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Abstract: Revisiting neural-field calculation maps in the discrete case, we propose
algorithmic mechanisms allowing to choose a right set of parameters in order to both
(i) guaranty the stability of the calculation and (ii) tune the shape of the output map.

These results do not “prove” the existence of stable bump solutions, this being
already known and extensively verified numerically, but allow to calculate algorithmi-
cally the related parameters.

The results apply to scalar and vectorial neural-fields thusallowing to bypass the
inherent limitations brought by mean frequency models and also take the laminar struc-
ture of the cortex or high-level representation of corticalcomputations into account.

We obtain an easy to implement procedure that guaranty the convergence of the
map onto a fixed point, even with large sampling steps. Furthermore, we report how
rectification is the minimal required non-linearity to obtain usual neural-field behav-
iors. We also propose a way to control and tune these behaviors (filtering, selection,
tracking, remanence) and optimize the convergence rate.

This applies to both non parametric profiles, i.e. adjustingthe weight values di-
rectly, or to parametric profiles and thus adjusting their parameters (e.g. Mexican-hat
profiles).

Beyond these algorithmic results, the idea of studying neural computations as dis-
crete dynamical systems and not only the discretization of acontinuous system is em-
phasized here.

The outcome is shared as an open-source plug-in module, called EnaS (http://enas.gforge.inria.fr),
to be used in existing simulation software.

Key-words: Discrete neural fields, meta-parameters.
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Ajustement algorithmique des param̀etres de champ
neuronaux

Résuḿe : Le calcul de cartes de champ neuronaux est revisité dans le cas discret et
un mécanisme algorithmique pour choisir l’ensemble des paramètres est proposé afin
de (i) guarantir la stabilité des calculs et (ii) ajuster laforme de la carte de sortie.

Ces résultats ne prouvent pas l’existence des solutions enforme de bulle, ceci ayant
déjà été montré par ailleurs, mais permettent de calculer de manière algorithmique les
paramètres idoines.

Les résultats s’appliquent au cas scalaire et vectoriel, donc permettent d’aller au
delà des modéles qui ne prennent en compte que la fréquence de décharge, et permet-
tent de prendre en compte la structure laminaire du cortex oudes représentations plus
abstraites des calculs corticaux.

Nous obtenons une procédure facile à implémenter, avec une convergence de la
carte vers un point fixe guarantie, au delà du schéma classique d’Euler, optimisant la
vitesse de convergence. Nous montrons aussi qu’une non-linéarité limitée à une rec-
tification suffit à simuler les comportements usuels des champs neuronaux, tandis que
nous décrivons comment en ajuster les comportements de filtrage, sélection, poursuite
et rémanence.

Ceci s’applique à la fois aux mécanismes non-paramétriques (ajustement des valeurs
des poids) et paramétriques (ajustement des paramètres d’un profil prédéfini).

Cela montre aussi l’intérêt de travailler directement sur des systèmes discrets de
champs neuronaux plutôt que sur la discrétisation de systèmes continus.

Le résultat de ce travail est disponible sous la forme d’un module logiciel “open-
source”, dit EnaS (http://enas.gforge.inria.fr), à utiliser comme “plug-in” dans les logi-
ciels de simulation existants.

Mots-clés : Champs neuronaux discrets, Méta-paramètres



Algorithmic adjustment of neural field parameters 3

1 Introduction

Using DNF and its extensions. The Dynamic Neural Field (DNF) theory is mainly
concerned with the functional modeling of neural structures where information is con-
sidered to be encoded at the level of the population rather than at the level of single
neurons. Such models first appeared in the 50s, but the theoryreally took off in the
70s with the works of Wilson and Cowan [27] and Amari [2]. At the level of a single
neuron, the model that is used is a mean frequency model, while the electrical activity
of a neuron is approximated by a single potential. However, there also exists several
spiking neuron models that represent both a finer and more accurate model of a real
biological neuron. In the framework of the DNF, such models allow to bypass the
inherent limitations brought by mean frequency models [22], this being taken into ac-
count via vectorial neural state [25]. Furthermore, neural-fields also allow to consider
high-level representation of cortical computations [24].

These models most generally use excitatory recurrent collateral connections be-
tween the neurons as a function of the distance between them and global inhibition
is used to ensure the uniqueness of the bubble of activity within the field [21]. They
exhibit so-called bump patterns, which have been observed in the prefrontal cortex and
are involved in working memory tasks [11] or high-level cognition [23].

The dynamics of pattern formation in lateral-inhibition type neural fields with
global or local inhibition has been extensively studied in anumber of works where
it has been demonstrated that these kinds of fields are able tomaintain a localized
packet of neuronal activity that can, for example, represent the current state of an agent
in a continuous space or reflect some sensory input feeding the field [21]. A step fur-
ther, the linear response of neural fields to localized inputs subject to finite propagation
speeds has been studied in [17]. The characteristic behavior of such fields is the forma-
tion of very localized packets of neural activity that tend to represent some consistent
information which is present at the level of the input [13].

However, the exact shape of these output bumps is quite difficult to predict since
it is a generally a non linear consequence of both the lateralconnectivity pattern and
the input pattern. Thus the question remains on how to control the shape, first in a
purely mechanical way (i.e. finding the proper mathematics behind), second in a more
biological plausible way. This second step, which is beyondthe scope of this paper,
requires to complete the first step, which is also going to provide some description of
the space of interesting parameters.

The main computational properties (see e.g., [21] for a review) of such neural field
are:
. -1- filtering of the output bump shape: increase versus decrease of size, volume,
etc..
. -2- selectionof the output bump among several input bumps,
. -3- trackingof a moving input bump at the output level,
. -4- remanenceof the output bump after the partial or total suppression of the input
bump.
We are going to consider filtering and selection behaviors inthis contribution and dis-
cuss the tracking and remanence mechanisms also.

The parameter adjustment problem. Here, we want to study which set of lateral
weights allow to achieve a specific function, and obtain one unique controlled bump
on the output. More precisely, the goal of this paper is to provide algorithmic results to
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4 Cortex

this parameter adjustment problem. This contrasts with thealmost universal practice to
adjust empirically the parameters of neural field (even if authors are unobtrusive about
it), although constructive results exist and should be used.

In [13], for instance, homogeneous stationary solutions (i.e independent of the spa-
tial variable) and bump stationary solutions (i.e. localized areas of high activity) in
two-dimensional neural field models composed of excitatoryand inhibitory neurons
have been studied, in the continuous case, after [6, 9], providing an explicit solution in
terms of Bessel functions and Hankel transform. Basic properties of bounded neural
fields (well-posedness, stability of their solutions in thehomogeneous or locally ho-
mogeneous case) have also been studied, accounting for partial or global synchrony
among the cortical columns composing the field [14]. These results are based on the
compactness of the related operators yielding stability results related to contracting
mappings.

These results however are not easy to implement in practicalcodes, because, in
order to obtain analytical results they consider formulations (using e.g. Heaviside non-
linearity and/or unlimited precision assumptions) which do not correspond to numeri-
cal implementations. Furthermore, in the discrete case, wemay obtain more interesting
results than simply approximating using “small-ǫ” results obtained in the continuous
case. This means not simply consider the Euler approximation of the continuous equa-
tion but also consider more efficient discrete schemes. Thisalso means not derive
parameter adjustment algorithmic mechanisms based on approximations of continuous
solutions, but build on the discrete solution directly.

What is the paper about. In the next section we review the formalism usually con-
sidered for neural field implementation. We discuss the choice of the output-state non
linear relation and the way bumps are defined. We also make explicit one link between
the continuous and discretized approaches.

In the first result section, we derive a sufficient condition to guaranty the conver-
gence of the neural map towards a fixed point, given the proposed non-linearity, and
discuss its applications.

In the next result section, we introduce a linear framework to define the optimal
neural field weights given an input-output relation. We instantiate this mechanism for
parametrized weights and local bounded weights.

In the conclusion we briefly discuss the limits and applications of the methods
proposed here.

2 Methods

Defining a continuous map.

Let us consider1 a dynamicvectorialmapv : Sn × R → Rm (e.g., for a 2D scalar
mapn = 2, m = 1) defined from:







τ v̇(x, t) = −Lv(x, t) +
∫

y
W(x − y)a(y, t) dy + Gi(x),

a(x, t) = ρ (v(y, t)) ,
v(x, 0) = Gi(x),

(1)

1Notations: Scalar are written in italic, vectors are written with lower-case bold letters and matrices with
upper-case bold letters. The identity matrix is writtenI. For a scalar functionf() applied to a vectoru,
v = f(u) means∀i,vi = f(ui).

INRIA



Algorithmic adjustment of neural field parameters 5

where at locationx and timet, v(x, t) represents the unitstate(related to the membrane
potential in scalar models) anda(x, t) accounts for the unit output positiveactivity
(usually related to the firing rates in scalar models).

Here,i(x) models the input (related to a membrane current in scalar models). It
is supposed constant in the sequel, unless explicitly specified (i.e. when considering
tracking and remanence).

The spatial domain of the model is a hyper-sphereSn though the domain is as-
sumed to be large enough to neglect boundary conditions. Numerical verifications are
going to validate this approximation.

Here, we do not consider only a scalar map but also a vectorialmap in order to
take more complex neural models (e.g., [22]) or several cortical layer (see [12] for an
illustration) or more complicated functional mechanisms (see [24] for a discussion)
into account.

For the input gainG, we assume without loss of generalityG = I in the sequel
(i.e. considering theGi → i transform).

Similarly, for the diagonal matrixL ≥ 0 (i.e. a positive matrix, thus with positive
diagonal elements) which accounts for the neural unit leak,without loss of generality

(i.e. considering thev →
√

L
−1

v transform), we assumeL = I in the sequel.
The matrixL is diagonal, but in the vectorial case, the interactions between layers,

i.e. between the components ofv, are defined via the non-diagonal elements of the
W(d) matrices.

The map is parametrized by the recurrent connection weightsW. One example are
radial “Mexican hat” connections (i.e. with exponential excitatory/inhibitory connec-
tions) which writes in the scalar case:

Wφ(y) = A+ e−|y|2/σ+ − A− e−|y|2/σ2
− ,

parametrized byφ = (A+, A−, σ+, σ−), accounting for the excitatory and inhibitory
gains and geometries, respectively. Other parametric instances are also considered in
the present framework.

In any case, the goal is to tune the weightsW in order to control the map’s output.
This shall be done either by nonparametric profiles, i.e. thus adjusting the weight values
W directly, or by parametric profiles and thus adjusting theirparametersφ.

Defining the output-state relation.

In this context, the output-state relation is modeled as a point-like non-linearity, as
illustrated in Fig. 1.

Piece−linear RectificationSigmoid Heaviside

Figure 1: Schematic representation of usual output-state non-linear relations in neural field
equations: The sigmoid profile corresponds to the average relation between membrane potential
and firing rate. The binary Heaviside profile is considered inorder to ease analytical derivations.
The piece-wise linear profile allows to take thresholding and saturation into account in conjunc-
tion with a linear response. The rectification profile takes into account the fact that the neural
activity is constrained to positive values. In this contribution, we consider rectification and, to
some extends, piece-linear profiles.

RR n° 6923



6 Cortex

The sigmoid profile corresponds to the average relation between membrane poten-
tial and firing rate (assuming slow variation of the potential with respect to firing-rate
sampling measure and Gaussian distributions of membrane potential and firing thresh-
old, see e.g., [7] for a review) and it is very often simplifiedas a piece-wise linear
profile (thus with thresholding and saturation bounding a linear response) or even a
drastic Heaviside profile used for analytical derivation purposes (e.g., [12]). The rea-
son for this over-simplification is the need to derive analytical results with the caveat to
model the input activity down to a simple on-off process, though analytical studies con-
sidering the sigmoidal shape of the transfer function are also available [8, 4]. Another
choice is to accept the fact that, up to our current knowledge, the level of modelization
of a neural field is rather far from the biological complexity. Applying the Occam razor
principle, the fact that the neural activity, viewed as a firing-rate, is thus constrained to
positive values can be considered as the minimal assumptionrelated to biological con-
straints (see, e.g. [15] for an early contribution and a deepdiscussion on the subject).
This minimal choice also results from the following numerical fact: It has been ob-
served that (see e.g. Fig.2), with “suitable” parameters, interesting properties of neural
fields (filtering, selection, tracking) [20, 21] can be obtained using rectification (instead
of usual sigmoid-like profiles).

Figure 2: An example of input (left-view) output (right-view) transformation via a non-linear
discrete map with rectification. The input is noisy (more than 20% of the signal) with three
bumps. The output “filters” the noise, and select the highestbump even if the lower bumps
have more energy (being wider). This result is obtained, from (2) with Mexican-Hat profiles
φ = (0.0015, 0.0015, 0.45 N, N), N = 100 and δ = 0.99. Furthermore, with the same
parameters, if the bump is moving, the mechanism tracks the highest bump.

We thus are going to consider rectification as output-state relation in the sequel.
We are also going to explain how the following results still apply to piece-wise linear
sigmoid-like profiles.

Using a numeric non-linear discrete map.

Since we want to derive algorithmic results, we must make explicit the numeric imple-
mentation of the previous theoretic equations.

INRIA



Algorithmic adjustment of neural field parameters 7

Let us thus consider the following non-linear synchroneousdiscrete scheme in time
and space, thus, now2 for x ∈ {0, N{n andt ∈ {0, T {, T < +∞:

u+(x, t) = ρ (u(x, t)) ,

u(x, t + 1) = u+(x, t) + δ
(

−u+(x, t) +
∑

y W(x − y)u+(y, t) + i(x)
)

,

u+(x, 0) = i(x),
(2)

providing0 < δ < 1, while3 the non-linearityρ(.) is a rectification, thus withu+(x, t) ≥
0.

This writes in compact matrix form:
ū+(t + 1) = F (ū+(t))

= ρ
(

ū+(t) + δ
[

−ū+(t) + W̄ · ū+(t) + ī
])

= ρ
(

K̄ ū+(t) + δ ī
)

, K̄ = 1 − δ
[

1 − W̄
]

,

whereū+ is aRn×m vector, whileW̄ andK̄ areR(n×m)×(n×m) Toeplitz matrices.
This corresponds to what is implemented in simulation codes(e.g., [20, 21]). How-

ever, the link between (1) (withK = L = I) and (2) is not straightforward and has to
be carefully derived, as performed now.

The derivation is not straightforward because (2) is not theEuler discretization scheme of (1). This
latter scheme writes:

u(x, t + 1) = u(x, t) + ∆T u̇(x, t)

= u(x, t) + δ
“

−u(x, t) +
P

y W(x − y)u+(y, t) + i(x)
” (3)

for a sampling period∆T , with δ = ∆T/τ and providingu
def
= v andu+ def

= a.
If v(x, t) > 0, v being differentiable (thus continuous), then in a neighborhoods ∈]t − ǫ, t + ǫ[

v(x, s) > 0, thusu(x, s) = u+(x, s) andu̇(x, s) = v̇(x, s) so that both schemes correspond,
because (1) and (2) behave as linear equations.

Otherwise, if−v(x, t) ≥ 0 then for identicalu(x, t) andu+(x, t) = 0 schemes (2) and (3)
verify:

δ (τ v̇(x, t) + v(x, t)) =
u(x, t + 1)|(3) + (1 − δ) (−v(x, t)) = u(x, t + 1)|(2) ≥ u(x, t + 1)|(3)

so that:
If v(x, t) ≤ 0 andτ v̇(x, t) ≤ −v(x, t) both schemes still correspond, since

0 ≥ u(x, t + 1)|(2) ≥ u(x, t + 1)|(3) ⇒ u(x, t + 1)+
˛

˛

(2) = u(x, t + 1)+
˛

˛

(3) = 0.

This conditions occurs iḟv(x, t) is small enough, in particular in a neighborhood of fixed points.
As a consequence, if both schemes converge towards a fixed point, the fixed point is the same (same

kind and same value).
However ifv(x, t) ≤ 0 andτ v̇(x, t) > v(x, t) both schemes differ, in the same way the Gauss-

Seidel scheme differs from (improving it) the Jacobi schemefor iterative solutions of linear systems. Here
the scheme (2) make use of theu+ rectified values as soon as available, instead of still usingthe non
rectified values as for the scheme (3). See [18] for a technical development and elements showing the
interest4 of the “Gauss-Seidel-like” scheme (2) with respect to the “Jacobi-like” scheme (3).

As a conclusion on this aspect, the series (2) converges to a discrete approximation
of (1) corresponding to the Euler discretization scheme, the standard numerical scheme
being improved here.

Anyway, it is easy to verify that the derivations proposed inthe sequel are obvious
to adapt to the scheme (3), if used instead of the scheme (2).

2We write{a, b{= {n ∈ N , a ≤ n < b}.
3Here we write∀i ∈ {1, m}, u+

i ≥ 0 asu+ ≥ 0 and∀i ∈ {1, m}, u+
i = ρ(ui) asu+ = ρ(u).

Furthermore:
ρ(u) = max(0, u) = (if u ≥ 0 thenu else0) = limǫ→0 ρǫ(u)

with ρǫ(u)
def
= H(u) u e−ǫ/u, H() being the Heaviside function, are equivalent definitions ofa rectifica-

tion. Theρǫ() function is theC∞ mollified form of the rectification.
4Interesting enough is the fact that some co-authors of the paper use this scheme for years thanks to

their “computer-scientist” intuition, before the following discussion has been made explicit thanks to the
“physicist” of the group.
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8 Cortex

Bump as required output.

In this context, the desired output profile is a bump, i.e. a bell-like profile, more pre-
cisely apositive, decreasing, radial symmetric profile, as observed for bubble of ac-
tivities in the cortex [2, 11]. A Gaussian profile is one example of a bump. In order
to capture the notion of bump at a more general level, we have proposed to consider
Gaussian enumerable linear combinations [1], which is suitable in the linear case, but
does not appear to be easily translatable to the non-linear case.

Following another track, we write a radial symmetric profile(without loss of gen-
erality aroundx0 = 0) as:

u(x) = u(r2), r = |x|
with u(r) > 0 (positivity) andu̇(r) ≤ 0 (decrease).

We further notice that the convolution:
(W ∗ u)(|x|2) =

∫

y
W(|x − y|2)u(|y|2) dy

of two radial symmetric functions is radial symmetric (easily shown, for instance, con-
sidering the invariance by a rotationR of (W ∗ u)(|Rx|2) = (W ∗ u)(|x|2)) while
in the general case,W(x) must be radial symmetric in order the convolution to pre-
serve radial symmetry for any radial functionu. We thus are going to consider radial
symmetric weights in the present study, thus only function on the magnituder.

There is however a tricky point here:convolution of radial symmetric functions are
not magnitude convolutions. More precisely, in the 2D scalar case5:

(W ∗ u)(r = |x|) =
∫

s
W (s, r)u(s = |y|) ds

with W (s, r) = s
∫

θ
W

(

√

|r − s|2 + 2 r s (1 − cos(θ))
)

dθ, whereas, for a convo-

lution, an expression of the formW (s − r) would have been expected.
This misleading fact is overcome in the second next section where a constructive

method is proposed to control the bump radial symmetric profiles.

3 Results about the convergence

Let us first discuss how to control the discrete implementation convergence.

Implementation as a contracting mapping.

In order to obtain the convergence of the iterative equation(2) towards a fixed point we
simply require the related mapping to be contracting, i.e.

∣

∣

∂F
∂u

∣

∣ =
∣

∣Σ′ K̄
∣

∣ < 1

whereΣ′ = diag(· · · , ρ′i, · · · ) is the diagonal matrix withρ′i = ρ′
(

K̄ ū(t) + δ ī
)

∈
{0, 1} whether the value is negative or positive, respectively.

This allows to write pragmatic conditions of convergence, as discussed now.
This also restrains our study to convergence to a fixed point,without taking other

asymptotic dynamics into account [6].

5The same results indeed occurs in the n-dimensional vectorial case:v(r) =
R

s W(s, r)u(s) with:

W(s, r) = sn−1
R

n
dµnW

„

q

|r − s|2 + 2 r s (1 − eT
1 n)

«

, e1 = (1, 0 · · · 0)T ,

writing x = r m, |m| = 1 andy = s n, |n| = 1 with dy = sn−1 ds dµn, anddµn = dn{···j··· },j 6=i

ni ,

while ds = nT dy, thus not of the formW(s − r), because of thes r term in the previous expression.

INRIA



Algorithmic adjustment of neural field parameters 9

Convergence in the linear case.

Assume that all output values are positive, i.e.ρi = 1, thus no rectification. This occurs
typically with excitatory weights only. This corresponds to a pure linear transforma-
tion.

In this case, since
∣

∣

∂F
∂u

∣

∣ =
∣

∣K̄
∣

∣, the convergence condition now writes:
|K̄| < 1 ⇔ |W̄| < 1 as soon as0 < δ < 1,

i.e. in words: the system is contracting if the magnitude of the global weight matrix is
lower than one. If higher than one, the system diverges, in the general case.

Since the matrix is symmetric, because we consider radial symmetric weight profiles, its magnitude
(defined as|W̄| = maxū,|ū=1| |W̄ ū|) corresponds to its spectral radius i.e., its eigen-value of highest
magnitude.

The previous result is then a consequence of the fact, easy toverify, thatK̄ andW̄ have the same
eigen-vectors, with corresponding eigen-valuesλK̄ andλW̄ verifying:

λK̄ = 1 − δ (1 − λW̄).

This condition is simple to check6 at the numerical level, using the power method
[10], which efficiently calculates the highest matrix eigen-value, i.e., the magnitude of
the matrix in our case, via the converging series(ūs, λs):

{

ūs+1 = W̄ ūs/λs λs = |ūs|
ū0 = (1, · · · , 1)T λ0 = |ū0|

yielding |W̄| = λ∞.
We numerically observed that convergence of the previous power-iteration method

to estimate|W̄| up to a precision of10−3 is obtained in about2 to 5 iterations for the
different results reported here, very often2 to 3, about10 in the worst cases. This is
due to the choice of̄u0 (never orthogonal to the final eigen-vector, as required by the
method) which is close to the final valueū∞. This value has been chosen considering
thatW̄ is not only a Toeplitz matrix7, but close to a circulant matrix (considering the
previous boundary conditions), thus with eigen-elements in closed form: This value
for ū0 corresponds to a eigen-value close to the weight’s average value. It is easy
to verify, as a rule of thumb, thatthe magnitude is always higher than the weight’s
average value, while we have numerically observed that both values are closed for
high magnitude|W̄|.

Tuning the parameters in the linear case.

The key fact at this point, is thatconvergence does not depend onδ (as soon as lower
than 1). It means that we can use highδ values and speed up the convergence. It also
means that it is not always an optimal idea to make all the analysis in the continuous
case and then blindly “discretize with a smallǫ”.

More than that, the calculation not only tells if the system is contracting or not, but
since the equation is linear, allows to calculate the maximal weight magnitude which
guarantees the convergence. In other words, the previous algorithm tells how torescale
the gain parameters (e.g.,|A−| and|A+| for Mexican-hat profiles) in order to guaranty
the convergence.

Although this is not going to be true in the non-linear case, in the linear case, the
final result does not depend onδ and the closed-form solution writes, reintroducing the

6Numerical implementations used in this paper are availableathttp://enas.gforge.inria.fr.
7The previous condition, although very efficient in practice, does not directly make profit of the fact that

W̄ is a Toeplitz matrix. It might however be interesting to explore this algebraic property and analyze to
which extends this yields a stronger result about convergence, especially in the non-linear case.
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10 Cortex

input gain matrixG defined in (1) for the purpose of the discussion:

ū(∞) = [1 − W̄]−1 Ḡ ī, (4)

sinceū(t + 1) = K̄ ū(t) + δ Ḡ ī in this case, thus:

ū(∞) =
∑

t K̄
t δ Ḡ ī =

[

1 − K̄
]−1

δ Ḡ ī =
[

1 − W̄
]−1

Ḡ ī.
This formula is instructive because it explains why using a linear map without non-

linear output-state relation does not allow the recurrent connections parameterized by
W̄ to produce a selection, unless̄G is singular. The simple reason is that selection
means that a whole set of non similar inputs (with the desiredbump added to different
kind of distractors) map onto the same output (without the distractors). This linear
filtering has a kernel reduced to{0} thus is not able to project several inputs onto a
unique output. IfḠ is singular, selection can be produced, but without any needof
the recurrent connections. In fact, in the linear case, the DNF is equivalent to a simple
feed-forward filter.

Furthermore, e.g. for scalar Mexican-hat profiles, we can describe how conver-
gence varies with|A−|/|A+| and withσ−/σ+, as detailed in Fig. 3.

0

1 2
2

1

0

Figure 3:Representation of|W̄| magnitude variations for Mexican-hat profiles. Here the 2D
scalar map size is100×100 andσ+ = 10, whileA+ = 1/20, for magnitudes between0 (black)
and1 (white). Results are obtained in less than5 iterations of the power-method. We observe the
non trivial increase and decrease of the magnitude depending on the inhibitory/excitatory gain
and width ratios: It increases withσ−/σ+ and decreases with|A−|/|A+| whenσ− < σ+ and
|A−| < |A+| which corresponds to the intuition that inhibition “balances” excitation. A dual
effect is observed whenσ− > σ+ and|A−| > |A+|: Inhibition, when not thresholded by the
rectification mechanism, also induces high magnitudes, thus instabilities. In other conditions the
magnitude is not monotonic.

Using bounded excitation in the non-linear case.

The previous result is quite informative, but does not correspond to our need, since rec-
tification has still to be taken into account. However, we canmake use of the previous
result and derive the following sufficient boundary condition, in the non-linear case:

|W̄+| < 1, W̄+ = max(0,W̄) (5)

i.e. in words:the non-linear solution remains bounded and is convergent if the magni-
tude of the positive (excitatory) weights is lower than one.

INRIA



Algorithmic adjustment of neural field parameters 11

A few algebra yields, as soon as̄u > 0, i.e., fort > 0 :
K̄ ū + δ ī = [1 − δ [1 − W̄

+]]
| {z }

K̄+

ū + δ ī + δ min
`

W̄, 0
´

ū
| {z }

ū<

with ū< ≤ 0 andū> = K+ ū + δ ī ≥ 0, thus:
˛

˛F(ū) = ρ
`

K̄ ū + δ ī
´

˛

˛ ≤
˛

˛ρ
`

K̄+ ū + δ ī
´

= K̄+ ū + δ ī
˛

˛,
since

˛

˛ρ(ū> + ū<)
˛

˛ ≤
˛

˛ρ(ū>)
˛

˛.
The upper-bounding series defined from:

0 ≤ ū(t + n) ≤ ū>
n =

“

K̄+ ū>
n−1 + δ ī

”

, ū>
0 = ū(t)

is linear and convergent if and only if|K̄+| < 1 ⇔ |W̄+| < 1, reusing the previous result.
Sinceū is positive and bounded by a convergent series, it remains bounded (i.e., convergent or os-

cillatory inside the bounds). However, the previous derivation yields a stronger result because:
∀i, 0 ≤ [Σ′ K̄u]i ≤ [K̄+u]i

since if[K̄u]i ≤ 0 ⇒ [Σ′ K̄u]i = 0 while [K̄u]i ≤ [K̄+u]i, as derived in the previous lines. Thus
˛

˛

∂F
∂u

˛

˛ =
˛

˛Σ′ K̄
˛

˛ ≤
˛

˛K̄
˛

˛ < 1

as soon as|W̄+| < 1 and the series of scheme (2) is contracting as desired.

This captures the intuitive fact that the negative (inhibitory) weights action is al-
ways bounded by the rectification, thus only positive weights matter. An example of
practical adjustment curve is given in Fig. 4.

Figure 4:An example of maximal gain curve in the non-linear case. Given σ+ in abscissa (in
pixel unit for a100×100 2D scalar map), the normalized maximal value oflog10(A+) is drawn.
Here, not a Mexican hat but a step-wise constant profile has been used, in order to illustrate the
fact that the derivation can be performed with any kind of weight profile.

Without this condition, as corroborated by numerical experiments, the system is in
usual conditions divergent. This is easy to figure out: as soon as an input is closed to
theW̄+ eigen-vector related to the eigen-value higher than one, itis going to induce a
divergence, unless the inhibitory weights balance this effect. Since positive excitatory
weights are concentrated in a short-range neighborhood, a localized bump essentially
activates excitatory connections without inhibition, leading to divergence if|W̄+| >>
1. This corresponds to what has been observed numerically, asdetailed in Fig. 5.
This corresponds to the fact that the proposed condition is sufficient but not necessary.
Furthermore, this also does not mean that, given arestrainedset of inputs, higher
parameter’s values are not going to yield convergence.

The system is also convergent if|W̄| < 1 but this is a stronger condition which
bounds both excitatory / inhibitory connections whereas the proposed condition does
not constraint inhibition since the rectification non-linearity allows to stabilize inhibi-
tion.

This condition still does not depend onδ, as soon asδ < 1. It does not mean that
the way it converges does not depend onδ: Depending onδ the convergence might
occur with dumped oscillations or not, be either faster or slower, etc.. This has been
numerically explored in Fig. 6 leading to a simple rule of thumb to adjustδ.
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|W |
+

G

Figure 5:Behavior of the non-linear discrete scheme, when|W̄+| > 1, for the same experi-
mental conditions as reported in Fig. 2 except that the excitatory weights are reinforced in order
to increase|W̄+|. Given|W̄+| in abscissa, the input/output gainG is drawn. We numerically
observe the divergence for|W̄+| >≃ 1.5. In the intermediate range|W̄+| ∈ [1.. ≃ 1.5] the
scheme is still converging to fixed point, but with an exponential gain increase and small residual
oscillations observed during the numerical experiment.

δ = 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

|W̄+| = 0.0 135 14 5 7 4 6 8 17 > 103 > 103 > 103

|W̄+| = 0.1 169 17 9 6 5 5 6 8 14 40 > 103

|W̄+| = 0.2 202 21 11 7 6 5 6 7 10 14 33
|W̄+| = 0.5 392 40 21 14 11 9 8 7 7 8 8
|W̄+| = 0.9 569 58 30 21 16 13 11 10 9 9 8

|W̄+| = 0.95 618 63 33 22 17 14 12 11 10 9 9
|W̄+| = 0.99 667 68 35 24 19 15 13 12 10 10 9

Figure 6:Convergence rate measured as the number of iterations to obtain a fixed point up to
a mean value variation below10−3, for the same experimental conditions as reported in Fig. 2
(corresponding to the 1st line of results), except that the excitatory weights are reinforced in
order to increase the magnitude (subsequent lines of result). We clearly observed the interest
of of using non-negligible values ofδ, and the influence of the weights magnitude. For small
values of the magnitude, a valueδ ≃ 1/2 seems optimal with a switch towardsδ → 1 for highest
values of the magnitude. For convergence rate higher than103 the system is mainly oscillating
(dumped oscillations) while always bounded as predicted.

Application to tracking.

The fact convergence does not depend onδ, as soon asδ < 1, allows to introduce high
convergence rates as illustrated in Fig. 6. This does not only “save computation time”
but allows to track a moving input at a high rate since convergence to the modified state
is improved. As far as biological neural maps are understoodthe convergence of the
neural field towards a new state is not the result of the convergence of a progressive
iterative process, but a tip over from one state to another when the input changes.

Here, our study shows how to adjustδ in order to obtain optimal convergence rate,
thus optimally track a moving input.

What we have numerically experimented with the conditions reported in Fig. 2
(thus with|W̄+| = 0.0), is that the tracking of a moving bump is optimally tracked for
δ ≃ 1/2.
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Algorithmic adjustment of neural field parameters 13

Application to remanence.

Short-term memory behavior is related to the capability to maintain the output for a
short period of time, even if the input vanishes. This is a behavior inverse from the
previous one, since we do not require the system to quickly converge to the new state
(corresponding to a null input), but remains in the old state(related to the previous
input).

In our framework this may correspond to|W̄+| ≥ 1, as shown, in the linear case,
by the formula (4) and experimented numerically in Fig. 5, for 1 ≤ |W̄+| ≤≃ 1.5. If
|W̄+| ≥ 1, the linear transfer function has “poles” (corresponding to resonances in os-
cillatory regimes), i.e. unbounded output for infinitesimal inputs. Numerically, this cor-
responds to high-gains (corresponding to dumped resonances in oscillatory regimes),
and slow time decays, as required for such behavior. Tuning the scheme parameters in
this range allows to approximate remanence, although this yields solutions at the edge
of instability.

Another strategy is to consider not a rectification but a piece-wise linear sigmoid
profile as shown in Fig. 1 and consider|W̄+| ≥ 1. In that case the scheme tends to in-
crease the output or yield divergence, but because of the saturation, the output remains
bounded. This allows to easily generate remanence, as it is observed in numerical sim-
ulations [21], and the behavior is more robust. The add-on ofthe previous derivations
allows to know the scheme parameters range to obtain this behavior.

4 Results about the bumps

Analysis of the fixed point equation.

Let us now discuss how to obtain, at the implementation level, bumps with controlled
shapes. Since there is a fixed point converging dynamics, we simply have to consider
the fixed point equation in this section. The scheme (2) or (3)fixed point equation
writes, given a radial inputi(|x|) and outputu(|x|, +∞):

z̄ = Ū+ W̄ + (̄i − ū+ − ū−/δ) = 0 (6)

with ū+ = ρ(ū) = max(0, ū) andū− = ρ(−ū) = min(0, ū), thusū = ū+ + ū−,
while:

U+
k (|x|) =

∑

y,|y|=rk
u+(|x − y|)

defines the convolution in the discrete case. In the 2D case for instance, for weights
defined in a bounded circular neighborhood of radiusR, this convolution writes:

ˆ

Ū+ W
˜

(x, y) =
PK

k=1 W [k]
P

(i,j),i2+j2=r2
k
≤R2 u(x − i, y − j)

= W [1] u(x, y) + W [2] (u(x + 1, y) + u(x − 1, y) + u(x, y + 1) + u(x, y − 1)) + · · ·
as represented in Fig. 7 forR = 5, while it is obvious, from a piece of symbolic
computation, to derive for anyR theK related terms, with:

R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
K 2 4 7 10 14 19 24 30 37 44 52 59 69 78 87 98 ...

showing a supra-linear and sub-quadratic (numericallyK = O(R≃1.7)) increase of the
number of radial coefficients.

This fixed-point equation splits in two parts:
u(|x|) > 0 z̄|x| =

[

Ū+ W̄ + (̄i − ū+)
]

|x| ⇒ [1 − W̄]u+(|x|) = i(|x|)
u(|x|) ≤ 0 z̄|x| =

[

Ū+ W̄ + (̄i − ū−/δ)
]

|x| ⇒ [1 − 1/δ − W̄]u+(|x|) ≤ i(|x|)
i.e.:
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0 0 0 0 0 14 0 0 0 0 0
0 0 14 13 11 10 11 13 14 0 0
0 14 12 9 8 7 8 9 12 14 0
0 13 9 6 5 4 5 6 9 13 0
0 11 8 5 3 2 3 5 8 11 0
14 10 7 4 2 1 2 4 7 10 14
0 11 8 5 3 2 3 5 8 11 0
0 13 9 6 5 4 5 6 9 13 0
0 14 12 9 8 7 8 9 12 14 0
0 0 14 13 11 10 11 13 14 0 0
0 0 0 0 0 14 0 0 0 0 0

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rk 0 1
√

2 2
√

5
√

8 3
√

10
√

13 4
√

17
√

18
√

20 5

Figure 7: Representation of the radial symmetric discrete convolution indexing in the
2D case for a bounded circular neighborhood of radiusR = 5. The 2D locations of the
indexes are drawn in the top array and the correspondence between index and radius in
the bottom table. This indexing has been derived using a piece of symbolic computation
maple code, also allowing to automatically generates the optimalnumericalC/C++
code for any convolution of radiusR.

• A linear responsefor points inside the bump (withu(|x|) > 0), which does not
depend onδ, and is related to the output response adjustment.

• An adaptive thresholdcut-off mechanism outside the bump (withu(|x|) ≤ 0),
which allows to perform selection, and is related to input inhibition control.

- The key point is that,given a desired outputu+, the equation is linear with respect
to the weightsW.

- Furthermore,δ simply scales the inhibited part of the outputu− and is thus not
an independent parameter.

- Hereu−/δ is a hidden parameter of the problem: It allows to specify thelevel of
inhibition against input perturbations.

- There is a scale invariance, in the sense that multiplying input and output by
the same scale factor, does not change the equation with respect toW. We thus are
going to consider, without any loss of generality, normalized input in the sequel, i.e.
considering thevolume:

V (i) =
∑

x

|i(x)| (7)

input withV (i) = 1.
- Finally, the output response adjustment is entirely defined by the input-output dif-

ference[̄i−ū+]|x|,u(|x|)>0, which is yet another simplification of the problem structure.
Given these properties, let us now formalize the output control.

Position of the problem.

The fact we want to “tune” the weightsW, as illustrated in Fig. 8, can be formulated
as follows: Given a set of input̄il, indexed byl and a set of corresponding desired
outputū+

l , the goal is to find the desired optimal weightsW that maps the input onto
the output.
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W

i u

u

−

+

 u

Figure 8:Schematic representation of the problem position: given one inputi (or a set of) and
the related desired outputu+, the goal is to find the optimal weightsW. The inhibited output
u− is a hidden parameter of the problem.

This can be turned into a variational specification:Given an input-output set{· · · (̄il, ū+
l ) · · · },

the optimal weights minimize:

C =
∑

l

∑

|x|

∣

∣z|x|,l
∣

∣

2

Λ|x|,l
+

∑

y

|∇W(y)|2L (8)

where:
- The output errorz|x|,l magnitude at point|x| for the input-output sample of indexl
(defined in (6)) is minimized, up to some pondering matrixΛ|x|,l allowing to take into
account the relative importance of a sample of indexl and a map locationx.
- The weights are regularized in the sense that the weight’s gradient∇W is also mini-
mized, up to some pondering matrixL, allowing to avoid ill-posed specifications.

Here, for the sake of simplicity, we consider quadratic norms, yielding linear equa-
tions for the extrema, although in this finite discrete case,other norms are rather easy
to introduce.

This specification allows to immediately derive:
[

∑

l

(Ū+
l )T Λ̄l Ū

+
l

]

W̄ =
∑

l

(Ū+
l )T Λ̄l

[

īl − ū+
l − ū−

l /δ
]

+ ∆LW (9)

writing Λ̄l the block-diagonal matrix defined byΛ|x|,l, while ∆LW is the discrete
Laplace operator accounting for the regularization term. Here we deliberately use over-
simplified notations for this very standard regularizationmechanism∆LW, see e.g.,
[24] for further technical details.

Specification of the estimation parameters.

The hidden variablēu−
l /δ is defined at points whereu(|x|) ≤ 0 and can be derived

from (8):
[
∑

l Λ̄
−
l

]

ū−
l /δ =

∑

l Λ̄
−
l

[

Ū+
l W̄ + īl

]

,
writing Λ̄−

l the block-diagonalmatrix defined byΛ−
|x|,l = (if u(|x|) ≤ 0 thenΛ|x|,l else0),

i.e., taking only points withu(|x|) < 0, thus wherēu− is defined, into account. This
yields after a few algebra:
[

∑

l(Ū
+
l )T

[

Λ̄l − Λ̄l

[
∑

l Λ̄
−
l

]†
Λ̄l

]

Ū+
l

]

W̄ =
∑

l(Ū
+
l )T Λ̄+

l

[

īl − ū+
l

]

+ ∆LW,

writing Λ̄+
l the block-diagonalmatrix defined byΛ+

|x|,l = (if u(|x|) > 0 thenΛ|x|,l else0),

while M† is the pseudo-inverse of the matrixM. This last equation, entirely defined
from (8), specifies the weightsW as a function ofi andu+.

Let us discuss this last point. The pondering matrixΛ|x|,l ≥ 0 defines, for each
point and sample, the relative weight of the estimation (in other words the “estimation
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gain” for this point and sample). A zero value allows to eliminate the related measure
in the estimation process, a high value to make it important.For scalar maps (m = 1)
Λ|x|,l ≥ 0 is a number, otherwise it is am × m positive symmetric matrix. As far as
Λ̄+

l is concerned (i.e., for point withu(|x|) > 0), this corresponds to pondering the
output value, which is an interesting feature. As far asΛ̄−

l is concerned (i.e., for point
with u(|x|) < 0), this corresponds to pondering the “absence” of the outputvalue,
i.e. the inhibition level. This inhibition level is thus nottuned here though a value but
though a kind of “estimation gain”. An alternative, at the specification level, would be
to simply specifyu−/δ, i.e. the inhibition value itself: This is very easy to introduce
in (9) which is now the linear equation definingW.

This specification choice has also a computational advantage, since using (9) is nu-
merically more stable than the previous equation: Ifu−/δ is not specified as an income
of the problem, the previous derivation corresponds to eliminatingu−/δ (solving (8)
whereu(|x|) < 0, thus considering input inhibition) and reintroduced the result in
order to findw (solving (8) whereu(|x|) > 0, thus considering output adjustment). If
u−/δ is directly specified, then (9) allows us to linearly combineboth output control
and adjustment inhibition in the estimation.

A step further, equation (9) is a “Hebbian” equation in the following sense: it is
local and only depends on the output value and linearly on theinput value. In the
present study, for the sake of simplicity, we implicitly assume that the weightsW do
not depend on|x|. However, this is not a limitation of the method: The criterion (8) is
still well-defined in the more general case of non-constant weights. Then, equation (9)
is “local” in the sense that̄U+

l only depends on the output values “around”x (more
precisely in a neighborhood corresponding to the size of theoutput bump) while it only
linearly depends on the input at pointx. This is not the case if we do not introduce
u−/δ as an income of the problem.

As a consequence, we propose to use (9) in the sequel. Furthermore, for the sake of
simplicity, we are going to consider̄Λ = I (no pondering), while we simply consider
a singleton of input-output couple. The idea is to validate and study the method in a
relatively simple case, before making profit of it at its whole level of generality.

Parametric 2D scalar piece-wise constant weights adjustment.

In order to apply the previous framework we start considering the simplest possible
radial symmetric weights profile:

W (|y|) = if |y| < S then + W0 else− W1

in words an excitatory flat constant profile of magnitudeW0 in a central area of radius
S and a spatially unbounded flat constant inhibitory profile ofmagnitudeW1 outside
the disk of radiusS, as illustrated in Fig. 9.

This is thus a parametric weight profile, parametrized withφ = (W0, S, W1).
We further assume thatS ≪ R, R being the bump radius, i.e., that the excita-

tory weights radius is small with respect to the bump size, which allows to derive an
approximate closed-form for the input-output relation.

More precisely, this allows to write after a few algebra:
u(r = |x|) =

∑

|x−y|<S u(|y|)
= W[0,R−S](r)

[

π S2 u(r) − π S4

2 + O(S6 + S4 r2)
]

+ W[R−S,R+S](r) υ(r2)
,

with W[a,b](r) = if a ≤ r ≤ b then1 else0 while υ(r2) is a term neglected in the
sequel, sinceS ≪ R.
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R

û
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u

R −  S > R + SSS

R+S .. +oo : outside convolution bound

R .. R + S   : input inhibition influence

R − S .. R    : mixed spurious domain

0 .. R − S    : output convolution

Figure 9:Left view: Radial symmetric piece-wise constant weight parameters profile,W0 being
the central excitatory magnitude,W1 the peripheral inhibitory magnitude, whileS is the radius
of the circle separating both weight’s regions.Right view: Schematic representation of the con-
volution of a bumpu of radiusR by a radial symmetric sum of radiusS ≪ R. The result̂u is
decomposed in four zones, as made explicit in the right part of the diagram, and obtained when
deriving the closed form approximation of this convolution.

This leads to the following closed-form formulas:
{

u(r) = α−1 (i(r) − β ǐ) +O(S4) r ∈ [0, R − S] linear response
i(r) ≤ β ǐ +O(S4) r ∈ [R + S, +∞] threshold inhibition

with α
def
= 1−π (W0+W1)S2 andβ

def
= (α+π W1 R2)−1 W1 while ǐ =

∑

|y|<R i(|y|).

Let us derive the linear response equation. Ifu(r = |x|) > 0:
u(x) =

P

y
W(x − y)u(y) + i(x)

= W0
P

y,|x−y|<S u(y) − W1
P

y,|x−y|≥S u(y) + i(x)

= (W0 + W1)
P

y,|x−y|<S u(y) − W1

P

y u(y) + i(x)

= (W0 + W1) û(x) − W1 ǔ + i(x)

writing ǔ =
P

y
u+(y) =

P

y,|y|<R u(y).

Considering the approximation̂u(r = |x|) ≃ W[0,R−S](r) π S2 u(r) + O(S4) allows to
further write:

u(x) = π (W0 + W1) S2 u(x) − W1 ǔ + i(x) + O(S4)
thus:

ǔ =
P

x,|x|<R u(x) = π (W0 + W1) S2 ǔ − W1 π R2 ǔ + ǐ + O(S4)

considering
P

x,|x|<R 1 ≃
R

x,|x|<R
1 = π R2, leads to the linear response equality, written above

in the scalar case.
Otherwise, ifu(r = |x|) ≤ 0 and|x| > R + S:

P

y
W(x − y)u(y) + i(x) ≤ 0

W1 ǔ + i(x) ≤ 0
leads to the threshold inhibition inequality.

In order this equation to be well defined, we must have:
π (W0 + W1)S2 < 1,

which is in direct relation with the convergence condition (but does not correspond to
it, since we use an approximation here).

This derivation is informative and shows that, up to the proposed approximation,
the response is mainly a thresholding mechanism: the effectof the computation is to cut
the input under the given threshold, thus eliminating spurious distractors of the main
input bump and reducing also the output volume. The calculation is non trivial because
the thresholdβ ǐ is adaptive and related to the input volume around the outputbump.
The radiusR of the output bump is an implicit parameter depending on the weight
parameters, thus not easy to read on the formula. These aspects are further detailed and
verified numerically in Fig. 10 and Fig. 11, providing also some abacus to choose the
desired output bump.

Non-parametric 2D scalar spatial-bounded weights adjustment.

In this second numerical application, we consider non-parametric 2D scalar spatial-
bounded symmetric radial weights, as made explicit in Fig. 7.
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Figure 10: Numerical verification of the capability to control the output radius and volume,
for a normalized input profile of radius20 and a 2D100 × 100 scalar map. The weight radius
values areS = {2 (red), 5 (green), 10 (blue), 20 (magenta)} while the excitatory magnitudeW0

is adjusted fromS in order to have|W| = 0.99. The inhibitory magnitude varies inW1 ∈
[0, 0.1]. WhenW1 = 0 there is no filtering (output equals input). IfW1 is too small the
excitatory weights diffuse the input all over the map. IfW1 is too high (as forS = 2 andW1 >
0.073) inhibition is high enough to cancel the whole input. LargerS increase diffusion of the
input thus enlarge the output radius. Higher inhibition magnitudesW1 increase the thresholding
thus decrease the output radius. The output volume is also obviously controlled by the input gain
(taken as1 in the derivation to ease the notations).

Input Output Radius Output Volume

B

D

20
100

10

R

W1

V

W1

Figure 11:Numerical verification of the capability to perform selection between the main input
and distractors, for a normalized input profile of radius20 and a 2D100 × 100 scalar map,
plus a distractor of width10, heightB and eccentricityD. Here the radius is fixedS = 5 and
the excitatory magnitudeW0 to have|W| = 0.99. The inhibitory magnitude varies inW1 ∈
[0, 0.1]. The green curves correspond toD = 20, B = 0.9, the blue curve toD = 15, B =
0.9, and the magenta curve toD = 10, B = 0.9. The selection mechanisms (comparing the
results with those of Fig. 10) clearly works and we obtain similar results, as predicted by the
previous derivation, since the input dependence is mainly related to the input volume in the
output radius disk. Small variations qualitatively correspond to this radius variability. The red
curves correspond toD = 20, B = 10 thus the distractor is higher than the central bump and
the selection fails, as expected. In this latter case, when inhibition increases, the overall amount
of input yields an output extinction.

Now the profile is parametrized by the radial valuesW [i], i ∈ {1, K}. In order to
instantiate the general method proposed in (8) and (9), we fixa form for the input and
output, presently:
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u(r) = AH(R − r) 2/π [R2 − r2]/R4 + H(r − R)T
[

e−(4/π A/(R3 T )) (r−R) − 1
]

i(r) = H(C − r) 2/π [C2 − r2]/C4

thus quadratic input and output profiles with predefined parameters, as detailed in
Fig. 12, while the inhibited profile is exponential and chosen in orderu to remains
C1.

i u

C T
R

H(A)
r + s

r − s

Figure 12: Schematic representation of the two main elements of the numerical set-up.Left
view: An “generic” input of radiusC and volume1 in correspondence with a generic output of
heightH corresponding to a volumeA and radiusR is chosen. The level of inhibition is fixed by
an additional parameterT corresponding to the asymptotic value of the inhibited activity. Right
view: A schematic representation of the numerical integration of the convolution at a given radial
location.

The numerical approximation of the convolution writes:
Us(r) ≃ 2 π s

∑

θ u+(r2 − 2 r s cos(θ) + s2) /
∑

θ 1
as illustrated in Fig. 12.

The general criterion (8) simply writes in this case:
minW̄ |z̄| + L

∑

s dW[s]2

for a regularization parameterL.
Numerical results are reported and discussed in Fig. 13.

Application to inhibition control of the output radius.

As a final numerical application, let us consider parametric2D scalar Mexican-hat
symmetric radial weights, as made explicit in the section 2.

We reuse the previous form of input and output (bounded quadratic response and
exponential inhibition) withA = 1 since the output volume control is easily tuned
by the input gain. We fixT = 1 since it has been observed that this parameter value
is not critical. We further do not consider regularization (L = 0) since the profile is
parametric thus de-facto regular.

Since we are interested here in controlling the output radius, we are going to explore
the relation between the input radiusC and the output radiusR.

Regarding the Mexican hat profile, we consider that the weight width parameters
σ+ andσ− are structural parameters, thus fixed by the connectivity. Astep further,
since we are interested in selection and remanence we choose|W+| = 0.9 so that the
excitatory weights magnitude|A+| is fixed fromσ+ as detailed previously.

We are thus left with controlling the inhibitory weights magnitude|A−| obtaining
results given in Fig. 14. The interesting conclusion is thatMexican-hat profiles (com-
pared to the previous profiles) are far from being optimal to control the output radius.
Sharp profiles (i.e. with excitatory/inhibitory weights clearly separated) seem a bet-
ter choice. Furthermore, not the magnitude but the width of the inhibition is the best
control variable to adjust the output radius.
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W k W k
R = 10, T = 1, A = 1, C = 10, L = 1 R = 10, T = 1, A = 1, C = 10, L = 10

basic input-output transfer input-output transfer with higher regularization

W k W k
R = 10, T = 1, A = 1, C = 20, L = 1 R = 20, T = 1, A = 1, C = 10, L = 1

bump width reduction bump width expansion

W k W k
R = 10, T = 0.1, A = 1, C = 10, L = 1 R = 10, T = 1, A = 5, C = 10, L = 1

input threshold reduction bump magnitude increase

Figure 13: Numerical results for non-parametric weights adjustment,here forW [k], k ∈
{1, 50}. The top-left curve corresponds to a standard input-output transfer, andthe optimal
weights correspond to pure inhibitory profiles, which corresponds to the usual practice of ex-
perimenters. However, the obtained shape might be counter-intuitive in the sense that inhibition
only increases with eccentricity up to the weights spatial bounds, without any decrease for high
eccentricities. Thetop-right curve corresponds to a standard input-output transfer, butestimated
with a much higher regularization parameterL. The nice result is that the shape is a bit smoother
as expected, but in fact only marginally depends on this extra parameter, which is non critical as
soon as set to a reasonable value. Themiddle-leftcurve corresponds to an output radius reduc-
tion with respect to the input radius, while themiddle-rightcurve corresponds to an output radius
expansion, which appears to be obtained by a non monotonic shape, according to the proposed
criterion. Thebottom-leftcurve corresponds to the choice of a lower inhibition levelT , again
showing the non-critical impact of this parameter, except an expected reduction of the inhibi-
tion weights magnitude. Thebottom-rightcurve correspond to bump magnitude amplification,
which is coherent with the apparition of excitatory weightsin this case. All profiles must verify
|W| < 1 since they map bounded input onto bounded output, thus in a case where the scheme
is converging.

5 Discussion and conclusion

The previous results do not “prove” the existence of stable bump solutions, this being
already known [27, 2] and extensively verified numerically.Here the goal is to calculate
algorithmically the related parameters. This modest objective is attained since we now
are able to tell which parameter set yields convergence and how to control the output
and the shape of the bump.
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R

|A−|

R

|A−|

R

σ−

σ+

Figure 14:Numerical verification of the capability to control the output radius with inhibition
adjustment. The input radius values areC = {10 (red), 20 (green), 35 (blue), 50 (magenta)}.
The inhibitory magnitude varies in|A−| ∈ [0, 0.02] while other parameters are adjusted as
discussed in the text.Left view: σ−/σ+ = 5. The result is somehow negative: the output radius
is always smaller than the input radius and has only tight variations (in the range where the
inhibition is high enough to perform filtering and small enough to avoid the output extinction).
Middle view: σ−/σ+ = 1.5. The result is now less negative: the output radius can be controlled
by inhibition adjustment. However the output radius is always higher than the input radius.
Right view: Here|A−| = 0.01 and theσ−/σ+ ∈ [1, 5] is varied. It is appears clearly that this
controlled variable is much more efficient to adjust the output radius.

Further applications of bump control.

One track is to consider how tuning distributed propagationdelays and also feedback
delays [3] can, at the implementation level, control bumps but also traveling fronts [16]
.

Application to other paradigms.

In a recent work [20] a model has been designed that performs global competition,
only using local connections, with diffusion of the inhibition throughout the network.
This is far quicker to have a few local interactions when computing activity within
the network and makes the model a real candidate for distributed computations. This
paradigm is taken into account here, with non-parameteric weight adjustments.

Figure 15:An example of asynchronous sampling of such maps (event-based implementation),
applying convergence criteria derived here. We have numerically verified the conjecture that
the present results apply when using asynchronous sampling. Left view: intermediate result,
the fact asynchronous sampling yields randomization is visible. Right view: final result, after
convergence.

A slight modification of the previous derivation, allows to not only consider syn-
chronous but asynchronous sampling (see [21] for details) since the map is still con-
tracting when using asynchronous sampling. This has been numerically experimented,
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as shown in Fig. 15 and has to be further investigated. Interesting enough is the fact
that this simulation has been implemented on an event-basedneural network simulator,
in order to consider neural maps not as simple “analog” calculations, but both analog
and event-based [19].

We have proposed the numerical results only for 2D scalar maps, for the simple
reason we are publishing these results . . on a 2D scalar support. All derivations have
been developed for the vectorial case and are thus availablefor higher-dimensional
paradigms.

Here we have restrained the discrete scheme to (2) with0 < δ < 1. It is an
interesting perspective to consider convergence and output control for1 ≤ δ < 2 or
higher values.

Beyond parameter adjustment.

Beyond such technical variants, the idea is to get rid of continuous schemes of the
form (1), whereas directly study to which extends a discretedynamical system of the
form (2) is of interest to analyze and simulate the neural maps behaviors. This is, for
instance, the case in [22] where the dynamics of spiking and spiking-bursting activity
of real biological has been studied via a discrete two-dimensional map defined with
one fast and one slow variable. As a consequence, discretized neural fields power of
description is still to be explored for both distributed computational paradigms and
biologically plausible computational map models

A Tuning bumps in the linear case

Bump as required output In this context, the desired output profile is a bump, i.e.
a positive, decreasing, radial symmetric profile,as observed for bubble of activities in
the cortex [2, 11]. A Gaussian profile is one example of bump. In order to capture the
notion of bump at a more general level, we propose to considerGaussian enumerable
linear combinations, i.e.Gaussian series:

b(p) =
∑

s∈{s1,··· },s>0 b∗(s) e−s |p|2,

writing s = 1
2 σ2 for an enumerable set of “width”s, which is of common use (e.g.

[26]). Smalls for flat Gaussian (s = 0 is the “constant part”), Larges for tight Gaus-
sian.

The goal is thus to find the parameters allowing to generate bumps, controlling their
width, amplitude and shape.

Let us now discuss how to obtain, at the implementation level, bumps with con-
trolled shapes, in the linear case.

Gaussian series approximate bumps. Radial symmetric profile means thatb(p) =
β(|p|2), normalized iff

∫

p
bi(p) = 1. They are positive iffβi(r) ≥ 0 and decreasing

iff β′
i(r) ≤ 0. This puts our specifications in equation.
For Gaussian series:

β(r) =
∑

s b∗(s) e−s r = L(b∗)(r)
whereL stands for the Laplace transform, whileb∗ has been extended to the continuum
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using a Dirac comb, while the Post-Bryan inversion formula8 [5] allows to consider the
Laplace transform of such positive functions.

This observation means thatbumps can be approximated using Gaussian seriesfor
the simple reason that Gaussian series coefficients are nothing but the discrete approx-
imation of the bumpβ profile’s Laplace transform. This representation thus benefits
from all the Laplace transform properties:

Bump are normalized iff
∫

s>0
b∗i (s)(π/s)n/2 = 1. Several additional properties

characterize such bumps: they are flat at0 unless singular (i.e.|b(0)| < +∞ ⇒
|∇b(0)| = 0), vanish at infinity (limr→+∞ β(r) = 0) thus without constant compo-
nent (lims→0 b∗(s) = 0), etc..

Figure 16:An example of maximal gain curve in the non-linear case. Given σ+ in abscissa (in
pixel unit for a100 × 100 2D map), the normalized maximal value oflog10(|A+|) is drawn.
Here, not a Mexican hat but a step-wise constant profile has been used, since the derivation can
be performed with anyW profile.

Gaussian series yield “nice” bumps. The previous result is useful because it is very
easy to shape the bump using suitable coefficients, for instance using rational profiles
of the formβ1(r) = 1/(1 + |r|n/2), n even since:

b1(s)
∗ = 1

n

∑n
i=1 e−s sin(αi

n) sin
(

s sin
(

βi
n

)

+ αi
n

)

αi
n = π

n

(

2 i + n
2 − 1

)

βi
n = π

n (1 − 2 i)
or of the formβ2(r) = 1/rn, n > 0 since:

b2(s)
∗ = sn−1/n− 1!

as illustrated in Fig. 17. Such profiles correspond to desired bumps in neural field
applications, among many other suitable alternatives. They come with closed-form
formula and show how malleable are such shapes.

Note that a simple change of scale allows to adjust the width and the amplitude of
the bump, the challenge here being to adjust theshape.

Gaussian series are linear map fix points. Linear map fixed pointsu• are defined
by−u• + W ∗ u• + i = 0, where∗ stands for the convolution operator. Since convo-
lution and linear combination of Gaussian are Gaussian,providing that the inputi and
the weights profileW are Gaussian series, the outputu• is a Gaussian series.This
result is made explicit by the following formula for the Gaussian series coefficients:

−u•(ν) + π
∑

r>ν,s>ν, r s
r+s

=ν
W (r) u•(s)

r+s + i(ν) = 0,

8Post-Bryan result: A continuous function onR+ which is of exponential order for somec (i.e.
||b(r)|/ec r |∞ < ∞) with Laplace transformb∗(s) is non-negative iff∀k ≥ 0,∀s ≥ c, (−1)k b∗(k)(s) ≥
0.
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This is true for rather general weight profiles, not necessarily “Mexican-hat” profile
only.

In this specific case, it is possible to derive a closed-form expansion, convergent
as soon as|A±| < 1, which is the case in practice. We obtain up to a given orderr:

u•(ν) =
P

s i(s)
P

p,q,p+q<r ηr(p, q)

(−1)q πp+q A
p
+

A
q
−

σ
2 p
+

σ
2 q
+

1+s (p σ2
+

+q σ2
−

)
δ

„

ν − s

1+s (p σ2
+

+q σ2
−

)

«

,

with ηr(p, q) = (p+q)!
p! q! easily derived by symbolic calculation.

Note that the previous two formulas are written in the scalarcase for the sake of
simplicity, whereas it is straightforward to derive them inthe vectorial case. It is also
straightforward to derive (using symbolic calculation) for more general kernels.

Figure 17:Three examples of rational profiles for n = 2 (Gaussian like, in blue) and n = 10
(square like, in green), and a singular profile (pointed like, in red). See text for details.

Practical implementation. From the previous results it becomes possible to design
numerical routines in order to adjust at will the bump’s shape. The previous result
development means that we do not have to adjust the profile in the2D space but simply
in the 1D radial profile, thanks to the Gaussian series representation. This fact very
likely generalizes to non-linear profiles.

For instance, given an inputi(ν) and a desired outputb•1(ν) the following program:

minθ

∫

ν

∣

∣

∣
b•1(ν) − u•

θ,i(ν)(ν)
∣

∣

∣

Λ
allows to find the optimal weight parametric valueθ, using e.g. the explicit formulas
given previously. The choice of the measure

∫

ν
and of the metric|.|Λ is application

dependent.
Another application is the input control of such calculation maps: Given parameters

θ, find the inputi(ν) yielding a given outputb(ν). The solution is straightforward in
the present framework, as illustrated in Fig. 18.
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[25] T. Viéville and O. Rochel. One step towards an abstractview of computation in spiking neural-networks. InInterna-
tional Conf. on Cognitive and Neural Systems, 2006.

[26] T. Wennekers. Separation of spatio-temporal receptive fields into sums of gaussian components.J. Computational
Neuroscience, 16(1), 2004.

[27] H.R. Wilson and J.D. Cowan. A mathematical theory of thefunctional dynamics of cortical and thalamic nervous
tissue.Biological Cybernetics, 13(2):55–80, sep 1973.

INRIA



Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399


	Introduction
	Methods
	Results about the convergence
	Results about the bumps
	Discussion and conclusion
	Tuning bumps in the linear case

