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Abstract: On-chip communications are a key concern for high end designs. Since
latency issues cannot be avoided in deep-submicron technologies, design methodolo-
gies need to cope with it. In such a case, precise FIFO sizingsare of high interest, to
find the right trade-off in between area, power and throughput. This paper provides
means to sizeoptimallyFIFOs while reaching maximum achievable throughput. We
apply our algorithms to Latency-Insensitive Designs. Suchalgorithms can also be used
to size FIFOs in other application fields, as for instance Networks-on-Chips. We also
revisit theequalizationprocess, which introduces as much latencies as possible in the
system while preserving global system throughput. This algorithm point out where it is
possible to introduce more stage of pipelines while ensuring the maximum throughput
of the system. It allows for instance to postpone execution of IP(s) to limit dynamic
power peak. We provide a modified algorithm that globally minimizes the number of
such introduced latencies.

Key-words: Dimensionnement de FIFO, dimensionnement de buffer, débit, Latency-
Insensitive Design, Marked Graphs



Débit et dimensionnement de FIFO: une application au
Latency-Insensitive Design

Résuḿe : Les communications sur puce sont une limitation importantedans le cadre
de design sur puce à grandes performances. Puisque les problèmes de latences ne peu-
vent être évités dans les technologies de gravure sub-microniques, les méthodologies
de design doivent les prendre en compte dès la conception. Dans un tel cadre, le di-
mensionnement précis des FIFOs est très important, afin detrouver le bon compromis
entre la surface occupée, la puissance consommée et le débit.

Ce rapport de recherche introduit comment dimensionneroptimalementdes FIFOs
tout en atteignant le débit maximum obtensible. Nous appliquons nos algorithmes au
cas du Latency-Insensitive Design. Ces algorithmes peuvent être aussi utilisés dans
le cadre de Networks-on-Chips. Nous revisitons aussi le processusd’égalisationqui
introduit autant de latences que possible dans le système tout en préservant le débit
global. Cet algorithme détermine quels sont les endroits où l’on peut rajouter des
étages de pipeline tout en assurant les contraintes de débit. Ceci permet par exemple
de retarder l’exécution de certains composants afin de limiter les pics de puissance
dynamique. Nous proposons une version modifiée de cet algorithme permettant de
minimiser globalement le nombre de latences introduites.

Mots-clés : FIFO sizing, Buffer sizing, Throughput, Latency-Insensitive Design,
Marked Graphs



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 3

1 Introduction

On-chip interconnect is one of the main bottlenecks for high-perfor-mance designs:
required bandwidth is growing far away than what standard busses can support. More-
over, interconnect delays exceed the mean clock rate of eachIP blocks, and will con-
tinue to grow in the future. FIFOs and flow-control (also called back-pressure) are
needed for high performance ASICs, multi-clock designs andNetworks-on-Chips.

Determining FIFO sizes is a key concern in order to maximize design throughput,
and to minimize area footprint while maintaining acceptable power and temperature
requirements.

This paper describes how we can determineoptimalFIFO sizes in case of single
clock IPs, interconnected together with fixed integer latencies. Optimal in our case
means to achieve the maximum throughput of the system, whileminimizing the sum
of FIFO sizes, and take into account the flow-control inducedby FIFOs (distributed or
atomic ones). We show an application of our results to the specific case of Latency-
Insensitive Design. Our results may also apply to differentcases, and especially on
Networks-on-Chips.

In next section, we briefly describe Latency-Insensitive Design, which is a spe-
cific case of synchronous design with non-uniform latencies, re-synchronized through
distributed FIFOs (calledrelay stations) andshell wrappers.

Then, we establish the link that exists between Latency-Insensitive Design and
Marked Graphs with finite capacities. We briefly recall some useful results on static
scheduling of Marked Graphs. We introduce an algorithm to compute minimum FI-
FOs sizes while achieving maximum throughput, and few variants for different set of
constraints.

After, we recall theequalizationprocess, which is an algorithm able to push as
much as possible latencies on a given design while maintaining its maximum through-
put; that is to say, to point out where data flows can be slowed down without affecting
the global throughput. This provides hints for re-pipelining a design. We present a
revised equalization, which is able tominimizeglobally the number of such introduced
latencies: showing opportunities of re-pipelining givingthe smallest area footprint (and
still maintain original throughput).

Finally, we discuss results, experiments and implementations.

2 Latency-Insensitive Design

This section introduces briefly the Latency-Insensitive Design (also known as Latency-
Insensitive Systems, Latency-Insensitive Protocols or Synchronous Elastic Flow).

Latency-Insensitive Design (LID) [5] allows to split apartsynchronous module
functionalities and their communication constraints. It ensures that communication
latencies will not interfere with necessary pre-conditions of the synchronous modules.
LID is a composition ofpatient processes: a synchronous process where its function-
ality only depends on signal values, but not on their reception times. Composition of
patient processes is itself patient, as shown in Carloni’s seminal paper [6]. Since most
of IPs do not match this requirement, LID has two kind of basicblocks (cf. Figure 1).

A shellwraps each computation block ; the latter is namedpearl. Shell function is
two-fold: 1) inputs synchronization, the pearl is executedas soon as all input data are
present; and 2) outputs propagation, computation results are emitted only if downward
receivers are able to store them, in order to avoid over-writings and data losses.

RR n° 6919



4 Boucaron & Coadou & de Simone

Figure 1: Example of latency-insensitive system.

Signals cannot go through long wires within a single clock cycle in practice. Such
long wires are split up in shorter ones usingrelay stations; they are patient processes,
ensuring data storage from a clock cycle to the next one. Longwires are segmented
in a such way that each relay station is only “distant” from its upward emitter and
downward receiver of less than a clock cycle. In order to avoid throughput shrinking,
the minimum capacity of a relay station is supposed to be two [6].

Finally, LID relies on two hypotheses: pearls can be stalledwithin one clock cycle
and all latencies are integers.

The design is a composition of modules, communicating through point-to-point
channels. This modules are wrapped by shells, used as interfaces between relay sta-
tions. Neither blocks placements nor communication latencies are knowna priori; they
have to be estimated and refined during placement and routing. Channels are iteratively
split and relay stations inserted until it reaches a fixed point. Carloniet al. detail this
methodology in [5].

Data flows can be controlled in two ways:

• With dynamic scheduling [4, 5, 8, 11] using flow-control mechanism (called
back-pressure): when a component cannot handle more data, it sustains astop
signal on the upward channel till the register is freed. Thissolution is flexible
enough to prevent data losses, even if a pearl unexpectedly stall. A drawback of
the dynamic protocol is that it precisely needs control signals. Such overhead,
especially wiring, may be expensive to place and route in an already complex
design.

• An alternative is to statically schedule pearls [4, 9]. Execution instants can be
computed at compile time, and each component knows exactly on its own when
it will receive a new data. But it can also take a lot of siliconarea to implement
such static scheduled pearls: big shift registers may be required, depending on
the schedule sequence to store.

3 Latency-Insensitive Design as Marked Graphs

In the sequel, LID will be modelled as Marked Graphs. We first recall in this section
the main definitions and results on Marked Graphs. Then, we show with examples how
bounded capacities may shrink the graph throughput.

INRIA



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 5

3.1 Marked Graphs with Finite Capacities

Marked Graphs(also calledEvent Graphs) are a quite useful subset of Petri nets, in-
troduced and first studied in [10, 13]. They were latertimed, introducing latencies, in
[15].

Definition 1 (Timed marked graph).
A Timed Marked Graph(TMG) is a structure

〈

N ,P ,M0,L
〉

, such that:

• N is a finite set ofvertices, or computation nodes.

• P ⊂N ×N is a finite set ofarcs, or places.

• M0 : P → N is the function that assigns an initial marking (quantity ofdata
abstracted astokens) to each place1.

• L : P → N is a function that assigns a weight to each place. In our case,this
weight is the latency for a token to go from the input to the output node.

For each placep, we note•p (resp. p•) its tail (resp. its head), such that•p =
{n∈N /∃n′ ∈N , p= (n,n′)} (resp.p•= {n∈N /∃n′ ∈N , p= (n′,n)}). TMG are
bipartite directed graphs, where∀ p∈ P , |•p| = |p•| = 1. In other words, places have
a single producer and a single consumer, thus leading to an absence ofconflicts. This
also means that a TMG isconfluent: for all sets of activated nodes, the firing of any of
this nodes does not remove another node from this subset thanitself. This means that
all firing rules define a partial execution order compatible with theas soon as possible
(ASAP) firing rule: a node is fired as soon as it is enabled.

We recall some essential results on Marked Graphs given by Commoneret alii.
Proofs are deferred to [10].

Lemma 1 (Token count).
The token count of a directed circuit does not change by vertex firing.

Theorem 2(Liveness).
A marking is live if and only if the token count of every circuit is positive.

Theorem 3(Firings).
If there exists a firing sequence for a graph whose underlyingundirected graph is

connected, and this sequence leads back to the initial marking, then all nodes have
been fired an equal number of times.

Real-life systems have bounded memory capacities. In orderto model this con-
straints, placecapacitiesmay be added to Definition 1. Then, we define the function
K : P →N

∗, assigning to each place the maximum number of tokens that itcan contain
at a time.

TMG with capacities can be transposed in an equivalent without capacities, intro-
ducingcomplementaryplaces [1, 2]. Ifp1 = (a,b) is a place with a capacityK (p1),
its equivalent without capacityp2 = (a,b) and the corresponding complementary place
p2 = (b,a) have initial markings such thatM0 (p2) = M0 (p1), andM0 (p2) = K (p1)−
M0 (p1), as shown in Figure 2. In the sequel, for any set of placesP , we will noteP
the set of its complementary places.

This means that, for instance, if it exists a circuit in a capacity-boundedTMG whose
initial marking saturates its place capacities(∀ p, M0 (p) = K (p)), then it is equivalent

1We recall thatN = {0,1,2, . . . } andN
∗ = N\{0}.

RR n° 6919



6 Boucaron & Coadou & de Simone

Figure 2: A Marked Graph whose places capacities are 2-bounded (left) and its equiv-
alent without capacities (right).

one to a complementary circuit with a void initial marking, thus violating Theorem 2.
In other words, an overflow (orlivelock) in a TMG with capacities, is equivalent to a
starvation (ordeadlock) in its equivalent one without capacities.

It is worth noticing that the property of acyclicity loses its sense when talking about
a graph with finite capacities: it behaves the same way as its strongly connected equiv-
alent, where complementary places introduce circuits.

3.2 Example-Based Throughput Limitations

A LID can be modeled as a TMG: a shell with its pearl is abstracted as a computation
node, and a relay station with its two buffers corresponds toa place of capacity two.

First, we do not take into account place capacities; we consider that places are un-
bounded channels and recall briefly known results on scheduling of Marked Graphs.
Then, we show on two simple examples why finite capacities canslow down through-
put of cyclic and acyclic systems.

3.2.1 Infinite-Capacity Places

A lot of interesting scheduling results exists on top of Marked Graphs with unbounded
places and ASAP firing rule [2, 16].

Definition 2 (Rate).
We denote therateof a circuit the ratio: #tokens

#latencies

Theorem 4(Throughput).
Thethroughputof a Marked Graph is its maximum execution speed. The throughput of
a strongly connected graph equals the minimum rate among itscircuits. The throughput
of an acyclic graph is1.

Proof. A Marked Graph cannot run faster than such throughput [16]. [2] has shown
that Marked Graph executions can reach such throughput.

Definition 3 (Critical circuit).
A circuit is saidcritical if its rate is equal to the graph throughput.

3.2.2 Finite-Capacity Places

Finite capacities may slow down the graph throughput, compared to a topologically
equivalent graph with unbounded buffers. We give an examplein Figure 3 of a 2-
bounded graph. Plain places belong to the graph with finite capacities, while dashed

INRIA



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 7

Figure 3: Strongly connected Marked Graph with unitary latencies, whose throughput
is limited to 3/4 due to 2-bounded places.

Figure 4: Acyclic 2-bounded graph whose capacities shrink the throughput down to
3/4.

places are complementary places. We just show two of them (dashed ones), the most
significant ones.

We suppose null places latencies. Initially, the graph has two circuits: the left
circuit has a throughput of 5/5 = 1, and the right one has a throughput of 4/5.

However, if we construct its equivalent graph without capacity, we have to intro-
duce complementary places, such that their initial markingequals the capacities minus
the markings of original places: this leads to introduce a circuit whose throughput
equals 3/4, slowing down the system because of a lack of capacity.

In a graph with infinite capacities, each lock or slowdown is due to (temporary)
starvation: a node produces data as long as it receives inputs. It stops only when await-
ing tokens to process. Then, as soon as we introduce finite capacities, we introduce new
constraints in addition to the previous ones: nodes are not only awaiting inputs, they
also need available storage for their outputs. Dynamic LID has back-pressure signals
to handle this problem; they have to be modeled while abstracting a LID into a Marked
Graph.

At first sight, it seems that the throughput of a directed acyclic graph (DAG) is 1, as
stated in [7]. However, the introduction of complementary places creates cycles. Then,
a DAG may have a throughput lower than 1, according to its initial marking, as illus-

RR n° 6919



8 Boucaron & Coadou & de Simone

trated in Figure 4. In this example, branches do not have a balanced marking, causing
a bubblein the left branch to get back in the right one. When we consider the com-
plementedgraph, there is a circuit with a throughput 3/4: the one passing through the
back-pressuredashed path in the right branch, getting back into the left branch. Only
trees with capacities of two or more escape this rule, since introducing complementary
arcs do not create more simple circuits than an arc and its complementary.

In both [7] and [9], the authors use themaximum cycle meanproblem [2, 12] to
compute the throughput of LID systems. Authors in [3] use costly circuits enumera-
tion to obtain its throughput. However, none of these papersdiscuss the throughput
slowdown due to lack of capacity. In [7], a DAG is supposed to have a throughput
of 1, which is false with our definition of throughput as we shown previously on an
instance. We need to clarify what is the throughput of a LID system. If we assume
that the throughput is computed without taking into accountthe back-pressure, then
the previous statement about the DAG is true. However, sinceLID has relay-stations
with bounded capacity of 2, such definition of throughput is an overestimationof what
will be the real and effective throughput of system. Lack of place capacities (or relay-
stations in LID case) may cause potential slowdown, as we have explained previously.

4 Capacities and throughputs

As said above, the maximum achievable throughput is boundedby the ratio #tokens
#latencies,

but may be slower because of lack of place capacities. In thissection, we detail such
maximum throughput taking care of place capacities. Next, we provide our algorithm
to compute for each place its capacity, in order to achieve maximum throughput while
minimizing the global number of capacities introduced.

4.1 Maximum Throughput with Given Capacities

Definition 4 introduces necessary notations. Theorem 5 allows to compute the exact
system throughput, with respect to its capacities.

Definition 4 (Complemented graph).
If G =

〈

N ,P ,M0,L,K
〉

is a connected timed marked graph with finite capacities, the
complemented graphG ′ =

〈

N ′,P ′,M′
0,L

′
〉

is its equivalent with complementary arcs
and no capacities such that:

N ′ = N

P ′ = P ∪P

∀ p∈ P , M′
0 (p) = M0 (p)

and M′
0 (p) = K (p)−M0 (p)

∀ p∈ P , L′ (p) = L′ (p) = L(p)

In order to shorten notations, we write in the sequelL(C ) or L′ (C ) of a circuitC
(resp. M0 (C ) or M′

0 (C )) the sum of its place latencies (resp. initial markings). For
instance,M0 (C ) = ∑p∈CM0 (p).

Theorem 5(Maximum throughput).
LetG =

〈

N ,P ,M0,L,K
〉

be a connected timed marked graph with finite capacities,

INRIA



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 9

andG ′ =
〈

N ′,P ′,M′
0,L

′
〉

its complemented graph. The maximum reachable through-
putθ(G) ofG is:

θ(G) = min
C∈G ′

(

M′
0 (C )

|C |+L′ (C )
,1

)

Proof. The rateθ(n) of a noden is usually defined by:

θ(n) = lim
i→+∞

i
Tn (i)

whereTn (i) is the elapsed time up to theith firing of n. For each circuitC , each node
cannot be fired more than once per instant; that is to sayi ≤ Tn (i). So the global
throughput is at most 1, and we ignore the case whereM′

0 (C ) > |C |+L′ (C ).
We now considerC with M′

0 (C )≤ |C |+L′ (C ). A Marked Graph can be ultimately
periodically scheduled with the ASAP firing rule. And as mentioned earlier, all firing
rules are compatible with the ASAP one. Then, we can restrictthe study on a single
period. The minimum time for a token to go roundC is |C |+ L′ (C ). This sum of all
nodes and places latencies inC is the period length. Over a period, so that each token
go round the circuit, each node is firedM′

0 (C ) times (cf. Lemma 1 and Theorem 3).
To summarize, the rate of a circuitC is:

θ(C ) = min

(

M′
0 (C )

|C |+L′ (C )
,1

)

SinceG ′ is the complemented equivalent ofG andG is a (possibly acyclic) connected
graph,G ′ is strongly connected because of complementary places, andθ(G) = θ(G ′).
The throughput of a strongly connected graph equals the rateof its slowest circuit (cf.
Theorem 4).

4.2 Required Capacities for Optimal Throughput

Additional capacities may be required in order to reach the maximum throughput.
Number and positions of such capacities can be computed withthe following Integer
Linear Program (ILP):

min ∑
p∈P

K (p)

with for all circuit C in G ′ such thatC contains at least one complementary place:

M′
0 (C ) .

(

|Cc|+L′ (Cc)
)

−M′
0(Cc) .

(

|C |+L′ (C )
)

≥ 0

and for allp in P :

K (p) ≥ 2

whereCc is the “latency-critical” circuit (without taking capacities into account).M′
0

andL′ are defined in Theorem 5.
As stated previously, the maximal throughput of the graph isthe throughput com-

puted on its complemented equivalent. If there is a slowdownin the system, it is
caused by a circuit passing through at least one complementary place, that is to say a
place where back-pressure shrinks the effective throughput. Intuitively, the ILP states

RR n° 6919



10 Boucaron & Coadou & de Simone

that we want to minimize global capacity count for FIFOs under the following set of
constraints: for each circuitC having at least one complementary place, we can add
further capacity until we reach the maximal throughput of the graph. We setK (p)
greater or equal to two, so that general LIP properties apply[6].

Previous inequations can be slightly modified if we want to minimize the number
of capacities to reach (if possible) a specified throughputθ. Then,M′

0 (Cc) and|Cc|+
L′ (Cc) can be replaced byM andL respectively, such thatθ = M/L.

Such ILP formulation is also interesting to introduce constraints on capacities.
Because of blocks placement and routing, it is not always possible to add more ca-
pacities to a single place at a given location. One can add constraints of the form
K (p) ≤ Kmax(p), for example.

4.3 Algorithm

Now, we provide the algorithm to compute minimum capacitiesfor each place in order
to achieve maximum throughput of the system.

1. Compute maximum throughput on thenot-complemented
graph using for instance Bellman-Ford algorithm (or Yen’s algorithm [18] since
we do not have any negative circuit).

2. Build complementedgraph.

3. Enumerate all directed circuits having at least one complementary arc in thecom-
plementedgraph. We use a modification of Johnson’s algorithm [14] thatsaves
some memory: to detect circuits this algorithm uses a cleverdepth-first search
algorithm. Once a circuit is found, we check the previous structural criterion.
We can optimize this further, in case of LID, we remove simplecircuits com-
posed of an arc and its complementary one. LID assumes that there is at most
one initial token per place, thus such circuits have a throughput of one. The
modification of Johnson’s algorithm is straightforward, and remove at least

∣

∣N
∣

∣

circuits from potential
∣

∣N
∣

∣! circuits.

4. Build and solve previous formulation of the ILP.

The LID optimization is due to the fact that places will have to be expanded to
match LID requirements. Relay stations are separated by wire latencies of at most
one, so places with latencies of two or more will have to be expanded [15]. A general
example of expansion is given in Figure 5.

Thus, a placep of latencyL(p) will be synthesized as a row ofL(p) relay stations,
with a total capacity of 2L(p), plus the inner registers of wrappers (since node latencies
are unitary). A cycleC composed of a placep and its complementaryp will have a
throughput of:

θ(C ) =
M′

0 (C )

|C |+L′ (C )
=

M0 (p)+K (p)−M0 (p)

2+2L(p)

=
2+2L(p)

2+2L(p)
= 1

That cannot shrink the global throughput which is at most equal to one. Thus, we can
remove safely all such simple circuits.

INRIA



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 11

cL(c) = n

aL(a) = 0

bL(b) = m

a

c
n nodes
n−1 places

b
m−1 nodes
m places

Figure 5: Latency expansion.

5 Equalization

In this section, we recall theequalization processintroduced in [3], and we present a
revised one in order to minimize the number of added places. The equalization process
is an algorithm that adds as much as possible places in the graph while maintaining the
throughput of the system. The addition of such places gives an hint where there is a
positive slack, so that the designer can add more pipeline stage(s) while ensuring the
same performance of the whole system. Also, such positive slack can be used to post-
pone an execution, in order tosmoothdynamic power and flatten temperaturehot-spots
that are critical for leakage power (leakage power is exponential with temperature).

5.1 Standard Equalization

The equalization process is built using ILP. The algorithm works as follows:

• Compute maximum throughput of thecomplementedgraph.

• Enumerate all circuits (using in our case Johnson’s algorithm [14]): circuits are
used to build constraints between places that can be shared by two or more cir-
cuits.

• Build and solve the ILP.

The ILP formulation is of the form:

max ∑
p∈P

a(p)

with the constraints that for each circuitC in graphG :

(|Cc|+L(Cc)) .M0 (C )−M0(Cc) .

(

|C |+L(C )+ ∑
p∈C

a(p)

)

≥ 0

RR n° 6919



12 Boucaron & Coadou & de Simone

and the following bounds for each placep:

a(p) ≥ 0

wherea(p) are latencies added to each placep.
Intuitively, the ILP states that we want to maximize the number of introduced la-

tencies on each place (arc) while ensuring for each circuit that its throughput will be
at least as fast as the throughput of the system. Dependency relations exist between
circuits throughsharedplaces (arcs) that is why we need to enumerate all circuits.

We use ILP for its versatility to introduce new constraints to suit a given need:
for instance, a designer run the equalization process and there is a set of arcs he/she
does not want any additional latency, such modification is done quickly on the ILP
formulation.

5.2 Revised Equalization

This revised equalization is a variant of standard equalization that minimizes added
latencies, using arcs shared amongst different circuits. The modification is straightfor-
ward; it consists in introducing a weight for each arc in the previous formula that we
want to maximize.

The function to maximize is:

max ∑
p∈P

w(p).a(p)

wherew(p), the weight associated to the arc, is simply the number of occurrences of
circuits it belongs to. The set of constraints stays unchanged.

Correctness criterion: both standard and revised equalization have the same opti-
mum value. The underlying intuition is has follows:

• Let us assume that there is no circuit sharing the same place/arc. Then the weight
equals one, we have the same sum to maximize.

• Now, let us assume that there is a set of circuitsx sharing a place/arc, and we can
add 1 latencies on each circuits. In the standard equalization, we attempt to put
at different locations in order to maximize the gain, so we will add x latencies.
However, in the revised equalization, if it is possible to add a latency to this
shared place/arc, then we will add it. In both cases, we will have the same gain
x.

6 Discussion

Johnson’s algorithm One of the building block is Johnson’s algorithm, enumerating
all elementary circuits. This algorithm and different variants are used for all of our
algorithms. This algorithm has been implemented using Boost Graph Library [17] and
C++. As detailed in Johnson’s seminal paper [14], worst casegraphs for enumerating
all circuits are complete graphs, in such case the number of circuits is huge, up to

∣

∣N
∣

∣!.
But, in real-life such complete graphs are not usual. In Table 1, we provide experiments
for complete graphs, run on an Intel Xeon 3Ghz, 8GB RAM, Linuxx64, gcc4.3.

Memory is of course an issue in a such case. We have implemented a variant of the
algorithm just to enumerate circuits on-the-fly. We have been able to enumerate around
1015 circuits; run time of such experiment is about 5 to 6 days. It is also possible to
parallelize the algorithm, using a parallel depth-first search.

INRIA



Throughput and FIFO Sizing: an Application to Latency-Insensitive Design 13

Table 1: Enumerating circuits of complete graphs
# circuits # nodes Time (s) Memory (MB)

125673 9 0.170 20
1112083 10 1.730 190
10976184 11 17.0 1600

Table 2: Number of added latencies by standard equalizationvs revised one
Examples Standard Revised %

(latencies) (latencies)

Simple DAG 9 7 -22
No Share 14 14 0
Shared 14 7 -50
Test4 45 27 -40

Throughput w.r.t. capacities We have structurally characterized the capacity bottle-
neck, for the maximal theoretical throughput, as circuits containing at least one comple-
mentary place. We use this structural hint to implement an efficient variant of Johnson’s
algorithm that enumerates only circuits having this previous property. As we said, the
number of circuits can be huge, up to

∣

∣N
∣

∣!; we reduce memory requirements of
∣

∣N
∣

∣

circuits in such a case. This helps the ILP solver (in our caselp solve) to ramp up a bit
more. Notice that we used a notation of the form|C |+ L(C ) throughout the paper to
mention latencies. This is due to the fact that we have supposed that the execution of a
pearl takes one clock cycle, in order to match early LID implementations. This can be
modified if one suppose combinatorial pearls (null firing latency), or integer latencies
as well.

Equalization Both equalization algorithms have been implemented using previous
Johnson’s algorithm implementation and the ILP engine lpsolve. Table 2 shows re-
sults of both algorithms. The worst case for the revised algorithm is when there is no
circuits share places. Then both standard and revised algorithm have the same solution.
Figure 6 depictsTest4. As shown in the right strongly connected component, we havea
hierarchy of circuits with shared paths. In this case, the revised equalization algorithm
is much more efficient.

7 Conclusion

This papers introduces an algorithm to computeoptimalFIFO sizes while maintaining
maximum achievable system throughput, in case of single clock synchronous systems,
interconnected with fixed integer latencies.

We establish the link between such synchronous systems and Marked Graphs (MG)
with bounded-capacity places. After, we briefly recall results about throughput of MGs
with unbounded capacity places. Then, we recall a simple structural transformation to
convert a MG with bounded capacities into a MG with unboundedcapacities: for each
place, it introduces a newcomplementaryplace in reverse direction, with an appropriate
marking. This creates a circuit between the initial place and thecomplementaryone
that ensures the capacity constraint of the initial place.
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14 Boucaron & Coadou & de Simone

Figure 6: Screenshot of example Test4, designed with our tool.

This graph transformation enables a simple structural criterion to find out circuits
causing throughput degradation, because of bounded FIFO capacities: circuits with at
least one complementary place. We provide a variant of Johnson’s algorithm using this
criterion to enumerate only such circuits. After, using previous algorithm, we provide
an algorithm using Integer Linear Programming to compute the optimalsize of each
FIFO. Hence, we obtain the maximal throughput while minimizing the sum of FIFOs
sizes. We also provide an additional simple structural criterion in case of Latency In-
sensitive Design (a specific case of MG with bounded capacityplaces). This allows to
remove more unneeded circuits: we describe an algorithm using this additional crite-
rion.

Next, we briefly recall theequalizationprocess. This algorithm inserts in the sys-
tem as much latency as possible, while maintaining its maximum achievable through-
put. This provides hints where a designer can add further pipeline stages without af-
fecting the system throughput. It also enables to defer execution of some parts of the
system, in order to minimize dynamic power peaks. We providea revised equaliza-
tion process that globally minimizes the sum of such latencies. It showsbestlocations
where to re-pipeline the design with minimum impact on area.

We apply our results on Latency-Insensitive Design (LID), but such results are not
limited to LID and can be used in Network-on-Chips, and otherfields.
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[1] Charles André. Use of the behaviour equivalence in place-transition net analysis.
In Selected Papers from the First and the Second European Workshop on Appli-
cation and Theory of Petri Nets, pages 241–250, London, UK, 1982. Springer-
Verlag.

[2] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat.Syn-
chronization and Linearity. John Wiley & Sons Ltd, Chichester, West Sussex,
UK, 1992.

[3] Julien Boucaron, Jean-Vivien Millo, and Robert de Simone. Latency-insensitive
design and central repetitive scheduling. InProceedings of the 4th IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE’06), pages 175–183, Napa Valley, CA, USA, July 2006. IEEE Press.

[4] Julien Boucaron, Jean-Vivien Millo, and Robert de Simone. Formal methods
for scheduling of latency-insensitive designs.EURASIP Journal on Embedded
Systems, 2007(1), 2007.

[5] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L.
Sangiovanni-Vincentelli. A methodology for correct-by-construction latency-
insensitive design. InProceedings of the International Conference on Computer-
Aided Design (ICCAD’99), pages 309–315, Piscataway, NJ, USA, November
1999. IEEE.

[6] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design.IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 20(9):1059–1076, September 2001.

[7] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Performance analysis
and optimization of latency insensitive systems. InProceedings of the 37th Con-
ference on Design Automation (DAC’00), pages 361–367, New York, NY, USA,
2000. ACM.

[8] Mario R. Casu and Luca Macchiarulo. A detailed implementation of latency
insensitive protocols. InProceedings of the 1st Workshop on Globally Asyn-
chronous, Locally Synchronous Design (FMGALS’03), pages 94–103, September
2003.

RR n° 6919



16 Boucaron & Coadou & de Simone

[9] Mario R. Casu and Luca Macchiarulo. A new approach to latency insensi-
tive design. Proceedings of the 41st Annual Conference on Design Automation
(DAC’04), pages 576–581, 2004.

[10] Frederic Commoner, Anatol W. Holt, Shimon Even, and Amir Pnueli. Marked
directed graph.Journal of Computer and System Sciences, 5:511–523, October
1971.

[11] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. Synthesis of syn-
chronous elastic architectures. InProceedings of the 43rd Annual Conference
on Design Automation (DAC’06), pages 657–662, New York, NY, USA, 2006.
ACM.

[12] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle
algorithms for system-performance analysis.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17:889–899, 1998.

[13] Hartmann J. Genrich.Einfache Nicht-Sequentielle Prozesse. PhD thesis, Rheinis-
che Friedrich-Wilhelms-Universität Bonn, 1970.

[14] Donald B. Johnson. Finding all the elementary circuitsof a directed graph.SIAM
Journal on Computing, 4(1):77–84, 1975.

[15] Chander Ramchandani.Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets. PhD thesis, Massachusetts Institute of Technology, Dept.of Electrical
Engineering, 1973.

[16] Raymond Reiter. Scheduling parallel computations.Journal of the ACM,
15(4):590–599, 1968.

[17] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.The Boost Graph Li-
brary: User Guide and Reference Manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[18] Jin Y. Yen. An algorithm for finding shortest routes fromall source nodes to a
given destination in general network.Quart. Appl. Math., 27:526–530, 1970.

INRIA



Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


	Introduction
	Latency-Insensitive Design
	Latency-Insensitive Design as Marked Graphs
	Marked Graphs with Finite Capacities
	Example-Based Throughput Limitations
	Infinite-Capacity Places
	Finite-Capacity Places


	Capacities and throughputs
	Maximum Throughput with Given Capacities
	Required Capacities for Optimal Throughput
	Algorithm

	Equalization
	Standard Equalization
	Revised Equalization

	Discussion
	Conclusion

