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Abstract: Revisiting neural-field calculation maps in the discreteecave propose
algorithmic mechanisms allowing to choose a right set ohpeaters in order to both
(i) guaranty the stability of the calculation and (ii) tutetshape of the output map.

These results do not “prove” the existence of stable bumptisols, this being
already known and extensively verified numerically, bubwalto calculate algorithmi-
cally the related parameters.

The results apply to scalar and vectorial neural-fields #ilesving to bypass the
inherent limitations brought by mean frequency models dsmitake the laminar struc-
ture of the cortex or high-level representation of cort@maiputations into account.

We obtain an easy to implement procedure that guaranty theecgence of the
map onto a fixed point, even with large sampling steps. Furibee, we report how
rectification is the minimal required non-linearity to ointaisual neural-field behav-
iors. We also propose a way to control and tune these belsaffilbering, selection,
tracking, remanence) and optimize the convergence rate.

This applies to both non parametric profiles, i.e. adjustmgweight values di-
rectly, or to parametric profiles and thus adjusting themapeeters (e.g. Mexican-hat
profiles).

Beyond these algorithmic results, the idea of studying alesomputations as dis-
crete dynamical systems and not only the discretizationaafrainuous system is em-
phasized here.

The outcome is shared as an open-source plug-in moduleddatiaS (http://enas.gforge.inria.fr),
to be used in existing simulation software.
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Ajustement algorithmique des paranetres de champ
neuronaux

Résune : Le calcul de cartes de champ neuronaux est revisité darasldiscret et
un mécanisme algorithmique pour choisir 'ensemble dearpatres est proposé afin
de (i) guarantir la stabilité des calculs et (ii) ajustefdeme de la carte de sortie.

Ces résultats ne prouvent pas I'existence des solutioftsiee de bulle, ceci ayant
déja été montré par ailleurs, mais permettent de éacle maniéere algorithmique les
parametres idoines.

Les résultats s’appliquent au cas scalaire et vectorgicgermettent d’aller au
dela des modéles qui ne prennent en compte que la frequiendécharge, et permet-
tent de prendre en compte la structure laminaire du cortadesueprésentations plus
abstraites des calculs corticaux.

Nous obtenons une procédure facile a implémenter, asecconvergence de la
carte vers un point fixe guarantie, au dela du schéma glassi’Euler, optimisant la
vitesse de convergence. Nous montrons aussi qu’'une neariia limitée a une rec-
tification suffit a simuler les comportements usuels desngsaneuronaux, tandis que
nous décrivons comment en ajuster les comportementsdgéltsélection, poursuite
et remanence.

Ceci s'applique a la fois aux mécanismes non-paramésgjustement des valeurs
des poids) et paramétriques (ajustement des paramaireprofil prédéfini).

Cela montre aussi I'intérét de travailler directementdes systemes discrets de
champs neuronaux plutdt que sur la discrétisation désyess continus.

Le résultat de ce travail est disponible sous la forme d'wadnte logiciel “open-
source”, dit EnaS (http://enas.gforge.inria.fr), aiséit comme “plug-in” dans les logi-
ciels de simulation existants.

Mots-clés : Champs neuronaux discrets, Méta-parameétres



Algorithmic adjustment of neural field parameters 3

1 Introduction

Using DNF and its extensions. The Dynamic Neural Field (DNF) theory is mainly
concerned with the functional modeling of neural structwdere information is con-
sidered to be encoded at the level of the population ratlaer & the level of single
neurons. Such models first appeared in the 50s, but the theally took off in the
70s with the works of Wilson and Cowan [27] and Amali [2]. Aetlevel of a single
neuron, the model that is used is a mean frequency modek Wiglelectrical activity
of a neuron is approximated by a single potential. Howevmnea also exists several
spiking neuron models that represent both a finer and mongraecmodel of a real
biological neuron. In the framework of the DNF, such moddlsvato bypass the
inherent limitations brought by mean frequency model$,[22} being taken into ac-
count via vectorial neural state [25]. Furthermore, nefieddls also allow to consider
high-level representation of cortical computatidng [24].

These models most generally use excitatory recurrenttecdlaconnections be-
tween the neurons as a function of the distance between thdnglabal inhibition
is used to ensure the uniqueness of the bubble of activityinvihe field [21]. They
exhibit so-called bump patterns, which have been obsentitbiprefrontal cortex and
are involved in working memory tasks ]11] or high-level cagm [23].

The dynamics of pattern formation in lateral-inhibitiorpéy neural fields with
global or local inhibition has been extensively studied inumber of works where
it has been demonstrated that these kinds of fields are abteatotain a localized
packet of neuronal activity that can, for example, repregencurrent state of an agent
in a continuous space or reflect some sensory input feednfietal [21]. A step fur-
ther, the linear response of neural fields to localized ispubject to finite propagation
speeds has been studiediinl[17]. The characteristic bata\dach fields is the forma-
tion of very localized packets of neural activity that tendépresent some consistent
information which is present at the level of the infufl[13].

However, the exact shape of these output bumps is quiteudiffiz predict since
it is a generally a non linear consequence of both the latenahectivity pattern and
the input pattern. Thus the question remains on how to cbtiteoshape, first in a
purely mechanical way (i.e. finding the proper mathematidsid), second in a more
biological plausible way. This second step, which is beythredscope of this paper,
requires to complete the first step, which is also going tovidesome description of
the space of interesting parameters.

The main computational properties (see elg), [21] for aexeydf such neural field
are:

-1- filtering of the output bump shape: increase versus decrease of sioee,
etc..

-2- selectiorof the output bump among several input bumps,

-3- trackingof a moving input bump at the output level,

-4- remanencef the output bump after the partial or total suppressiorefihput
bump.

We are going to consider filtering and selection behaviotkigcontribution and dis-
cuss the tracking and remanence mechanisms also.

The parameter adjustment problem. Here, we want to study which set of lateral
weights allow to achieve a specific function, and obtain omigue controlled bump
on the output. More precisely, the goal of this paper is tojpi®@algorithmic results to
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4 Cortex

this parameter adjustment problem. This contrasts witllim@st universal practice to
adjust empirically the parameters of neural field (even thats are unobtrusive about
it), although constructive results exist and should be used

In [L3], for instance, homogeneous stationary solutiomsifidependent of the spa-
tial variable) and bump stationary solutions (i.e. locatizareas of high activity) in
two-dimensional neural field models composed of excitatorgt inhibitory neurons
have been studied, in the continuous case, aftél [6, 9]igirmyan explicit solution in
terms of Bessel functions and Hankel transform. Basic ptagseof bounded neural
fields (well-posedness, stability of their solutions in timnogeneous or locally ho-
mogeneous case) have also been studied, accounting fal marglobal synchrony
among the cortical columns composing the fiéld [14]. Thesalte are based on the
compactness of the related operators yielding stabilisylte related to contracting
mappings.

These results however are not easy to implement in practaxdgs, because, in
order to obtain analytical results they consider formolagi(using e.g. Heaviside non-
linearity and/or unlimited precision assumptions) whichrebt correspond to numeri-
cal implementations. Furthermore, in the discrete casenaeobtain more interesting
results than simply approximating using “sméllresults obtained in the continuous
case. This means not simply consider the Euler approximafithe continuous equa-
tion but also consider more efficient discrete schemes. alsis means not derive
parameter adjustment algorithmic mechanisms based oxppations of continuous
solutions, but build on the discrete solution directly.

What is the paper about. In the next section we review the formalism usually con-
sidered for neural field implementation. We discuss theahof the output-state non
linear relation and the way bumps are defined. We also makeitxme link between
the continuous and discretized approaches.

In the first result section, we derive a sufficient conditiorgtiaranty the conver-
gence of the neural map towards a fixed point, given the pexposn-linearity, and
discuss its applications.

In the next result section, we introduce a linear frameworkiéfine the optimal
neural field weights given an input-output relation. We amsiate this mechanism for
parametrized weights and local bounded weights.

In the conclusion we briefly discuss the limits and applmagi of the methods
proposed here.

2 Methods

Defining a continuous map.

Let us consid&ra dynamicvectorialmapv : S" x R — R™ (e.g., for a 2D scalar
mapn = 2, m = 1) defined from:

Tv(x,t) = -Lv(x,t)+ fy W(x —y)a(y,t)dy + Gi(x),

a(x,t) = p(v(y,t)), 1)
v(x,0) = Gi(x),

INotations Scalar are written in italic, vectors are written with lawzase bold letters and matrices with
upper-case bold letters. The identity matrix is writlenFor a scalar functiorf() applied to a vecton,
v = f(u) meansvi, v; = f(u;).

INRIA



Algorithmic adjustment of neural field parameters 5

where atlocatiox and timet, v(x, t) represents the urstate(related to the membrane
potential in scalar models) ant(x,t) accounts for the unit output positivaetivity
(usually related to the firing rates in scalar models).

Here,i(x) models the input (related to a membrane current in scalaretapdit
is supposed constant in the sequel, unless explicitly pddi.e. when considering
tracking and remanence).

The spatial domain of the model is a hyper-sphgfethough the domain is as-
sumed to be large enough to neglect boundary conditions.exioat verifications are
going to validate this approximation.

Here, we do not consider only a scalar map but also a vectoaal in order to
take more complex neural models (e.3.1[22]) or severalcaitayer (seel[12] for an
illustration) or more complicated functional mechanisresg([[24] for a discussion)
into account.

For the input gain, we assume without loss of general® = I in the sequel
(i.e. considering th€&x i — i transform).

Similarly, for the diagonal matrif. > 0 (i.e. a positive matrix, thus with positive
diagonal elements) which accounts for the neural unit ledtkout loss of generality

(i.e. considering the — \/f_1 v transform), we assunie = I in the sequel.

The matrixL is diagonal, but in the vectorial case, the interactionaben layers,
i.e. between the componentsof are defined via the non-diagonal elements of the
W (d) matrices.

The map is parametrized by the recurrent connection weht©ne example are
radial “Mexican hat” connections (i.e. with exponentiati#atory/inhibitory connec-
tions) which writes in the scalar case:

Wyly) = Ay e~ YPloy _ A eI/t

parametrized by = (A4, A_,04,0_), accounting for the excitatory and inhibitory
gains and geometries, respectively. Other parametriarigss are also considered in
the present framework.

In any case, the goal is to tune the weigWsin order to control the map’s output.
This shall be done either by nonparametric profiles, i.es #djusting the weight values
W directly, or by parametric profiles and thus adjusting tipairameters.

Defining the output-state relation.

In this context, the output-state relation is modeled as iatpike non-linearity, as
illustrated in FiglL.

A 4

Sigmoid Heaviside Piece-linear Rectification

Figure 1: Schematic representation of usual output-state nontlirelations in neural field
equations: The sigmoid profile corresponds to the averdgtae between membrane potential
and firing rate. The binary Heaviside profile is considereoriter to ease analytical derivations.
The piece-wise linear profile allows to take thresholding saturation into account in conjunc-
tion with a linear response. The rectification profile takes iaccount the fact that the neural
activity is constrained to positive values. In this conitibn, we consider rectification and, to
some extends, piece-linear profiles.

RR n° 6923



6 Cortex

The sigmoid profile corresponds to the average relation dstwnembrane poten-
tial and firing rate (assuming slow variation of the potdniiith respect to firing-rate
sampling measure and Gaussian distributions of membraeat and firing thresh-
old, see e.g.[17] for a review) and it is very often simplifiesl a piece-wise linear
profile (thus with thresholding and saturation boundingn&dir response) or even a
drastic Heaviside profile used for analytical derivatiomgmses (e.g.[112]). The rea-
son for this over-simplification is the need to derive ariabftresults with the caveat to
model the input activity down to a simple on-off processuioanalytical studies con-
sidering the sigmoidal shape of the transfer function ase aVvailablel[B8,14]. Another
choice is to accept the fact that, up to our current knowlethgelevel of modelization
of a neural field is rather far from the biological complexifypplying the Occam razor
principle, the fact that the neural activity, viewed as afirrate, is thus constrained to
positive values can be considered as the minimal assumpgiated to biological con-
straints (see, e.gl_[lL5] for an early contribution and a dispussion on the subject).
This minimal choice also results from the following numatitact: It has been ob-
served that (see e.g. Hify.2), with “suitable” parametatsyésting properties of neural
fields (filtering, selection, trackind)[20,21] can be ohtad using rectification (instead
of usual sigmoid-like profiles).

Figure 2: An example of inputleft-view) output ¢ight-view) transformation via a non-linear
discrete map with rectification. The input is noisy (morentt20% of the signal) with three
bumps. The output “filters” the noise, and select the highesip even if the lower bumps
have more energy (being wider). This result is obtainednf{@) with Mexican-Hat profiles
¢ = (0.0015,0.0015,0.45 N,N), N = 100 andd = 0.99. Furthermore, with the same
parameters, if the bump is moving, the mechanism tracksitiest bump.

We thus are going to consider rectification as output-stltgion in the sequel.
We are also going to explain how the following results siilply to piece-wise linear
sigmoid-like profiles.

Using a numeric non-linear discrete map.

Since we want to derive algorithmic results, we must makdiekthe numeric imple-
mentation of the previous theoretic equations.

INRIA



Algorithmic adjustment of neural field parameters 7

Let us thus consider the following non-linear synchronabsisrete scheme in time
and space, thus, nfvior x € {0, N{" andt € {0, T{, T < +oc:

ut(x,t) = pux,t)),
ux,t+1) = u(x,t)+0 (—uJr (x, 1) + 2, Wx—y)ut(y,t) + i(x)) :
ut(x,0) = i(x),

)
providing0 < & < 1, whilé the non-linearity(.) is a rectification, thus with* (x, t) >
0.

This writes in compact matrix form:
at(t+1) = F(at()
= p(ut(t)+6 [-ut@E)+ W ut(t) +1])
= p(Kut(t)+0i) , K—1—6 [1— W],
wherea™ is aR"™*"™ vector, whileW andK areR ("*™)*(nxm) Toeplitz matrices.
This corresponds to what is implemented in simulation c¢ees, [20] 211]). How-
ever, the link betweeil]1) (witk = L = I) and [2) is not straightforward and has to
be carefully derived, as performed now.

The derivation is not straightforward because (2) is notEhker discretization scheme & (1). This
latter scheme writes:

u(x,t+1) = u(x,t)+ AT a(x,t)
= uGo )+ (—ute ) + S, W - y)uty,n) +it) O

for a sampling period\ T, with 6 = AT /7 and prowdlngu f v andut € a

If v(x,t) > 0, v being differentiable (thus continuous), then in a nelghbods Elt —e, t+ €[
v(x,8) > 0, thusu(x, s) = ut(x,s) andu(x, s) = v(x,s) so that both schemes correspond,
becausdl) anfli(2) behave as linear equations.

Otherwise, if—v(x,t) > 0 then for identicala(x, t) andu™ (x,t) = 0 schemed]2) anfk(3)
verify:

6 (Tv(x,t) +v(x,t))
u(x, ¢+ 1)@ + (1 - 6) (—v(x, 1))

u(x,t+1)|@ > u(x,t+1)|@
so that:
If v(x,t) < 0andrv(x,t) < —v(x,t) both schemes still correspond, since
0> u(x,t+ 1)|@ > u(x,t+ 1)\@ = u(x,t+ 1)*{@ = u(x,t+ 1)+|@ =0.
This conditions occurs i (x, t) is small enough, in particular in a neighborhood of fixed pmin

As a consequence, if both schemes converge towards a fixed tha fixed point is the same (same
kind and same value).

Howeverifv(x, t) < 0andr v(x,t) > v(x,t) both schemes differ, in the same way the Gauss-
Seidel scheme differs from (improving it) the Jacobi schénéerative solutions of linear systems. Here
the schemd]2) make use of the" rectified values as soon as available, instead of still ugiegnon
rectified values as for the schenlig (3). Sed [18] for a techd@meelopment and elements showing the
interedll of the “Gauss-Seidel-like” schenfd (2) with respect to theetibi-like” schemd3).

As a conclusion on this aspect, the seriés (2) convergesitzaete approximation
of @) correspondingto the Euler discretization schemesthndard numerical scheme
being improved here.

Anyway, it is easy to verify that the derivations proposethia sequel are obvious
to adapt to the schemid (3), if used instead of the schEme (2).

2We write {a, b{= {n € N',a < n < b}.
3Here we write¥i € {1,m},uf > 0asut > 0andVvi € {1,m},uf = p(u;) asut = p(u).
Furthermore:

p(u) = max(0,u) = (if u > 0thenu else0) = lim.—q pe(u)
with pe(u) def H(u)ue~¢/*, H() being the Heaviside function, are equivalent definitiona oéctifica-
tion. Thepe () function is theC>® mollified form of the rectification.
“4Interesting enough is the fact that some co-authors of tperpase this scheme for years thanks to

their “computer-scientist” intuition, before the follomg discussion has been made explicit thanks to the
“physicist” of the group.

RR n° 6923



8 Cortex

Bump as required output.

In this context, the desired output profile is a bump, i.e. &l profile, more pre-
cisely apositive, decreasing, radial symmetric profikes observed for bubble of ac-
tivities in the cortex[[2[_111]. A Gaussian profile is one exdengf a bump. In order
to capture the notion of bump at a more general level, we hemgosed to consider
Gaussian enumerable linear combinatians [1], which isablgtin the linear case, but
does not appear to be easily translatable to the non-lirssa:. ¢

Following another track, we write a radial symmetric profildthout loss of gen-
erality aroundky, = 0) as:

u(x) = u(r?),r = |x|

with u(r) > 0 (positivity) andu(r) < 0 (decrease).

We further notice that the convolution:

(W u)(|x]?) = [, W(x —y[*) u(ly|*) dy

of two radial symmetric functions is radial symmetric (&ashown, for instance, con-
sidering the invariance by a rotatid of (W x u)(|Rx[?) = (W = u)(|x|?)) while
in the general cas@V (x) must be radial symmetric in order the convolution to pre-
serve radial symmetry for any radial function We thus are going to consider radial
symmetric weights in the present study, thus only functiothe magnitude.

There is however a tricky point hereonvolution of radial symmetric functions are
not magnitude convolution®ore precisely, in the 2D scalar clse

(W) (r=x|) = [[W(s,r)u(s = |yl|) ds

with W(s,r) = s [, W (\/|r —s242rs(l— cos(()))) de, whereas, for a convo-
lution, an expression of the fori¥ (s — ) would have been expected.

This misleading fact is overcome in the second next sectioarg/a constructive
method is proposed to control the bump radial symmetric lesofi

3 Results about the convergence

Let us first discuss how to control the discrete implementatonvergence.

Implementation as a contracting mapping.

In order to obtain the convergence of the iterative equatowards a fixed point we
simply require the related mapping to be contracting, i.e.
|5ul = [2' K| <1 ) ]
whereX’ = diag(--- , p}, - -) is the diagonal matrix withp; = p’ (Ku(t) + di) €
{0, 1} whether the value is negative or positive, respectively.
This allows to write pragmatic conditions of convergencegdiscussed now.
This also restrains our study to convergence to a fixed pwititout taking other

asymptotic dynamics into accouhti [6].

5The same results indeed occurs in the n-dimensional vattase:v (r) = S, W(s,r)u(s) with:

W(s,r) =s""1 fndunW<\/\r—s|2+2rs(1—elTn)) ,e1 =(1,0---0)7,

writing x = rm, |m| = 1 andy = sn, |n| = 1 with dy = s ! dsd,n, andd,n = w

while ds = n” dy, thus not of the forfW (s — ), because of the r term in the previous expression.

INRIA



Algorithmic adjustment of neural field parameters 9

Convergence in the linear case.

Assume that all output values are positive, pe= 1, thus no rectification. This occurs
typically with excitatory weights only. This correspondsd pure linear transforma-
tion.
In this case, sincg2E | = |K|, the convergence condition now writes:
K| <1s |[W|<lassoona <4 <1,
i.e. in words: the system is contracting if the magnitudenefglobal weight matrix is
lower than one. If higher than one, the system diverges drgémneral case.

Since the matrix is symmetric, because we consider radimhsstric weight profiles, its magnitude
(defined agW | = maxg, la=1] |W 1) corresponds to its spectral radius i.e., its eigen-valieghest
magnitude.

The previous result is then a consequence of the fact, eagyify, that K and W have the same
eigen-vectors, with corresponding eigen-valigs and Ay, verifying:

This condition is simple to chefilat the numerical level, using the power method
[L0], which efficiently calculates the highest matrix eigeaiue, i.e., the magnitude of
the matrix in our case, via the converging sefi@s, \*):

ﬁs+1 — Wﬁs//\s )\s:| s|
u’ (L, )" A0 =1a’

yielding |[W| = \*°.

We numerically observed that convergence of the previougpderation method
to estimatd W| up to a precision of0~3 is obtained in abou2 to 5 iterations for the
different results reported here, very oft2no 3, aboutl10 in the worst cases. This is
due to the choice ofi® (never orthogonal to the final eigen-vector, as requirechiy t
method) which is close to the final vali®. This value has been chosen considering
thatW is not only a Toeplitz matrlk but close to a circulant matrix (considering the
previous boundary conditions), thus with eigen-elememtslésed form: This value
for ¥ corresponds to a eigen-value close to the weight's averayeyv It is easy
to verify, as a rule of thumb, thahe magnitude is always higher than the weight's
average valugwhile we have numerically observed that both values arsecldor
high magnitudéWw |.

Tuning the parameters in the linear case.

The key fact at this point, is th@bnvergence does not dependdfas soon as lower
than 1). It means that we can use higtalues and speed up the convergence. It also
means that it is not always an optimal idea to make all theyaigin the continuous
case and then blindly “discretize with a smdll

More than that, the calculation not only tells if the systaemantracting or not, but
since the equation is linear, allows to calculate the makimegght magnitude which
guarantees the convergence. In other words, the previgasthim tells how taescale
the gain parameters (e.gA — | and|A ;| for Mexican-hat profiles) in order to guaranty
the convergence.

Although this is not going to be true in the non-linear casdhe linear case, the
final result does not depend érand the closed-form solution writes, reintroducing the

6Numerical implementations used in this paper are availatie t p: / / enas. gf orge.inria.fr.

"The previous condition, although very efficient in practidees not directly make profit of the fact that
W is a Toeplitz matrix. It might however be interesting to expl this algebraic property and analyze to
which extends this yields a stronger result about convesggezspecially in the non-linear case.

RR n° 6923
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input gain matrixG defined in[[lL) for the purpose of the discussion:
u(c0) =[1 - W] Gj, 4)

sincea(t + 1) = Ku(t) + § Giin this case, thus:
(o0) =Y, K'6Gi=[1-K] ' 6Gi=[1-W] " Gi

This formula is instructive because it explains why usingedr map without non-
linear output-state relation does not allow the recurrennections parameterized by
W to produce a selection, unle&s is singular. The simple reason is that selection
means that a whole set of non similar inputs (with the deditedp added to different
kind of distractors) map onto the same output (without thetrdctors). This linear
filtering has a kernel reduced {@} thus is not able to project several inputs onto a
unique output. IfG is singular, selection can be produced, but without any réed
the recurrent connections. In fact, in the linear case, tN€ 3 equivalent to a simple
feed-forward filter.

Furthermore, e.g. for scalar Mexican-hat profiles, we castidige how conver-
gence varies withd_|/|A | and witho_ /o, as detailed in Fid3.

Figure 3: Representation diW | magnitude variations for Mexican-hat profiles. Here the 2D
scalar map size 800 x 100 ando+ = 10, while AL = 1/20, for magnitudes betwedn(black)
and1 (white). Results are obtained in less thgiterations of the power-method. We observe the
non trivial increase and decrease of the magnitude depgmulirthe inhibitory/excitatory gain
and width ratios: It increases with_ /o and decreases wittd_|/|A+| wheno_ < o4 and
|A_] < |A4+| which corresponds to the intuition that inhibition “balast excitation. A dual
effect is observed whem_ > o1 and|A_| > |A4|: Inhibition, when not thresholded by the
rectification mechanism, also induces high magnitudes, itisiabilities. In other conditions the
magnitude is not monotonic.

Using bounded excitation in the non-linear case.

The previous result is quite informative, but does not cgpomnd to our need, since rec-
tification has still to be taken into account. However, we cake use of the previous
result and derive the following sufficient boundary coratitiin the non-linear case:

[(WT| <1, W' =max(0, W) (5)
i.e. in words:the non-linear solution remains bounded and is converdgahti magni-
tude of the positive (excitatory) weights is lower than one.

INRIA



Algorithmic adjustment of neural field parameters 11

A few algebra yields, as soon as> 0, i.e., fort > 0:
Ka+di=[1-6[1-WT]]a+8i+6min(W,0)a

N e/

K+ a<
witha< < 0anda” = K+ @+ 51> 0, thus: - o ~
|[F(a)=p(Ku+6i)| <|p(KTu+di) =Kra+4il,

since|p(a” + @<)| < |p(a”)].
The upper-bounding series defined from:
0<a(t+n)<u = (K* @+ 55) a2 = u(t)
is linear and convergent if and only[IK ™| < 1 < |W¥| < 1, reusing the previous result.
Sinceu is positive and bounded by a convergent series, it remainaded (i.e., convergent or 0s-
cillatory inside the bounds). However, the previous deidrayields a stronger result because:
Vi, 0 < [% Ku]; < [KTul;
since if[Ku]; < 0 = [¥' Ku]; = 0while [Ku]; < [KTu];, as derived in the previous lines. Thus
|7 =[P K[ < [K[<1

as soon a§W | < 1 and the series of schenfd (2) is contracting as desired.

This captures the intuitive fact that the negative (inlify) weights action is al-
ways bounded by the rectification, thus only positive weighatter. An example of
practical adjustment curve is given in Higy. 4.

logo(AL)

Figure 4: An example of maximal gain curve in the non-linear case. Give in abscissa (in
pixel unit for a100 x 100 2D scalar map), the normalized maximal valuéogf, , (A+ ) is drawn.
Here, not a Mexican hat but a step-wise constant profile has bsed, in order to illustrate the
fact that the derivation can be performed with any kind ofgheprofile.

Without this condition, as corroborated by numerical expents, the system is in
usual conditions divergent. This is easy to figure out: as$®oan input is closed to
the W+ eigen-vector related to the eigen-value higher than onggibing to induce a
divergence, unless the inhibitory weights balance thisctffSince positive excitatory
weights are concentrated in a short-range neighborhoagaized bump essentially
activates excitatory connections without inhibition,dewy to divergence ifW*| >>
1. This corresponds to what has been observed numericallgetailed in Fig[h.
This corresponds to the fact that the proposed conditioaffc®nt but not necessary.
Furthermore, this also does not mean that, givaestrainedset of inputs, higher
parameter’s values are not going to yield convergence.

The system is also convergent¥| < 1 but this is a stronger condition which
bounds both excitatory / inhibitory connections whereaspioposed condition does
not constraint inhibition since the rectification non-kmigy allows to stabilize inhibi-
tion.

This condition still does not depend énas soon as < 1. It does not mean that
the way it converges does not dependdorDepending orn the convergence might
occur with dumped oscillations or not, be either faster owsl, etc.. This has been
numerically explored in Fidl6 leading to a simple rule ofrtituto adjust.
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o

B

Figure 5:Behavior of the non-linear discrete scheme, whiéi'| > 1, for the same experi-
mental conditions as reported in Fil. 2 except that the aaig weights are reinforced in order
to increasd W™ |. Given|W ™| in abscissa, the input/output gaihis drawn. We numerically
observe the divergence f¢6W ™| >~ 1.5. In the intermediate rangd@V*t| € [1.. ~ 1.5] the
scheme is still converging to fixed point, but with an expdiagain increase and small residual
oscillations observed during the numerical experiment.

| s=1J]oo01]o1]o2]03]04[05]06[07] 08 | 09 | 099 |

WT =001 135 14 ] 5 7 4 6 8 [ 17 ] >10° ] >10° | > 10°
WH=01] 169 | 17 | 9 6 5 5 6 8 14 40 > 10°
Wt =021 202 21| 11| 7 6 5 6 7 10 14 33
WT=0513922 40|21 ] 14| 11| 9 8 7 7 8 8
WT =091 569|583 | 21| 16| 13| 11 | 10 9 9 8
WH =095 618 | 63 | 33 | 22| 17 | 14 | 12 | 11 10 9 9
[WT[=099 | 667 | 68| 35| 24 [ 19| 15| 13 | 12 10 10 9

Figure 6: Convergence rate measured as the number of iterationsamabfixed point up to

a mean value variation belo#0 3, for the same experimental conditions as reported in[fig. 2
(corresponding to the 1st line of results), except that thetatory weights are reinforced in
order to increase the magnitude (subsequent lines of yedlk clearly observed the interest
of of using non-negligible values @f, and the influence of the weights magnitude. For small
values of the magnitude, a valde~ 1/2 seems optimal with a switch towards— 1 for highest
values of the magnitude. For convergence rate higher théuthe system is mainly oscillating
(dumped oscillations) while always bounded as predicted.

Application to tracking.

The fact convergence does not depend ces soon a8 < 1, allows to introduce high
convergence rates as illustrated in ly. 6. This does ngt‘save computation time”
but allows to track a moving input at a high rate since conecg to the modified state
is improved. As far as biological neural maps are understbed:onvergence of the
neural field towards a new state is not the result of the cgerare of a progressive
iterative process, but a tip over from one state to anoth@rvthe input changes.

Here, our study shows how to adjusin order to obtain optimal convergence rate,
thus optimally track a moving input.

What we have numerically experimented with the conditicgpsorted in Fig[2
(thus with|W*| = 0.0), is that the tracking of a moving bump is optimally tracked f
0~1/2.

INRIA



Algorithmic adjustment of neural field parameters 13

Application to remanence.

Short-term memory behavior is related to the capability wintain the output for a
short period of time, even if the input vanishes. This is advér inverse from the
previous one, since we do not require the system to quickiyege to the new state
(corresponding to a null input), but remains in the old sta¢éated to the previous
input).

In our framework this may correspond ff&v+| > 1, as shown, in the linear case,
by the formula[#) and experimented numerically in Eig. 5,1fo< [W+| <~ 1.5. If
[WT| > 1, the linear transfer function has “poles” (correspondmgeisonances in 0s-
cillatory regimes), i.e. unbounded output for infinitesiin@uts. Numerically, this cor-
responds to high-gains (corresponding to dumped resosamaescillatory regimes),
and slow time decays, as required for such behavior. Tuhiegtheme parameters in
this range allows to approximate remanence, although thids/solutions at the edge
of instability.

Another strategy is to consider not a rectification but a gietse linear sigmoid
profile as shown in Fidg]1 and considd *| > 1. In that case the scheme tends to in-
crease the output or yield divergence, but because of theasiain, the output remains
bounded. This allows to easily generate remanence, astisereed in numerical sim-
ulations [21], and the behavior is more robust. The add-dh@previous derivations
allows to know the scheme parameters range to obtain thisvimah

4 Results about the bumps

Analysis of the fixed point equation.

Let us now discuss how to obtain, at the implementation Jduehps with controlled
shapes. Since there is a fixed point converging dynamicsimgyshave to consider
the fixed point equation in this section. The schefe (2[bfik@d point equation
writes, given a radial inpu{|x|) and outpuia(|x|, +00):

z=U"W+(i-at-a/§)=0 (6)

with ot = p(a) = max(0,u) anda~ = p(—u) = min(0,u), thusa = a* +a-,
while:
UL (%)) = Xy g/ u (% — ¥))
defines the convolution in the discrete case. In the 2D cas@dgtance, for weights
~ defined in a bounded circular neighborhood of raditishis convolution writes:
[U+ W] (z,y) = 25:1 Wk] Z(i,j),ﬂﬂ'?:rggm u(z — i,y — 7)
= Wlu(z,y) + W2 (u(z + Ly) +u(z - Ly) +ulz,y+ 1) +ulz,y — 1)) +- -

as represented in Figl 7 f&8 = 5, while it is obvious, from a piece of symbolic

computation, to derive for ani the K related terms, with:
| R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
| K 2 4 7 10 14 19 24 30 37 44 52 59 69 78 87 98 |

showing a supra-linear and sub-quadratic (numeridally O(R>!")) increase of the
number of radial coefficients.
This fixed-point equation splits in two parts:
u(|x|) >0 Z|x| = [IjJr W + (I — fl+)] x|
u(|x]) <0 Z|x| = [ﬂJrW + (I— ﬁf/é)}
i.e..

= [1=Wlut(x) = i(lx])
= [1-1/6—W]u'(|x|)

IN
el
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0 0 0O O 0 14 0 0 0 0 O

0 0 14 13 11 10 11 13 14 0 0

0 14 12 9 8 7 8 9 12 14 0

0 13 9 6 5 4 5 6 9 13 0

0 11 8 5 3 2 3 5 8 11 0

4 10 7 4 2 1 2 4 7 10 14

o 11 8 5 3 2 3 5 8 11 0

0 13 9 6 5 4 5 6 9 13 0

0 14 12 9 8 7 8 9 12 14 0

0 0 14 13 11 10 11 13 14 0 0

0 0 0O O 0 14 0 0 0 0 O
T |1 2 3 4 5 6 7 3 9 0 11 12 3 14
r |0 1 V2 2 /5 8 3 V10 V13 4 V1T /18 V20 5

Figure 7. Representation of the radial symmetric discrete/alution indexing in the
2D case for a bounded circular neighborhood of radius 5. The 2D locations of the
indexes are drawn in the top array and the correspondensedeindex and radius in
the bottom table. This indexing has been derived using &mitsymbolic computation
mapl e code, also allowing to automatically generates the optimahericalC/ C++
code for any convolution of radius.

« A linear responséor points inside the bump (with(|x|) > 0), which does not
depend ord, and is related to the output response adjustment.

» An adaptive threshol@ut-off mechanism outside the bump (wittf|x|) < 0),
which allows to perform selection, and is related to inptifaition control.

- The key point is thagiven a desired output™, the equation is linear with respect
to the weightsW.

- Furthermore§ simply scales the inhibited part of the output and is thus not
an independent parameter.

- Hereu™ /4 is a hidden parameter of the problem: It allows to specifyl¢hel of
inhibition against input perturbations.

- There is a scale invariance, in the sense that multiplympyt and output by
the same scale factor, does not change the equation witbategpW. We thus are
going to consider, without any loss of generality, normadiznput in the sequel, i.e.
considering thesolume

V(i) =) i) (7)

input with V(i) = 1.
- Finally, the output response adjustment is entirely deflmethe input-output dif-
ferencdi—u™) Ix|,u(]x|)>0, Which is yetanother simplification of the problem struetur
Given these properties, let us now formalize the outputrobnt

Position of the problem.

The fact we want to “tune” the weigh®/, as illustrated in FidZ18, can be formulated
as follows: Given a set of input;, indexed byl and a set of corresponding desired
outputw,’, the goal is to find the desired optimal weigé that maps the input onto
the output

INRIA



Algorithmic adjustment of neural field parameters 15

Figure 8:Schematic representation of the problem position: givemioputi (or a set of) and
the related desired output™, the goal is to find the optimal weigh®/. The inhibited output
u~ is a hidden parameter of the problem.

This can be turned into a variational specificati@iven an input-output sét - - (i,, o,") - - -

the optimal weights minimize:

CZZZ\Z\xuﬂW +y VW)L (8)

U x| y

where:
- The output errog,| ; magnitude at pointx| for the input-output sample of index
(defined in[(6)) is minimized, up to some pondering matix, ; allowing to take into
account the relative importance of a sample of intlard a map locatios.
- The weights are regularized in the sense that the weighadigntVW is also mini-
mized, up to some pondering matiix allowing to avoid ill-posed specifications.
Here, for the sake of simplicity, we consider quadratic n&mielding linear equa-
tions for the extrema, although in this finite discrete casleer norms are rather easy
to introduce.
This specification allows to immediately derive:

> (U ATy
l

W= (UNH"A [ -0 —1; /5] + AW (9)
l

writing A; the block-diagonal matrix defined Y|, while AL W is the discrete
Laplace operator accounting for the regularization terer.eHve deliberately use over-
simplified notations for this very standard regularizatmechanismAr, W, see e.g.,
[24] for further technical details.

Specification of the estimation parameters.

The hidden variable, /o is defined at points where(|x|) < 0 and can be derived
from (8):

. AT up /6= A7 [UF W+,
writing A, the block-diagonal matrix defined wl_xl-,l = (if u(|x|) < 0thenA; else0),
i.e., taking only points withu(|x|) < 0, thus wherea™ is defined, into account. This
yields after a few algebra:
(O (A=A [ A7) A OF | W= SO0 AF [ - wf ] + AW,

writing A; the block-diagonal matrix defined by, = (if u(|x|) > 0 thenAx; else0),

|x|,l —
while M is the pseudo-inverse of the matii. This last equation, entirely defined
from (@), specifies the weigh® as a function of andu™.
Let us discuss this last point. The pondering matkix ; > 0 defines, for each
point and sample, the relative weight of the estimation {ireowords the “estimation
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gain” for this point and sample). A zero value allows to ehate the related measure
in the estimation process, a high value to make it importeot.scalar maps+$ = 1)

A x> 0is a number, otherwise it isia x m positive symmetric matrix. As far as
A is concerned (i.e., for point with(|x|) > 0), this corresponds to pondering the
output value, which is an interesting feature. As fangsis concerned (i.e., for point
with u(|x|) < 0), this corresponds to pondering the “absence” of the outplute,
i.e. the inhibition level. This inhibition level is thus ntatned here though a value but
though a kind of “estimation gain”. An alternative, at thesification level, would be
to simply specifya— /4, i.e. the inhibition value itself: This is very easy to irduce

in @) which is now the linear equation definiivg.

This specification choice has also a computational advansagce usind{9) is nu-
merically more stable than the previous equatiom1f/§ is not specified as an income
of the problem, the previous derivation corresponds toialitmgu~ /4§ (solving [8)
whereu(|x|) < 0, thus considering input inhibition) and reintroduced thesuit in
order to findw (solving [8) wherea(|x|) > 0, thus considering output adjustment). If
u~ /4 is directly specified, therf}9) allows us to linearly combb@th output control
and adjustment inhibition in the estimation.

A step further, equatiorfl9) is a “Hebbian” equation in thédiwing sense: it is
local and only depends on the output value and linearly orirthet value. In the
present study, for the sake of simplicity, we implicitly as® that the weight3V do
not depend oifix|. However, this is not a limitation of the method: The criteri{8) is
still well-defined in the more general case of non-constasigtits. Then, equatiofl(9)
is “local” in the sense thall;" only depends on the output values “around{more
precisely in a neighborhood corresponding to the size obthiput bump) while it only
linearly depends on the input at poixt This is not the case if we do not introduce
u~ /¢ as an income of the problem.

As a consequence, we propose to {ike (9) in the sequel. Fudherfor the sake of
simplicity, we are going to considex = I (no pondering), while we simply consider
a singleton of input-output couple. The idea is to validatd study the method in a
relatively simple case, before making profit of it at its wdtdvel of generality.

Parametric 2D scalar piece-wise constant weights adjustmg

In order to apply the previous framework we start considgtire simplest possible
radial symmetric weights profile:

W (ly|) = if |[y| < Sthen+ W, else — W,
in words an excitatory flat constant profile of magnitdflg in a central area of radius
S and a spatially unbounded flat constant inhibitory profilenafgnitudel’’; outside
the disk of radiusS, as illustrated in Fid]9.

This is thus a parametric weight profile, parametrized with (1, S, W1).

We further assume thaf < R, R being the bump radius, i.e., that the excita-
tory weights radius is small with respect to the bump sizeiciwlallows to derive an
approximate closed-form for the input-output relation.

More precisely, this allows to write after a few algebra:
=x) = T yjesully))

= Wion_s(r) [75%u(r) = =5 + 05 + 541%)| + Win_s risy(r) o(r?)
with Wy, ;(r) = if a < r < bthenl else0 while v(r?) is a term neglected in the
sequel, sincé < R.
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0..R-S :output convolution

R-S.R :mixed spurious domain
R.R+S :inputinhibition influence
R

+S .. +00 : outside convolution bound

Figure 9:Left view Radial symmetric piece-wise constant weight parameterfilg 1, being
the central excitatory magnitud8/; the peripheral inhibitory magnitude, whikeis the radius
of the circle separating both weight's regioi&ight view Schematic representation of the con-
volution of a bumpu of radiusR by a radial symmetric sum of radids < R. The resulti is
decomposed in four zones, as made explicit in the right gahteodiagram, and obtained when
deriving the closed form approximation of this convolution

This leads to the following closed-form formulas:

u(r) = o '(i(r) - Bi) +0(s*) rel0,R-S] linear response
i(r) < pi +0(5*) r€[R+S,+oo] threshold inhibition
with o & 17 (Wo+W1) 52 and8 < (a-+x Wy R?)~ Wy whilei = 32 _i(lyl).

Let us derive the linear response equationa(f = |x|) > 0:
u(x) >y Wx —y)u(y) +i(x)

Wo 2oy jx—ylcs W) = W1 30y oy >s u(¥) +i(x)
(Wo + W1) Zy,\x_st u(y) - Wi Zy u(y) + i(x)
(Wo + Wl) ﬁ(x) —W;u+ i(x)
writing @ = 3° ut(y) = Zy,\y\<R u(y).

Considering the approximatiod(r = |x|) ~ W r_s)(r) 7 S>u(r) + O(S*) allows to
further write:

u(x) = 7 (Wo + Wi) S% u(x) — Wy a + i(x) + O(S*)
thus:

U=3, | epu(®) =7 (Wo+Wi)S?ia—WirR*u+i+0(5)
consideringzxY‘x‘<R 1~ jx Ix|<R 1 = 7w R?, leads to the linear response equality, written above
in the scalar case.

Otherwise, ifu(r = |x|) < 0and|x| > R+ S:
Ty W —y)u(y) +i(x)
Wiua+ i(x)

ININA
=}

leads to the threshold inhibition inequality.

In order this equation to be well defined, we must have:
W(WO + W1)52 <1,
which is in direct relation with the convergence conditibat(does not correspond to
it, since we use an approximation here).

This derivation is informative and shows that, up to the psgul approximation,
the response is mainly a thresholding mechanism: the efféloé computation is to cut
the input under the given threshold, thus eliminating spusidistractors of the main
input bump and reducing also the output volume. The calicuia non trivial because
the threshold3: is adaptive and related to the input volume around the outpaorip.
The radiusR of the output bump is an implicit parameter depending on te&t
parameters, thus not easy to read on the formula. Thesetaspedurther detailed and
verified numerically in FiglJl0 and FifgL1, providing alser@abacus to choose the
desired output bump.

Non-parametric 2D scalar spatial-bounded weights adjustrant.

In this second numerical application, we consider non+pateac 2D scalar spatial-
bounded symmetric radial weights, as made explicit in[Hig. 7
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Figure 10: Numerical verification of the capability to control the outgadius and volume,
for a normalized input profile of radiuz) and a 2D100 x 100 scalar map. The weight radius
values ares = {2 (red), 5 (green) 10 (blue), 20 (magenta) while the excitatory magnitudd’y

is adjusted fromS in order to havdW| = 0.99. The inhibitory magnitude varies i, €
[0,0.1. WhenW; = 0 there is no filtering (output equals input). W, is too small the
excitatory weights diffuse the input all over the mapWilf is too high (as folS = 2 andWW; >
0.073) inhibition is high enough to cancel the whole input. Largeincrease diffusion of the
input thus enlarge the output radius. Higher inhibition miaglesi¥; increase the thresholding
thus decrease the output radius. The output volume is aigowstdy controlled by the input gain
(taken asl in the derivation to ease the notations).

Input Output Radius Output Volume

R
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Figure 11:Numerical verification of the capability to perform selectbetween the main input
and distractors, for a normalized input profile of radiissand a 2D100 x 100 scalar map,
plus a distractor of width0, height B and eccentricityD. Here the radius is fixed = 5 and
the excitatory magnitud&/, to have|W| = 0.99. The inhibitory magnitude varies iW; €
[0,0.1]. The green curves correspondfio= 20, B = 0.9, the blue curve td = 15, B =
0.9, and the magenta curve 0 = 10, B = 0.9. The selection mechanisms (comparing the
results with those of Fid._10) clearly works and we obtainisinresults, as predicted by the
previous derivation, since the input dependence is mailgted to the input volume in the
output radius disk. Small variations qualitatively copesd to this radius variability. The red
curves correspond t® = 20, B = 10 thus the distractor is higher than the central bump and
the selection fails, as expected. In this latter case, whieibition increases, the overall amount
of input yields an output extinction.

Now the profile is parametrized by the radial valt&$:],7 € {1, K'}. In order to
instantiate the general method proposedin (8) Bhd (9), we fiixm for the input and
output, presently:
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u(r) = AHR-7)2/r[R?>-7*]/R*+H(r—R)T e~ (/mA/(R°T) (r=R) _ |
i(r) = H(C-r)2/x[C?-r?]/C*

thus quadratic input and output profiles with predefined patars, as detailed in
Fig.[I2, while the inhibited profile is exponential and choge orderu to remains
ch.

Figure 12: Schematic representation of the two main elements of theerioad set-up.Left
view. An “generic” input of radiusC' and volumel in correspondence with a generic output of
heightH corresponding to a volumé and radiugk is chosen. The level of inhibition is fixed by
an additional parametér corresponding to the asymptotic value of the inhibitedvatgti Right
view. A schematic representation of the numerical integratidh@convolution at a given radial
location.

The numerical approximation of the convolution writes:
Uy(r) =~ 2ms > ut(r? —2rscos(d) +s%) /3,1
as illustrated in Fid12.
The general criterioril]8) simply writes in this case:
ming |z| + L >, dW|s]?
for a regularization parametér.
Numerical results are reported and discussed inElg. 13.

Application to inhibition control of the output radius.

As a final numerical application, let us consider parametficscalar Mexican-hat
symmetric radial weights, as made explicit in the sedfion 2.

We reuse the previous form of input and output (bounded qmdresponse and
exponential inhibition) withA = 1 since the output volume control is easily tuned
by the input gain. We fiX" = 1 since it has been observed that this parameter value
is not critical. We further do not consider regularizatidn £ 0) since the profile is
parametric thus de-facto regular.

Since we are interested here in controlling the output saave are going to explore
the relation between the input radidsand the output radiu®.

Regarding the Mexican hat profile, we consider that the weigtith parameters
o4+ ando_ are structural parameters, thus fixed by the connectivitystep further,
since we are interested in selection and remanence we cido5e= 0.9 so that the
excitatory weights magnitudel ™| is fixed fromo . as detailed previously.

We are thus left with controlling the inhibitory weights nmaigide| A~ | obtaining
results given in Fig_l4. The interesting conclusion is takican-hat profiles (com-
pared to the previous profiles) are far from being optimaldotml the output radius.
Sharp profiles (i.e. with excitatory/inhibitory weighteally separated) seem a bet-
ter choice. Furthermore, not the magnitude but the widtthefihhibition is the best
control variable to adjust the output radius.
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input threshold reduction bump magnitude increase

Figure 13: Numerical results for non-parametric weights adjustméete for W k], k €
{1,50}. The top-left curve corresponds to a standard input-output transfer,tleadptimal
weights correspond to pure inhibitory profiles, which cepends to the usual practice of ex-
perimenters. However, the obtained shape might be cointtétive in the sense that inhibition
only increases with eccentricity up to the weights spatiirals, without any decrease for high
eccentricities. Theéop-rightcurve corresponds to a standard input-output transfeggiirhated
with a much higher regularization parameierThe nice result is that the shape is a bit smoother
as expected, but in fact only marginally depends on thisagparameter, which is non critical as
soon as set to a reasonable value. Trtiedle-leftcurve corresponds to an output radius reduc-
tion with respect to the input radius, while threddle-rightcurve corresponds to an output radius
expansion, which appears to be obtained by a non monotoapeskaccording to the proposed
criterion. Thebottom-leftcurve corresponds to the choice of a lower inhibition [€felagain
showing the non-critical impact of this parameter, excapegpected reduction of the inhibi-
tion weights magnitude. Thieottom-rightcurve correspond to bump magnitude amplification,
which is coherent with the apparition of excitatory weigintshis case. All profiles must verify
|[W| < 1 since they map bounded input onto bounded output, thus isewhere the scheme
is converging.

5 Discussion and conclusion

The previous results do not “prove” the existence of stablaf solutions, this being
already known[I217,12] and extensively verified numericdtgre the goal is to calculate
algorithmically the related parameters. This modest divieés attained since we now
are able to tell which parameter set yields convergence andtd control the output
and the shape of the bump.
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Figure 14:Numerical verification of the capability to control the outpadius with inhibition
adjustment. The input radius values @e= {10 (red), 20 (green) 35 (blue), 50 (magenta).
The inhibitory magnitude varies id™| € [0,0.02] while other parameters are adjusted as
discussed in the texteft view o_ /o = 5. The result is somehow negative: the output radius
is always smaller than the input radius and has only tighiatians (in the range where the
inhibition is high enough to perform filtering and small egbuto avoid the output extinction).
Middle view o_ /o4 = 1.5. The result is now less negative: the output radius can beated

by inhibition adjustment. However the output radius is alsvaigher than the input radius.
Right view Here|A~| = 0.01 and theo_ /o4 € [1, 5] is varied. It is appears clearly that this
controlled variable is much more efficient to adjust the attadius.

Further applications of bump control.

One track is to consider how tuning distributed propagatielays and also feedback
delays[[8] can, at the implementation level, control bumptsaliso traveling front$116]

Application to other paradigms.

In a recent work[[20] a model has been designed that perfolatmbcompetition,
only using local connections, with diffusion of the inhibit throughout the network.
This is far quicker to have a few local interactions when catimg activity within
the network and makes the model a real candidate for dis&bcomputations. This
paradigm is taken into account here, with non-parametegighi adjustments.

Figure 15:An example of asynchronous sampling of such maps (everhiagplementation),
applying convergence criteria derived here. We have nuwakyiverified the conjecture that
the present results apply when using asynchronous samplieff view intermediate result,
the fact asynchronous sampling yields randomization ibhas Right view final result, after

convergence.

A slight modification of the previous derivation, allows totronly consider syn-

chronous but asynchronous sampling ($eé [21] for detailspshe map is still con-
tracting when using asynchronous sampling. This has bemrerically experimented,
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as shown in Fig_15 and has to be further investigated. Istiageenough is the fact
that this simulation has been implemented on an event-lresad| network simulator,
in order to consider neural maps not as simple “analog” ¢aficuns, but both analog
and event-basefd[19].

We have proposed the numerical results only for 2D scalarspiap the simple
reason we are publishing these results . . on a 2D scalar gugyladerivations have
been developed for the vectorial case and are thus availableigher-dimensional
paradigms.

Here we have restrained the discrete schemélto (2) tith § < 1. Itis an
interesting perspective to consider convergence and bagmirol forl < § < 2 or
higher values.

Beyond parameter adjustment.

Beyond such technical variants, the idea is to get rid of inowus schemes of the
form (), whereas directly study to which extends a discdgtreamical system of the
form (@) is of interest to analyze and simulate the neuralsizhaviors. This is, for
instance, the case in[22] where the dynamics of spiking aitdrg-bursting activity
of real biological has been studied via a discrete two-dsiteral map defined with
one fast and one slow variable. As a consequence, disaeaizéral fields power of
description is still to be explored for both distributed qmmational paradigms and
biologically plausible computational map models

A Tuning bumps in the linear case

Bump as required output In this context, the desired output profile is a bump, i.e.
a positive, decreasing, radial symmetric profde observed for bubble of activities in
the cortex[[2[-111]. A Gaussian profile is one example of bumprter to capture the
notion of bump at a more general level, we propose to con§deissian enumerable
linear combinations, i.eGaussian series ,
b(p) = Ese{sl,---},s>0 b*(s)e™* pl?,

writing s = # for an enumerable set of “widths, which is of common use (e.qg.
[26]). Smalls for flat Gaussiand = 0 is the “constant part”), Large for tight Gaus-
sian.

The goal is thus to find the parameters allowing to generatgisycontrolling their
width, amplitude and shape.

Let us now discuss how to obtain, at the implementation Jdwainps with con-
trolled shapes, in the linear case.

Gaussian series approximate bumps. Radial symmetric profile means thatp) =
B(|p|?), normalized if'ffp bi(p) = 1. They are positive iff3;(r) > 0 and decreasing
iff G.(r) < 0. This puts our specifications in equation.
For Gaussian series:
Blr) =>b*(s)e " = L(b")(r)

where, stands for the Laplace transform, whilé has been extended to the continuum
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using a Dirac comb, while the Post-Bryan inversion forlﬁl[ﬂijtallows to consider the
Laplace transform of such positive functions.

This observation means thatmps can be approximated using Gaussian séoes
the simple reason that Gaussian series coefficients arangdiht the discrete approx-
imation of the bumps profile’s Laplace transform. This representation thus bene
from all the Laplace transform properties:

Bump are normalized ifff _ bi(s)(m/s)*? = 1. Several additional properties
characterize such bumps: they are flabainless singular (i.e.[b(0)| < 400 =
|[Vb(0)| = 0), vanish at infinity [im,_, ., 8(r) = 0) thus without constant compo-
nent (im,_.o b*(s) = 0), etc..

Figure 16:An example of maximal gain curve in the non-linear case. Give in abscissa (in
pixel unit for a100 x 100 2D map), the normalized maximal value lof,,(]A+|) is drawn.
Here, not a Mexican hat but a step-wise constant profile has bgsed, since the derivation can
be performed with any” profile.

Gaussian series yield “nice” bumps. The previous result is useful because it is very
easy to shape the bump using suitable coefficients, forrinstasing rational profiles
of the formg; (r) = 1/(1 + |r|*/2), n even since:

bi(s)* = 2 S et sinfe) gin (ssin (B%) + af)
W = EiTy-)
B, 7 (1—24)

S

or of the formgBz(r) = 1/r™,n > 0 since:
ba(s)* = s""t/n—1!
as illustrated in Figl7. Such profiles correspond to dddinemps in neural field
applications, among many other suitable alternatives.yTwene with closed-form
formula and show how malleable are such shapes.
Note that a simple change of scale allows to adjust the widththe amplitude of
the bump, the challenge here being to adjustthegpe

Gaussian series are linear map fix points. Linear map fixed pointa® are defined
by —u® + W x u® +i = 0, wherex stands for the convolution operator. Since convo-
lution and linear combination of Gaussian are Gausgiav,ding that the inputi and
the weights profilaV are Gaussian series, the output is a Gaussian seriesThis
result is made explicit by the following formula for the Gaia series coefficients:

() Er>u,s>u, W(r)u®(s) | i(v) =0,

rs _
sV r+s

8Post-Bryan result: A continuous function orR* which is of exponential order for some (i.e.
[|b(r)|/e° 7|, < oo)with Laplace transformd* (s) is non-negative ifirk > 0,Vs > ¢, (—1)% b*(*)(s) >
0.
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This is true for rather general weight profiles, not necelgséMiexican-hat” profile
only.
In this specific case, it is possible to derive a closed-foxpaeasion, convergent
as soon agA 1| < 1, which is the case in practice. We obtain up to a given order
ut(v) = 3 i8) X, 4pta<n M (P Q)

_1)2 xPFTa AP 49 52P ;24
— T+s (p éﬂ_azf) J (” T its (e agwa?_)) ’
with 7,-(p, ¢) = % easily derived by symbolic calculation.
Note that the previous two formulas are written in the scetese for the sake of
simplicity, whereas it is straightforward to derive thentlie vectorial case. It is also
straightforward to derive (using symbolic calculationi) fimore general kernels.

Figure 17: Three examples of rational profiles for n = 2 (Gaussian likehlue) and n = 10
(square like, in green), and a singular profile (pointed, likeed). See text for details.

Practical implementation. From the previous results it becomes possible to design
numerical routines in order to adjust at will the bump’s shafhe previous result
development means that we do not have to adjust the profite2V? space but simply
in the 1D radial profile, thanks to the Gaussian series representatibis fact very
likely generalizes to non-linear profiles.

For instance, given an inpitv) and a desired outptt (v) the following program:

min [, [b1(v) — g i) ()|

allows to find the optimal weight parametric val@ieusing e.g. the explicit formulas
given previously. The choice of the measyieand of the metrid.|, is application
dependent.

Another application is the input control of such calculatmaps: Given parameters
6, find the inputi(v) yielding a given outpub(v). The solution is straightforward in
the present framework, as illustrated in Figl 18.
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