-calculus).

A X-expression e such that we have zq: A1, ...,2,: A, F e: A for some term
variable names xq, ..., , and for some formulas Ay, ..., A,, A is said simply-
typed of type A, or shortly, typable by A.

6 Strong Termination

By the isomorphism, the strong termination of cut-elimination for LJT (using the
above rewriting system) and the strong termination of reduction for typable A-
expressions are equivalent. We show hereafter the strong termination for typable
A-expressions.

Proof of Strong Termination. Let e be a A-expression and K a notion of reduc-

tion. We say that e is strongly normalisable w.r.t. £ in the following cases:

— e is not reducible W.I'.Ig. Eit
— for all ¢’ such that e — €', we have ¢’ strongly normalisable

Let e be a A-expression. If e is typable, then it is strongly normalisable w.r.t.

the reduction —. To prove that, we prove something stronger, the strong E-
normalisability. This latter is preserved by the various operations of A-expressions
construction.

We define a notion of reduction 2 which removes the head constructor of a
A-expression. The reduction 2 is defined by the following cases:

Az [u::l]gu
(xl)gl [u::l]gl

where u ranges over the set of Ad-terms and [over the set of argument lists.

We note E), and we call E-reduction, the notion of reduction defined by
e & ¢’ cither because e - ¢/ or because e 2 ¢/ (without considering the closure
of 2 by congruence). We say that e is strongly E-normalisable (shortly SEN)

if it is strongly normalisable w.r.t. Y

Lemma 2. If the A-term u and the argument list | are SEN then Az.u, (z 1) and
[w:: 1] are SEN.

Proof. By induction on the proof that « is SEN then by induction on the proof
that [is SEN. Let us treat of the case [w:: []. If [u :: {] B e then, either ¢’ is u

/

or [, in which case, by hypothesis, ¢’ is SEN, or ¢’ is [¢' ::] with u RN , O
[w:: '] with [L ¥ in which cases ¢’ is SEN by induction hypothesis. Therefore,

in any case, e reduces to a SEN A-expression. This implies that e is itself SEN.

Lemma 3. Let e and u be SEN \-expressions. If, for all | SEN, the typability of
(ul) implies that (u 1) is SEN, then, also the typability of e[x := u] implies that
elx := u] is SEN.

Proof. It works by induction on the proof that e is SEN then by induction on
the proof that u is SEN.

Let us assume that e[z := u] 2 w. If the reduction touchs a redex in u then

w has the form e[z := «'] with u 25 w'. The proof of SEN for v is smaller than
the one for u, thus, by induction hypothesis, e[:= u'] is SEN. Similarly, if the
reduction is in e.

It remains the case where e[z := u] is itself a redex and where it is this redex
which is reduced. We look at the different possible forms for e.

— The case where e is (z I') — in which case w denotes (u l'[z := u]) — is the

more delicate one. But since e 2 ', the proof of SEN for I’ is smaller than the
one for e. Therefore, by induction hypothesis, I’z := «] is SEN. And since we
have assumed that for all [SEN, (u) was SEN, we infer that (u [z := u])
is SEN.

— If eis (y) then wis (y {[x := u]). Here again, {[x := «] is SEN by induction
hypothesis. Then, by lemma 2, we get that w is SEN.

— If e is the term Ay.v, up to a change of the variable name y in Ay.v — and
this does not change the structure of the proof of SEN — we may assume
that y and x are distinct variable names. We may then affirm that w is
Ay.(v[x := u]). Since Ay.v R v, by induction hypothesis, (v[x := u]) is SEN
and by lemma 2, w is SEN.

— If e is [v ::] then w denotes [v[x := u] :: [[z := u]]. But we have both
[v::] X v and [v::] Ll Therefore, by induction hypothesis, we have that
v[# := u] and {[x := u] are SEN. Then, by lemma 2, we get that w is also
SEN.

— If e is [] then wis [] which is directly SEN.

Thus, whatever the form of e, the reducts of e[z := u] are all SEN. This is
enough to say that e[z := u] is SEN.

Lemmad4. Let A be a formula. Let e be a M-expression, SEN and typable by A.
Let | be a SEN arguments list. If the expression (e l) (if e is a A-term) or the
expression e Q[(if e is an arguments list) is typable, then it is SEN.

Proof. We proceed by induction on A, then on the proof that e is SEN, then on
the proof that ! is SEN.

Let us assume that (e !) 4w (if e is a X—term) ore @l 5 w (if e is an
arguments list).
If the reduction affects a redex in e then w has the form (e’ [) or ¢/ @ [with

e 5 ¢. Since the proof of SEN for €’ is smaller that the one for e, by induction
hypothesis; w is SEN. Similarly if the reduction is in (.

It may also happen that (e) or e @ [is a redex and that this redex is the
reduced one.

— The more delicate case is when e has the form Az.u while [has the form
[v :: I]. In this case, the type of A has the form B — C, the A-term v is
typable by B and w denotes (u[z := v] I'). Since B is smaller than A, by
induction hypothesis, the typability of (v {/) implies that it is SEN whatever
[SEN. Tt is then possible to use lemma 3 in order to infer that u[z := v]
is SEN. But this latter is typable by C' which is also smaller than A. By
induction hypothesis, again, (u[z := v] I’) is SEN.

—If e is (x!') then w denotes (z (I' @ [)). But (x) R U, therefore, by
induction hypothesis, (I’ @ /) is SEN. By lemma 2, w is SEN.

— If e is Az.u and [denotes [] then w is e which, by hypothesis, is SEN.

— If e is [] then w denotes [which is directly SEN.

— If e is [v :: I'] then w denotes [v = (I" @ [)]. But [v :: l'] L 1/ therefore, by
induction hypothesis, I’ @ [is SEN. As for v, it is also SEN by induction
hypothesis. Then, by lemma 2, w is SEN.

Thus, whatever reduction of (e) or e @ [we consider, we get a SEN A
expression. This means that (e {) (if e is a A-term) or e @ [(if e is an arguments

list) is SEN.
Proposition5. Typable M-expressions are SEN.

Proof. Let e be a typable A-expression. The proof works by induction on e. The
cases Av, (p{) and (v :: 1) come directly from the lemma 2. The cases (u !) and
({ @'} come from the lemma 4. As for the cases v[x := u] and {[x := u], they
come from the lemma 3 applied to the lemma 4.

The strong E-normalisability directly implies the strong normalisability.
Corollary 6. Simply-typed \-expressions are strongly normalizable.

Remarks: 1) A similar proof has been done by Dragalin [3] for the system of
reduction rules given in the seminal paper of Gentzen on the cut-elimination
theorem for LK. The difference is that Dragalin’s proof does not work by struc-
tural induction on the proof of strong E-normalisability, but rather by induction
on the length of these proofs. Our proof has been done independently, extending
a proof from Coquand that the elimination of cuts according to an outermost
strategy of reduction terminates.

Note that this kind of strong cut-elimination proof applies also to non-
confluent systems of reduction rules (it is the case of Gentzen’s system of re-
duction rules) but not to system including rules affecting the order of cuts. This
i1s contrast with the cut-elimination procedures that Zucker or Pottinger and
have considered.

2) An interesting result would be to prove the strong normalisation of the
simply-typed A-calculus with the additional reduction rule (Az.t u)[y = v] =
((Azt)[y := v] uly := v]). As a corollary of this result, we would get the strong
normalisation of the usual simply-typed A-calculus and even the strong normal-
isation for the simply-typed A-calculus with an explicit “let _in ”-like substitu-
tion operator (see for instance Lescanne [8]).

Conclusion

The isomorphism known as the Curry-Howard isomorphism expresses a struc-
tural correspondence between Hilbert-like axiomatic systems and combinatory
logic and between natural deduction and A-calculus. The isomorphism between
LJT and the A-calculus can be seen as the extension of this correspondence into
the framework of sequent calculi and this shows that sequent calculus is no less
related to functional features than natural deduction.

Among the different forms of sequent calculi, the calculus LJT has clearly
a special place. Since the Modus Ponens rule of intuitionistic natural deduction
can be split into a head-cut rule and an implication left introduction rule, LJT

can even be seen as a strict refinement of natural deduction. Similarly the -
calculus can be seen as a strict refinement of the usual A-calculus, but, in order
to make more precise this embedding relation, 1t would be necessary to extend
the strong normalisation of the simply-typed A-calculus by considering the extra
reduction rule (.t u)[y := v] = ((\z.t)[y := v] uly :=v]).

Acknowledgements

Simplifications in the proof of strong normalisation are due to Thierry Coquand.
I thank also the Paris 7 computer science logic group, Phil Wadler and Viviana
Bono for echoes on this work.

References

1.

2.

10.

11.

12.

13.

14.

V. Breazu Tanen, D. Kesner, L. Puel: “A typed pattern calculus”, IFEF Symposium
on Logic in Computer Science, Montréal, Canada, June 1993, pp 262-274.

V. Danos, J-B. Joinet, H. Schellinx: “LKQ and LKT: Sequent calculi for second
order logic based upon dual linear decompositions of classical implication”, in
Proceedings of the Workshop on Linear Logic, Cornell, edited by J-Y. Girard, Y.
Lafont, L.. Régnier, 1993.

A. G. Dragalin: Mathematical Intuitionism: Introduction to Proof Theory, Trans-
lations of mathematical monographs, Vol 67, Providence, R.I.: American Mathe-
matical Society, 1988.

. J. Gallier: “Constructive logics, part I: A tutorial on proof systems and typed

A-calculi”, Theoretical Computer Science, Vol 110, 1993, pp 249-339.

. J.-Y. Girard: “A new constructive logic: classical logic”, Mathematical Structures

i Computer Science, Vol 1, 1991, pp 255-296.

. J-Y. Girard: “On the Unity of Logic”, Annals of Pure and Applied Logic, Vol 59,

1993, pp 201-217.
G. Huet: “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”, Journal of the Association for Computing Machinery, Vol 27,
1980, pp 797-821.

. 7. Benaissa, D. Briaud, P. Lescanne, J. Rouyer-Degli, “Av, a calculus of explicit

substitutions which preserves strong normalisation”, submitted to Journal of Func-
tional Programming, 1995.

G. Mints: “Normal forms for sequent derivations”, Private communication, 1994.
G. Pottinger: “Normalization as a homomorphic image of cut-elimination”, Annals
of mathematical logic), Vol 12, 1977, pp 323-357.

D. Prawitz: Natural Deduction, a Proof- Theoretical Study, Almquist and Wiksell,
Stockholm, 1965, pp 90-91

W. A. Howard, “The Formulae-as-Types Notion of Constructions”, in J.P. Seldin
and J.R. Hindley Eds, To H.B. Curry: Fssays on Combinatory Logic, Lambda
Calculus and Formalism, Academic Press, 1980 (unpublished manuscript of 1969).
P. Wadler: “A Curry-Howard isomorphism for sequent calculus”, Private commu-
nication, 1993.

J. 1. Zucker: “Correspondence between cut-elimination and normalization, part |
and I1”, Annals of mathematical logic, Vol 7, 1974, pp 1-156.

This article was processed using the INTpX macro package with LLNCS style

