-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Polygraphic programs and polynomial-time functions

Guillaume Bonfante, Yves Guiraud

» To cite this version:

Guillaume Bonfante, Yves Guiraud. Polygraphic programs and polynomial-time functions. Logical
Methods in Computer Science, Logical Methods in Computer Science Association, 2009, 5 (2:14),
pp.1-37. 10.2168 /LMCS-5(2:14)2009 . inria-00122932v3

HAL Id: inria-00122932
https://hal.inria.fr /inria-00122932v3
Submitted on 12 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50172896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00122932v3
https://hal.archives-ouvertes.fr

Polygraphic programs and polynomial-time functions

Guillaume Bonfante Yves Guiraud
INRIA - LORIA INRIA - LORIA
guillaume.bonfante @loria.fr yves.guiraud @loria.fr

Abstract — We study the computational model of polygraphs. For that, we consider polygraphic pro-
grams, a subclass of these objects, as a formal description of first-order functional programs. We explain
their semantics and prove that they form a Turing-complete computational model. Their algebraic struc-
ture is used by analysis tools, called polygraphic interpretations, for complexity analysis. In particular,
we delineate a subclass of polygraphic programs that compute exactly the functions that are Turing-
computable in polynomial time. Keywords — Polygraph; Polygraphic program; Polygraphic interpreta-
tion; Computability; Complexity; Polynomial time. ACM - F.1.1, F4.

First version — December 19, 2006. Last modification — July 15, 2008.

Support — This work has been partially supported by ANR Inval project (ANR-05-BLAN-0267).

Polygraphs as a computational model — Polygraphs (or computads) are presentations by "generators"
and "relations" of some higher-dimensional categories [41} 12,42, 43]. Albert Burroni has proved that
they provide an algebraic structure to equational theories [12]]. Yves Lafont and the second author have
explored some of the computational properties of these objects, mainly termination, confluence and their
links with term rewriting systems [27, [18]. The present study, extending notions and results presented
earlier by the same authors [9], concerns the complexity analysis of polygraphs.

On a first approach, one can think of these objects as rewriting systems on algebraic circuits: instead
of computing on syntactical terms, polygraphs make use of a net of cells, which individually behave
according to some local transition rules, as do John von Neumann’s cellular automata [46] and Yves
Lafont’s interaction nets [206]].

Following Neil Jones’ thesis that programming languages and semantics have strong connexions
with complexity theory [24], we think that the syntactic features offered by polygraphs, with respect to
terms, play an important role from the point of view of implicit computational complexity. As a running
example, we consider the divide-and-conquer algorithm of fusion sort. It computes the function f taking
a list | and returning the list made of the same elements, yet sorted according to some given order relation.
For that, it uses a divide-and-conquer strategy: it splits 1 into two sublists 11 and 1, of equivalent sizes,
then it recursively applies itself on each one to get f(1;) and f(1,) and, finally, it merges these two results
to produce f(1). The following program, written in Caml [13], implements this algorithm:

let rec split = function
I [T —> ([1,[D
| x::[1 > x::[1,[D
| x::y::1 => let (11,12)=split(l) in (x::11,y::12)

let rec merge = function
| ([1,1) > 1

| (1,[1) > 1
| (x::1,y::m) —> if x<=y then x::merge(l,y::m) else y::merge(x::1,m)

Introduction

let rec sort = function
| [1 -> T[]
| x::[1 —> x::[1]
| x::y::1 —> let (11,12)=split(l) in merge(sort(x::11),sort(y::12))

In a polygraph, one can consider, at the same level as other operations, function symbols with many
outputs. For example, the above definition of the split function becomes, in the polygraphic language:

L= o0 %QE\VQQ ga%

With these rules, one can actually "see" how the computation is made, by "unzipping" lists. Also, one
can internalize in polygraphs the sharing operation of termgraphs [39]], described as an explicit and local
duplication. As a consequence, the rules generating computations become linear: the operations for
pointers management can be "seen" within the rules. Actually, in our analysis, we evaluate explicitly the
number of structural steps of computation: allocations, deallocations and switches of pointers. In other
words, we make explicit the design of a garbage collector.

The question of sharing has been widely studied for efficient implementations of functional program-
ming languages and several solutions have been found: for instance, Dan Dougherty, Pierre Lescanne
and Luigi Liquori proposed the formalism of addressed term rewriting systems [15]. Let us mention
another approach for this kind of issues due to Martin Hofmann [23]]: he developed a typing discipline,
with a diamond type, for a functional language which allows a compilation into an imperative language
such as C, without dynamic allocation.

The computational model of polygraphic programs, a subclass of polygraphs, is explained in the first
part of this document, where we give their semantics and prove a completeness result: every Turing-
computable function can be computed by a polygraphic program.

Complexity analysis of polygraphic programs — Here we use tools inspired by polynomial interpre-
tations, which have been introduced by Dallas Lankford to prove termination of term rewriting sys-
tems [30]. They associate to each term a polynomial with natural numbers as coefficients, in a way that
is naturally compatible with contexts and substitutions. When, for each rule, the interpretation of the left-
hand side is greater than the one of the right-hand side, one gets a termination proof. For example, let us
consider the following term rewriting system that computes the double function on natural numbers:

d(0) — 0 d(s(x)) — s(s(d(x))).

One proves its termination with the interpretation defined by ¢(0) = 1, @(s(x)) = @(x) + 1 and
@(d(x)) = 3¢@(x). Indeed, one checks that the following inequalities hold:

¢(d(0))=3>1=9¢(0) and @(d(s(x))) =3@(x) +3>30(x) +2 = @(s(s(d(x)))).

Moreover, on top of termination results, polynomial interpretations can be used to study complexity. For
instance, Dieter Hofbauer and Clemens Lautemann have established a doubly exponential bound on the
derivation length of systems with polynomial interpretations [22]. Adam Cichon and Pierre Lescanne

Introduction

have considered more precisely the computational power of these systems [14]. Adam Cichon, Jean-
Yves Marion and Hélene Touzet, with the first author, have identified complexity classes by means of
restrictions on polynomial interpretations [7, 8]

Let us explain how this works on the example of the double function. The given interpretation sends
the term d(s™(0)) to the natural number 3n + 3: since each rule application will strictly decrease this
number, one knows that it takes at most 3n + 3 steps to get from this term to its normal form s%™(0).
Actually, the considered interpretation gives a polynomial bound, with respect to the size of the argument,
on the time taken to compute the double function with this program.

In order to analyze polygraphs, we use algebraic tools called polygraphic interpretations, which have
been introduced to prove termination of polygraphs [18]]. Intuitively, one considers that circuits are
crossed by electrical currents. Depending on the intensity of the currents that arrive to it, each circuit
gate produces some heat. Then one compares circuits according to the total heat each one produces.
Building a polygraphic interpretation amounts at fixing how currents are transmitted by each gate and
how much heat each one emits.

The current part is called a functorial interpretation. Algebraically, it is similar to a polynomial inter-
pretation of terms and we also use it as an estimation of the size of values, like quasi-interpretations [10].
The heat part is called a differential interpretation and it is specific to the algebraic structure of poly-
graphs. We use it to bound the number of computation steps remaining before reaching a result. Let us
note that the distinction between these two parts makes it possible for polygraphic interpretations to cope
with non-simplifying termination proofs, like Thomas Arts and Jiirgen Giesl’s dependency pairs [2].

However, some new difficulties arise with polygraphs. For example, since duplication and erasure
are explicit in our model, we must show how to get rid of them for the interpretation. In our setting, the
programmer focuses on computational steps (as opposed to structural steps) for which he has to give an
interpretation. From this interpretation, we give a polynomial upper bound on the number of structural
steps that will be performed.

In this work, we focus on polynomial-time computable functions or, shorter, FPTIME functions. The
reason comes from Stephen Cook’s thesis stating that this class corresponds to feasible computable
functions. But it is strongly conjectured that the preliminary results developed in this paper can be used
for other characterizations. In particular, the current interpretations can be seen as sup-interpretations,
following [35]: this means that values have polynomial size.

Coming back to FPTIME, in the field of implicit computational complexity, the notion of stratification
has shown to be a fundamental tool of the discipline. This has been developed by Daniel Leivant and
Jean-Yves Marion [31}32] and by Stephen Bellantoni and Stephen Cook [0] to delineate FPTIME. Other
characterizations include Neil Jones’ "Life without cons” WHILE programs [25] and Karl-Heinz Niggl
and Henning Wunderlich’s characterization of imperative programs [38]. There is also a logical approach
to implicit computational complexity, based on a linear type discipline, in the seminal works of Jean-Yves
Girard on light linear logic [16], Yves Lafont on soft linear logic [28] or Patrick Baillot and Kazushige
Terui [5].

The second part of this document is devoted to general results about polygraphic interpretations of
polygraphs. There, we explore the pieces of information they can give us about size issues. Then, in
the third part, we apply these results to polygraphic programs. In particular, we identify a subclass P of
these objects that compute exactly the functions that can be computed in polynomial-time by a Turing
machine, or FPTIME functions for short.

1. A computational model based on polygraphs

General notations — Throughout this document, we use several notations that we prefer to group here
for easier further reference.

If X is a set and p is a natural number, we denote by XP the cartesian product of p copies of X. If X
is an ordered set, we equip XP with the product order, which is defined by (x1,...,%p) < (y1,...,Up)
whenever x; < y; holds foreveryi € {1,...,p}.

Iff: X — X’and g : Y — Y’ are maps, then f x g denotes the product map from X x X’ toY x Y’.
Let f,g : X — Y be two maps. If Y is equipped with a binary relation <1, then one compares f and g
pointwise, which means that f <1 g holds when, for every x € X, one has f(x) <0 g(x) in Y. Similarly,
if Y is equipped with a binary operation ¢, then one defines f ¢ g as the map from X to Y sending each x
of X to the element f(x) o g(x) in Y.

The sets N of natural numbers and Z of integers are always assumed to be equipped with their natural
order. For every n in N, we denote by L., the maximum map max{x1,...,xn}and by N[xq, ..., xn] the
set of polynomials over n variables and with coefficients in N. If f : N™ — N™is amap and if k € N,
one denotes by kf the map sending (x1,...,%Xm) to (ky1,...,kyn), if (y1,...,yn) is f(x1,...,Xm).

1 A computational model based on polygraphs

1.1 A first glance at polygraphs
On a first approach, one can consider polygraphs as rewriting systems on algebraic circuits, made of:

Types — They are the wires, called 1-cells. Each one conveys information of some elementary type. To
represent product types, one uses several wires, in parallel, calling such a construction a 1-path. For
example, the following 1-path represents the type of quadruples made of an integer, a boolean, a real
number and a boolean:

int

real

|
ol
Is)
9|

bool

The T-paths can be composed in one way, by putting them in parallel:
o o] = [#]]Y

Operations — They are represented by circuits, called 2-paths. The gates used to build them are called
2-cells. The 2-paths can be composed in two ways, either by juxtaposition (parallel composition) or by
connection (sequential composition):

Each 2-path (or 2-cell) has a finite number of typed inputs, a T-path called its 1-source, and a finite
number of typed outputs, a 1-path called its 1-target:

s (f)—»ﬁw
ST ()

1.1. A first glance at polygraphs

Several constructions represent the same operation. In particular, wires can be stretched or contracted,
provided one does not cross them or break them. This can be written either graphically or algebraically:

(frosi(g)) x1 (ti(f)x0g) = frog = (s1(f)*09)*1 (froti(g)).

Computations — They are rewriting paths, called 3-paths, transforming a given 2-path, called its 2-
source, into another one, called its 2-target. The 3-paths are generated by local rewriting rules, called
3-cells. The 2-source and the 2-target of a 3-cell or 3-path are required to have the same input and output,
i.e. the same T-source and the same 1-target. A 3-path is represented either as a reduction on 2-paths or
as a genuine 3-dimensional object:

s1(F)
F # = # SZ(F)tz(F)
= m
The 3-paths can be composed in three ways, two parallel ones coming from the structure of the 2-paths,
plus one new, sequential one:

F*OG##E##

These graphical relations have an algebraic version given, for 0 <1< j < 2, by:

()]

(F *i S)(G)) *j (tj(F) *i

)

FxiG = (sj(F)xi G) %5 (F*i t5(G)).

1. A computational model based on polygraphs

So far, we have described a special case of 3-polygraphs. A n-polygraph is a similar object, made of
cells, paths, sources, targets and compositions in all dimensions up to n.

Remark. Polygraphs provide a uniform, algebraic and graphical description of objects coming from
different domains: abstract, string and term rewriting systems [27, |17, |18], abstract algebraic struc-
tures [12}117,133], Feynman and Penrose diagrams [4], braids, knots and tangles diagrams equipped with
the Reidemeister moves [1,/17], Petri nets [20] and propositional proofs of classical and linear logics [19].

1.2 Polygraphs

On a first reading, one can skip the formal definition of polygraph and just keep in mind the graphical
introduction. We define n-polygraphs by induction on the dimension n: given a definition of (n — 1)-
polygraphs, we define a n-polygraph as a base (n — 1)-polygraph extended with a set of n-cells. Let us
initiate the induction with O-polygraphs and 1-polygraphs.

Definition 1.2.1. A O-polygraph is a set P. Its O-cells and O-paths are its elements.

Definition 1.2.2. A [-polygraph is a data P = (B, P, s, t) made of a 0-polygraph B, a set P; and two
maps s and t from P to B. The 0-cells and 0-paths of P are the ones of B. Its I-cells are the elements
of 1. One inductively defines the set (P1) of I-paths of P, together with the 0-source map so and the
O-target map tg, both from 1-paths to O-paths, as follows:

e Every O-cell x is a 1-path, with sp(x) = to(x) = x.
e Every 1-cell & is a 1-path, with so(&) = s(&) and to(&) = t(E).

e If u and v are 1-paths such that to(u) = so(v), then u xo v is a 1-path called the 0-composition
of wand v. One defines so(u xo v) = so(u) and to(u g v) = to(v).

The 1-paths are identified modulo the following relations:
e Associativity: (W o V) xoW = Wk (VxoW).
e Local units: so(u) xou = u = w*g to(u) .

Example 1.2.3. A graph yields a 1-polygraph, with vertices as O-cells and arrows as 1-cells. The 1-paths
are the paths in the graph.

Example 1.2.4. A set X can be seen as a 1-polygraph, with one 0-cell and itself as set of 1-cells: in that
case, the set (X) of 1-paths is exactly the free monoid generated by X or, equivalently, the set of words
over the alphabet X.

Example 1.2.5. An abstract rewriting system is a binary relation R over a set X. Such an object yields
a 1-polygraph P with Py = X, P; = R, so(x,y) = x and to(x,y) = y. Then, the 1-paths of this
1-polygraph are in bijective correspondence with the rewriting paths generated by (X, R).

Now, let us fix a natural number n > 2 and assume that one has defined what a (n — 1)-polygraph P is,
how one builds its sets Py of k-cells and (Py) of k-paths, k € {0,...,n}, and its j-source map s; and
j-target map t;j from (Py) to (P5),j € {0,..., k= 1}

1.2. Polygraphs

Definition 1.2.6. An n-polygraph is a data P = (B, Py, s, t) made of an (n — 1)-polygraph B, a set P,
and two maps s and t from Py, to (B,,_1), such that the globular relations hold:

Sn208 =8 o0t and th20s=t,oo0t.

For every k in {0, ...,n — 1}, the k-cells and k-paths of P are the ones of B. The n-cells of P are the
elements of P,,. One inductively defines the set (Py,) of n-paths of P, the (n — 1)-source map sn_1, the
(n — I)-target map t,, 7 and, for every k € {0, ...,n — 2}, extensions to n-paths of the k-source map sy
and the k-target map ty of B:

e Forevery k € {0,...,n— 1}, every k-cell ¢ is an n-path, with s,, (&) = t._1(&) = &. Values
of other source and target maps do not change.

e Every n-cell @ is an n-path, with s;,_1(¢@) = s(@) and t,_1(@) = t(@). If k € {0,...,n— 2},
then sy and ty are respectively extended by sx (@) = sk o sn_1(@) and by tx (@) = txotn_1().

e Ifk € {0,...,n— 1} and if f and g are n-paths such that t,(f) = si(g) holds, then f xi g is an
n-path called the k-composition of f and g. Forj € {0,...,n — 2}, one defines:

s;(f) ifj <k
sj(f) %k sj(g) ifj >k

tj(g) ifj <k

and t(fxcg) = o
’ ()« tj(g) ifj > k.

sj(fxkg) = {

One does not distinguish two n-paths that only differ by the following relations:
e Associativity: (fxg)xkh=f*(gxch), for0 <k <n-—1.
e Local units: s (f) * f =1 =fx ty(f), for0 <k <n-—1.
e Exchange: (fy%jf2) %k (g1 %5 92) = (f1*xc g1) %5 (f2*c g2), for0 <j <k <n—1.

Example 1.2.7. Let us consider a word rewriting system (X, R), made of set X and a binary relation R
over (X). From it, one builds a 2-polygraph P with one 0-cell, P = X, P, = R, s7(u,v) = u and
t1(u,v) = v. There is a bijection between the 2-paths of P and the rewriting paths generated by (X, R),
considered modulo the commutation squares between two non-overlapping rule applications. Moreover
the circuit-like pictures provide graphical representations for word rewriting: wires are letters, gates are
applications of rewriting rules and circuits are traces of computations.

Example 1.2.8. Term rewriting systems generate 3-polygraphs, as explained by Albert Burroni [12]],
Yves Lafont [27] and the second author [18,|19]. The polygraphic programs one considers here are light
versions of these [21].

Example 1.2.9. Petri nets correspond exactly to 3-polygraphs with one O-cell and no 1-cell: one identi-
fies places with 2-cells and transitions with 3-cells [20].

Definition 1.2.10. Let us fix a natural number n and an n-polygraph P. The polygraph P is finite when it
has a finite number of cells in every dimension. A family X of n-cells of P can be seen as an n-polygraph
with the same cells as P up to dimension n — 1.

1. A computational model based on polygraphs

If 0 <j < k < n, two k-paths f and g are j-composable when t;(f) = s;j(g). They are j-parallel
when s;(f) = s;j(g) and t;(f) = tj(g). Whenj = k — 1, one simply says composable and parallel.
Similarly, the (k — 1)-source and (k — 1)-target of a k-path are simply called its source and rarget.

If 0 < k < n, given a subset X of Py and a k-path f, the size of f with respect to X is the natural
number denoted by |||y and defined as follows, by structural induction on f:

0 if fisacell and f € X,
Ifllx = 1 if f € X,
llgllx + [IMlly if f = g *; h, for some 0 <j < k.

When X is reduced to one cell ¢, one writes ||f]| (instead of (/]| () The size of f is its size with respect
to Py, simply written [/f||. A k-path is degenerate when it has size 0 and elementary when its size is 1.

Remark. One must check that the definition of the size of a k-path (with respect to a set of k-cells X)
is correct. This is done by computing this map on both sides of the relations of associativity, local units
and exchange and ensuring that both results are equal.

One proves that any non-degenerate k-path f of size p can be written f = fy x_7 - - - %1 fp,, where
each f; is an elementary k-path. Moreover, if k > 1, then any elementary k-path f can be written as
follows:

f = gixt (Gret *k—z -+ *1 (91 %0 @ *o h) %71 -+ k2 M) *ie1 T,
where @ is a uniquely defined k-cell, while g; and h; are j-paths, for every j € {1, ..., k}. For example,
any elementary 3-path F can be decomposed as F = f %7 (u x¢ & %o V) *1 g, where o is a uniquely
determined 3-cell, f and g are 2-paths, 1 and v are 1-paths. As a consequence:

$oF = fx7 (WkgSpxxoVv)*1g toF = f¥q (Uxgtrx*xoVv) %1 g

In order to study the computational properties of polygraphs, we use notions of higher-dimensional
rewriting theory [18] that, in turn, make reference to abstract rewriting ones [3].

Definition 1.2.11. The reduction graph associated to an n-polygraph P is the graph with (n — 1)-paths
of P as objects and elementary n-paths of P as arrows. Rewriting notions of normal forms, termination,
(local) confluence, convergence, etc. are defined on P by taking back the ones of its reduction graph.

Remark. One can check that, given two parallel (n — 1)-paths f and g in an n-polygraph P, there exists
a path from f to g in the reduction graph of P if and only if there exists a non-degenerate n-path F with
source f and target g in P.

In what follows, we focus on 3-polygraphs and introduce some special notions and notations for them.

Definition 1.2.12. Let P be a 3-polygraph. The fact that f is a k-path of P with source x and target y is
denoted by f : x - ywhenk =1,byf:x =y whenk =2, by f:x = y when k = 3. If f is a k-path
of P and X a family of k-cells then, instead of ||f||, one writes |f|, when k = 1 and [[[f[||x when k = 3.
When f : x = vy, then |x|, |[y| and (|x|, |y|) are respectively called the arity, the coarity and the valence
of f.

1.3. Polygraphic programs

1.3 Polygraphic programs

Definition 1.3.1. A polygraphic program is a finite 3-polygraph P with one 0O-cell, thereafter denoted
by *, and such that its sets of 2-cells and of 3-cells respectively decompose into P, = in il Tg il ‘PE and
P3 = CP§ 11 PR, with the following conditions:

e The set ?g is made of the following elements, called structure 2-cells, where & and (range over
the set of 1-cells of P:

e Erxl=CxE AESExE 01 E=
When the context is clear, one simply writes ><, A and é. The following elements of <ng > are

called structure 2-paths and they are defined by structural induction on their 1-source:

x &

& C
= = | = = Ses AED = « amh = [==
¢ & x

P g ¢ &Exox * X*0 & x &
| e ek am . e - @b

e The set szC is made of 2-cells with coarity 1, i.e. of the shape 7, called constructor 2-cells.
e The elements of ‘J’E are called function 2-cells.

e The elements of P3, called structure 3-cells, are defined, for every constructor 2-cell 9 : x = &
and every 1-cell (, by:

x G x ¢ & X ¢ X X X X x
;<|| = $!>!| = a x = ‘ ’ Y = H
¢ & 0 & £ ¢ £ O EE& £ £

e The elements of fP3R are called computation 3-cells and each one has a 2-source of the shape t-1 &,
with t € (P§) and (5 € P

Remark. In this study, we have decided to split structure cells from computation cells. From a traditional
programming perspective, permutations, duplications and erasers are given for free in the syntax. With
polygraphs, this is not the case. However, by putting these operations in a "special” sublayer, we show
that the programmer has not to bother with structure cells: one can stay at the top-level, letting the
sublevel work on its own.

Example 1.3.2. The following polygraphic program D computes the euclidean division on natural num-
bers (we formally define what this means later):

1. It has one T-cell n, standing for the type of natural numbers.

1. A computational model based on polygraphs

2. Apart from the fixed three structure 2-cells, it has two constructor 2-cells, O : * = n for zero and
O : n = n for the successor operation, and two function 2-cells, 9 : n xo n = n for the minus
function and W : n xp n = n for the division function.

3. Its 3-cells are made of eight structure 3-cells, plus the following five computation 3-cells:

Yot el ey Yal Y2

Example 1.3.3. The following program F computes the fusion sort function on lists of natural numbers
lower or equal than some constant N € N:

1. TIts T-cells are n, for natural numbers, and 1, for lists of natural numbers.

2. Its 2-cells are made of eight structure 2-cells, plus:

(a) Constructor 2-cells, for the natural numbers 0, ..., N, the empty list and the list constructor:

(@:*:}n)OSnSN, O:x=1, Y inxl=1.

(b) Function 2-cells, respectively for the main sort and the two auxiliary split and merge:
o:1=1, A 1= 11, Wilxl=1.
3. Its 3-cells are made of 6N + 18 structure 3-cells, plus N2 + 2N + 8 computation 3-cells:

SRIRE R &
L =00 f3@© %3%

Yol o] WP Wy

Remark. One may object that sorting lists when the a priori bound N is known can be performed in a
linear number of steps: one reads the list and counts the number of occurrences of each element, then
produces the sorted list from this information. Nevertheless, the presented algorithm (up to the test < on
the natural numbers p and q) really mimics the "mechanics" of the fusion sort algorithm and, actually,
we rediscover the complexity bound as given by Yiannis Moschovakis [30].

Why don’t we internalize the comparison of numbers within the polygraphic program? This comes
from the fact that the if-then-else construction implicitly involves an evaluation strategy: one first com-
putes the test argument then, depending on this result, one computes exactly one of the other two argu-
ments. As defined here, polygraphs algebraically describe the computation steps, but not the evaluation
strategy. We let such a task for further research.

10

1.4. Semantics of polygraphic programs

1.4 Semantics of polygraphic programs

One defines an interpretation [-] of the elements of a polygraphic program into sets and maps, then one
uses it to define the notion of function computed by such a program.

Definition 1.4.1. Let P be a polygraphic program. For a 1-path u, a value of type u is a 2-path in <TP2C >
with source * and target u; their set is denoted by [u]. Given a 2-path f : u = v, one denotes by [f]
the (partial) map from [u] to [v] defined as follows: if t is a value of type u and if t x1 f has a unique
normal form t’ that is a value (of type v), then [f] (t) is t’; otherwise f is undefined on t.

Among the following properties, the one for degenerate 2-paths explains the fact that [u] has two mean-
ings: it is either the set of values of type u or the identity of this set.

Proposition 1.4.2. Let P be a polygraphic program. The following properties hold on 1-paths:
o The set [[+] is reduced to the 0-cell .
e For every wandv, one has [uxov] = [u] x [v].
The following properties hold on 2-paths:
e [fu is degenerate then it is sent by [-] to the identity of the set [u].
e Forevery f and g, one has [f xo g] = [f] x [g].
e [ff and g are composable, then [f x1 g] = [g] o [f] holds.
Finally, for every 3-path F, the equality [s,F]] = [t2F] holds.

Definition 1.4.3. Let P be a polygraphic program. Let u, v be 1-paths and let f be a (partial) map
from [u] to [v]. One says that P computes f when there exists a 2-cell £ such that [&=] = f.

Example 1.4.4. In a polygraphic program P, every constructor 2-cell 9 with arity n satisfies the equal-
ity [[V]] (t1,...,tn) = (t1 %0 - - ko tn)*1 9. Since the right member is always a normal form, one can
identify values of coarity 1 with the closed terms of a term algebra. Moreover, the polygraphic program P
computes erasers, duplications and permutations on these terms, since [[6]] (t) = =, [[A]] (t) = (¢,t)
and [><] (t,t') = (t’, t) hold.

Thus, every polygraphic program computes one total map for each of its structure and constructor 2-cells.
We give sufficient conditions to ensure that this is also the case on function 2-cells.

Definition 1.4.5. A polygraphic program P is complete if every 2-path of the form t x7 & is reducible
when t is a value and (& is a function 2-cell.

Proposition 1.4.6. Let P be a convergent and complete polygraphic program. Then, for every structure
or function 2-cell B8 : w = v, the map [{@] : [u] — [v] is total.

Proof. We start by recalling that the structure 3-cells, alone, are convergent [18}[19]. Furthermore, they
are orthogonal to the computation 3-cells and every 2-path of the shape t 7 {& is reducible when t is a
value and (& is a structure 2-cell. Hence, as a polygraph, P is convergent and the 2-paths * = x that are
in normal form are exactly the values of type x. O

11

1. A computational model based on polygraphs

Example 1.4.7. Let us check that the polygraphic program D computes euclidean division. The set [n]
is equipotent to the set N of natural numbers through the bijection 0 = O andn+1 = n % Q. This
polygraphic program is weakly orthogonal, hence locally confluent, and complete. We will also see later
that it terminates. Thus it computes two maps from [non] ~ N? to [n] ~ N, one for 9 and one
for . By induction on the arguments, one gets:

[V]] (m,n) = max{0,m —n} and [V]] (m,n) =|m/(n+1)].

Example 1.4.8. In the polygraphic program F, one has [n] ~ {0,...,N}and [1] ~ (0,..., N), thanks
to the bijective correspondences n = @, [= 0 and x :: 1 = (x %o 1) %1 /. This polygraphic program
is weakly orthogonal, hence locally confluent, and complete. It is also terminating, as we shall see later.
Thus, it computes one map for each of @, 4 and . For example, the map @] takes a list of natural
numbers as input and returns the corresponding ordered list.

Let us give an example of computation generated by this program. Let us consider the list [2; 1] of
natural numbers and apply the fusion sort function @ on it. The list is coded by the following value:

21 = (0%00) %1 (9%0'7) 1V = @&Q

The value [[H] ([2; l]) is, by definition, the unique normal form of the 2-path [2; 1] x; @. Thereafter,

one presents a normalizing 3-path, obtained by *,-composition of smaller 3-paths, where we have given
self-explanatory "names" to the involved 3-cells, without further explanations. After computation, one

gets the expected [@] ([2; 1]) = [1;2] as the target of this 3-path.

=

&
s
iy
g
Y

(© 0 0)x1 |0,

*2

A (@*0*0|> *1 v

*2

(2 0) %1 (|9,]%0|9,]) =1 'Y

*2

=

(¢ Q) *1|'¥;(2,9) =

*2

@VQ*] (@*o v,)*1'V'

=

e € s

12

1.5. Polygraphic programs are Turing-complete

1.5 Polygraphic programs are Turing-complete

This completeness result is not a surprising one. Indeed, one could argue, for instance, that polygraphic
programs simulate term rewriting systems, a Turing-complete model of computation. Our proof, similar
to the one concerning interaction nets [26], prepares for the encoding of Turing machines with clocks,
used for Theorem 3.4.4.

Definition 1.5.1. A Turing machine is a family M = (X, Q, qo, qf, &) made of:

e A finite set X, called the alphabet; one denotes by X its extension with a new element, denoted
by § and called the blank character.

e A finite set Q, whose elements are called states, two distinguished elements qg, the initial state,
and qy, the final state.

e Amapd: (Q—{qs}) xZ — Q x L x{L, R}, called the transition function, where {L, R} is any set
with two elements.

A configuration of M is an element (q, a, wy, wy.) of the product set Q X T x <f> X <f>: here q is the
current state of the machine, a is the currently read symbol, wy is the word at the left-hand side of a
and w; is the word at the right-hand side of a. For further convenience, the word wy is written in reverse
order, so that its first letter is the one that is immediately at the left of a.

The transition relation of M is the binary relation denoted by —4¢ and defined on the set of config-
urations of M as follows, where e denotes the neutral element of (Z):

(q1»aaeaWT) HJ\/[(qZ)ﬁ»eaCV\)‘r)»
Ifé(qq,a) = ,c,L) then
* (q]) (qz) {(QMQabWbWT) HM(qZ»b>Wl)CWT)'

(q1,a,wi,e) —an (a2, 4,cwy,e),

e If6(qq,a) = ,¢,R) then
(d1,a) = (d2,¢,R) {(q1,a,w1,bwr)HM(QZ,b)CWL,Wr)-

One denotes by —7, the reflexive and transitive closure of — . Let f : (£) — (X) be a map. One says
that M computes f when, for any w in (X), there exists a configuration of the shape (q¢, a, v, f(w)) such
that (qo, #, e, w) =3, (df, a,v, f(w)) holds (in that case, this final configuration is unique).

Theorem 1.5.2. Polygraphic programs form a Turing-complete model of computation.

Proof. We fix a Turing machine M = (X, Q, qo, g, d) and a map f computed by M. From this Turing
machine, we build the following polygraphic program P(M):

1. It has one 1-cell w, standing for the type of words over X.

2. Apart from the three structure 2-cells, its 2-cells consist of:

(a) Constructor 2-cells: O : * = w, for the empty word, plus one @ : w = w for each a in Z.

(b) Function 2-cells: @ : w = w, for the map f, plus one 1w xo w = w for each pair (q, a)
in Q x L, for the behaviour of the Turing machine.

13

2. Polygraphic interpretations

3. Its 3-cells are the structure ones, plus the following computation 3-cells — the first one initializes
the computation, the four subsequent families simulate the transitions of the Turing machine and
the final cell starts the computation of the result:

=
& = g g = g both when 8(q1,a) = (qgz,¢c,L)
& = & “ = “ both when 6(q1,a) = (q2,¢c,R)

o = ¢ |

One checks that [w] ~ (X) through e = © and aw = w*;®. Then, to every configuration (q, a, wi, wy),

one associates the 2-path (q, a, w;, w,) = (m *Q &) *1 _ The four cases in the definition of the
transition relation of M are in one-to-one correspondence with the four middle families of 3-cells of the
polygraph P(M). Hence the following equivalence holds:

(q)a)WbWT) _)?;v[(q,»a/>W{»W;) ifandonlyif (q)a)wl)WT) 3 (q,,a/,W{»Wi)'

Finally, let us fix a w in (X). Since M computes f, there exists a unique configuration (q¢, a,v, f(w)),
such that (qo, f, e, w) =% (df, a,v, f(w)) holds. As a consequence, w x1 @ has a unique normal form,
so that the following equalities hold, yielding [@] = f:

[o] (w) = H_ﬂ (O*ow) = H_ﬂ (y*om) = f(w).

2 Polygraphic interpretations

Here, we present general results about information that can be recovered from functorial and differential
interpretations of 3-polygraphs.
2.1 Functorial interpretations
Definition 2.1.1. A functorial interpretation of a 3-polygraph P is a pair @ = (@1, @2) made of:
1. amap @ sending every 1-path u of size n to a non-empty part of (N — {0})™;
2. amap @> sending every 2-path f : u = v to a monotone map from ¢1(u) to @1(v).
The following equalities, called functorial relations, must be satisfied:

e if u is a degenerate 2-path, then @, (u) is the identity of ¢1(u);

14

2.1. Functorial interpretations

e if uand v are O-composable 1-paths, then @1(uxoVv) = @1(u) X @1(v) holds;
e if f and g are O-composable 2-paths, then @>(f xo g) = @2(f) X @2(g) holds;
e if f and g are 1-composable 2-paths, then @>(f x1 g) = @2(g) o @2(f) holds.

One simply writes ¢ for both @1 and @;. Intuitively, for every 2-cell (&, the map ¢ (&) tells us how &),
seen as a circuit gate, transmits currents downwards. In practice, one computes the value of a current
interpretation on a 2-path by computing it on the 2-cells it contains and assembling them in an intuitive
way. The following result formalizes this fact.

Lemma 2.1.2. A functorial interpretation of a 3-polygraph P is entirely and uniquely defined by its
values on the 1-cells and 2-cells of P.

Proof. Using the functorial relations, one checks that a functorial interpretation takes the same values
on both sides of the relations of associativity, local units and exchange on 2-paths: this property comes
from the fact that set-theoretic maps satisfy these same relations. Then the functorial relations give the
values of a current interpretation on 2-paths of size n + 1 from its values on 2-paths of sizek <n. [

A direct consequence of Lemma 2.1.2/is that, when one wants to introduce a functorial interpretation,
one only has to give its values on the 1-cells and on the 2-cells.

Example 2.1.3. Let P be a polygraphic program with no constructor 2-cell and no function 2-cell. Then,
given a non-empty part @ (&) of N—{0} for every 1-cell &, the following values extend ¢ into a functorial
interpretation of P:

0 (o) ov) = (vx) and @ (A)) = (x%),

Let us note that every functorial interpretation ¢ must send the O-cell * to some single-element part
of N — {0}. Hence, it must assign each éa to the only map from ¢ (&) to @(*).

Example 2.1.4. The following values extend the ones of Example [2.1.3/into a functorial interpretation
of the polygraphic program D of division:

em)=N—-{0}, @@ =1, @@)x)=x+1,

o(F)(x,y) = (W) (x,y) = x.

Example 2.1.5. For the polygraphic program J of fusion sort, we extend the functorial interpretation of
Example 2.1.3/with the following values, where || and | -] stand for the rounding functions, respectively
by excess and by default:

em)={1}, @1)=2N+1, @) =0¢(@) =1, o)xy =x+y+]1,

e@)X) =%, oWy =x+ty—1, o(&a)2x+1)= (z. m 1,2 gJ +1).

15

2. Polygraphic interpretations

Example 2.1.6. Let P be a polygraphic program. One denotes by v the functorial interpretation on the
subpolygraph <’.ch > defined, for every 1-cell &, by v(§) = N — {0} and, for every constructor 2-cell ¢’
with arity n, by:

V() (X1, %Xn) = X1+ +xn+ 1.
One checks that v(t) = ||t|| holds for every value t with coarity 1. Thus, given values t, ..., t, with
coarity 1, the following equality holds in N™:

V(ti koo tn) = (ltall,... lItall).
We use the functorial interpretation v to describe the size of arguments of a function.

Lemma 2.1.7. Let @ be a functorial interpretation of a 3-polygraph P. Let f, g, h and X be 2-paths
such that @ (f) < @(g) and ©(h) < @(k) hold. Then, for every i € {0, 1} such that f x; h is defined, the
inequality @(f xi h) < @(g i k) is satisfied.

Proof. One has:
o(fxoh) = @(f) x e(h) < @(g) x (k) = @(g*ok).

Indeed, the two equalities are given by the functorial relations that ¢ satisfies, while the middle inequality
comes from the hypotheses and the fact that one uses a product order. Then one has:

@(fx1h) = @(h)op(f) < @(h)oe(g) < @(k)oe(g) = @(g*x k).

The equalities come from the functorial relations; the first inequality uses the hypothesis @ (f) < @(g)
and the fact that @ (h) is monotone; the second inequality uses @ (h) < ¢ (k) and the fact that maps are
compared pointwise. O

2.2 Compatible functorial interpretations

Definition 2.2.1. Let ¢ be a functorial interpretation of a 3-polygraph P. For every 3-cell « of P, one
says that ¢ is compatible with o« when the inequality @(s2x) > @(tax) holds. One says that @ is
compatible when it is compatible with every 3-cell of P.

Example 2.2.2. The functorial interpretations given in Examples 2.1.4/ and 2.1.5/ are compatible with
all the 3-cells of the corresponding 3-polygraph. We will see later that the values they take on structure
2-cells ensure that they are compatible with all the structure 3-cells. Concerning the computation 3-cells,
let us consider, for example, the third one associated to the sort function 2-cell @. For the source, one

gets:
© (g) 1,1, 2x+1) = o <Y> (1, (S)(1,2x +1))

= @(®)oe()(1,2x+3)
= @(®)(2x+5)
= 2x+5.

16

2.3. Differential interpretations

Now, for the target, going quicker:
%) (1,1,2x+1) = (W) (2-[x/2]1+3, 2+ |x/2] +3) = 2x+5.

Proposition 2.2.3. Let @ be a compatible functorial interpretation of a polygraphic program. Then, for
every 3-path F, the inequality @(s2F) > @(t,F) holds.

Proof. We proceed by induction on the size of 3-paths. If F is a degenerate 3-path, then s;F = t,F holds
and, thus, so does @(syF) = @(t2F).

Let us assume that F is an elementary 3-path. Then one decomposes s,F and t,F, using a 3-cell «,
2-paths f, g and 1-paths u, v, yielding:

@(s2F) = @(f*1 (W0 s2x %o V) *1 g) and @(t2F) = @(f 51 (wko trot %o V) %1 g).

The functorial interpretation ¢ is compatible with o, hence @(s2x) > @(t2a) holds. Then one applies
Lemma 2.1.7 four times to get @(s2F) > ¢ (to2F).

Now, let us fix a non-zero natural number N and assume that the property holds for every 3-path of
size N. Let us consider a 3-path F of size N 4 1. Then one decomposes F into G x, H where G is a
3-path of size N and H is an elementary 3-path. One concludes using the induction hypothesis on G and
the previous case on H. O

2.3 Differential interpretations

In this work, we use differential interpretations as an abstraction of "heats", but also, later, to define the
property of conservativeness on "currents". For this reason, we introduce the following abstraction:

Definition 2.3.1. A (strictly) ordered commutative monoid is an ordered set (M, <) equipped with a
commutative monoid structure (+, 0) such that + is (strictly) monotone in both arguments.

Example 2.3.2. Concretely, in what follows, we consider N equipped with its natural order and either
the addition (strict case) or the maximum map (non-strict case), both with O as neutral element.

Definition 2.3.3. Let M be an ordered commutative monoid, let P be a 3-polygraph and let ¢ be a
functorial interpretation of P. A differential interpretation of P over @ into M is a map 0 that sends
each 2-path) of P with 1-source u to a monotone map O from @ (u) to M, such that the following
conditions, called differential relations, are satisfied:

e If uis degenerate then ou = 0.
e If f and g are O-composable then 9(f xo g)(x,y) = 0f(x) + 9g(y) holds.
e If f and g are 1-composable then 0(f x7 g) = of + dg o @(f) holds.

Intuitively, given a 2-cell &), the map O tells us how much heat it produces, when seen as a circuit
gate, depending on the intensities of incoming currents. In order to compute the heat produced by a
2-path, one determines the currents that its 2-cells propagate and, from those values, the heat each one
produces; then one sums up all these heats.

17

2. Polygraphic interpretations

Lemma 2.3.4. A differential interpretation of a polygraph P is entirely and uniquely determined by its
values on the 2-cells of P.

Proof. First, we prove that the differential relations imply that a differential interpretation takes the same
values on each side of the relations of associativity, local units and exchange. For example, let us check
this for the exchange relation. For that, let us fix 2-paths f, g, h and k such that both t;(f) = s;(h)
and ty(g) = s1(k) are satisfied. We consider x in @(s1(f)) and y in @(s7(g)) and, using the functorial
relations of ¢ and the differential relations of 0, we compute each one of the following equalities in M:

O((f*0g)*1 (hxok))(x,y) = (9f(x) + dg(y)) + (dh o @(f)(x) + ko @(g)(y)),
O((f*1h) %o (g1 k) (x,y) =(3f(x) + dh o @(f)(x)) + (3g(y) + ok o @(g)(y)).

One concludes using the associativity and commutativity of + in M. After that, one checks that the
differential relations determine the values of a differential interpretation on 2-paths of size n + 1 from
its values on 2-paths of size k < n. 0

Lemma [2.3.4/allows one to define a differential interpretation by giving its values on 2-cells.

Example 2.3.5. The trivial functorial interpretation of a 3-polygraph P sends every 1-cell to some fixed
one-element part * of N — {0} and every 2-path from u to v to the only possible map from ¢(u) =~ * to
@(v) ~ *. Now, let us fix a family X of 2-cells in P. One can check that the map ||-||y is the differential
interpretation of P over the trivial interpretation and into (N, +, 0), sending a 2-cell & to 1 if it is in X
and O otherwise.

Example 2.3.6. We consider the differential interpretation of the division polygraphic program D, over
the functorial interpretation given in Example 2.1.4, into (N, 4, 0), sending every constructor and struc-
ture 2-cell to zero and:

0V (x,y) = y+1 and 0w (x,y) = xy +x,

Example 2.3.7. For the polygraphic program J of fusion sort, we consider the differential interpretation,
over the functorial interpretation of Example 2.1.5} into (N, 4, 0), sending every constructor and structure
2-cells to zero and:

1 if xy =0,

6#(2x+1):2x2+1, 04 (2x+ 1) =|x/2] +1, aV(Zx—i—],Zy—H):{)
X +1y otherwise.

Lemma 2.3.8. Let P be a 3-polygraph, with a differential interpretation 0, over a functorial interpre-
tation @, into an ordered commutative monoid (M, +,0,=). Let f, g, h, k be 2-paths such that the
inequalities @(f) < @(g), 0f < 0g and Oh = 0k hold. Then, for every i € {0, 1} such that f x; h is
defined, one has 0(f x; h) =< 9(g *i k). Moreover, when M is strictly ordered and either 9f < 0g or
O0h < 0k hold, one has 9(f x; h) < 0(g % k).

Proof. One computes, for x € @(s1f) andy € @(s1h):

d(fxo h)(x,y) = 0f(x) + doh(y) = 9g(x) +k(y) = d(g*ok)(x,y).

18

2.4. Compatible differential interpretations

Indeed, the two equalities are given by the differential relations that 9 satisfies; the inequality uses the
hypotheses, the fact that maps are compared pointwise and the monotony of +. Moreover, if 4 is strictly
monotone and if one of f < dg or dh < 0k holds, then the middle inequality is strict. Now, one checks:

0(fx1h) = of + 0ho @(f) <X 0g+ dko @(g) = 9(g*7 k).

The equalities come from the differential relations; the inequality comes from the hypotheses 0f < 0g,
oh < 9k and ¢@(f) < @(g), plus the monotony of oh and + and the fact that maps are compared
pointwise. When + is strictly monotone and when either 0f < 9g or 0h < 0k hold, the middle
inequality is strict. O

2.4 Compatible differential interpretations

Definition 2.4.1. Let P be a 3-polygraph equipped with a functorial interpretation ¢ and a differential
interpretation 0 of P over ¢ and into an ordered commutative monoid M. For every 3-cell «, one says
that 0 is compatible with « when 0(sy) = 0(tyx) holds. It is said to be strictly compatible with «
when 9(s>x) = 9(toa) holds. One says that 0 is (strictly) compatible when it is with every 3-cell of P.

Example 2.4.2. The differential interpretations given in Examples 2.3.6 and 2.3.7/ are compatible with
every structure 3-cell and strictly compatible with every computation 3-cell of their 3-polygraph.
Indeed, in the source and the target of every structure 3-cell &, only constructor and structure 2-cells
appear. The considered differential interpretations sends these to zero, yielding 9(s>x) = 9(tyx) = 0.
For an example of compatibility with a computation 3-cell, we consider the third 3-cell of the fusion
sort function 2-cell @. On one hand, one gets:

d (g) (1,1,2x+ 1) = 00(2x +5) = 2(x+2)2+1 = 22 + 8x + 9.
And, on the other hand, one computes:

08(2x/2] +3) + 08(2[x/2] +3)

d (1,1,2x+1) =
+ oA (2x+1) + 0W(2[x/2] +3,2 [x/2] +3)

2 (/21 +1)2 42 ([x/2) + 1) +x+ [x/2] +4
= 2[x/21%+2|x/2)* +x+4[x/2] +5|x/2] + 8
< X%+ 6x+8.

Proposition 2.4.3. Let 0 be a compatible differential interpretation of a polygraphic program P, over
a compatible functorial interpretation ¢ and into an ordered commutative monoid M. Then, for every
3-path F, the inequality 0(s;F) = 0(t2F) holds. When M is strictly ordered, 0 is strictly compatible
and F is non-degenerate, then 0(s,F) = 0(t2F) also holds. Moreover, if M is N equipped with addition,
then ||[F||| < 0(s2F) — 0(t,F) holds.

19

2. Polygraphic interpretations

Proof. We proceed by induction on the size of 3-paths. If F is a degenerate 3-path, then one has s;F = t,F
and, thus, 0(s,F) = 9(t,F) also.

Let us assume that F is an elementary 3-path. We decompose F using a 3-cell «, 2-paths f, g and
1-paths u, v, yielding:

d(s2F) = O(f %1 (wkp s20t k0 V) %1 @) and O(t2F) = O(f 1 (Wo tax *o V) *7 g).

By assumption, ¢ and 0 are compatible with x, hence @(s>x) > @(tox) and 9(sp) = 0(toa) hold.
Then one applies Lemmas 2.1.7/and 2.3.8/to get 0(s2F) = 0(t2F) and, when 0 is strictly compatible with
the 3-cell o, 0(s2F) = 0(t,F). If M is N, this means that 9(soF) — 9(t,F) > 1 = [||FJ|l.

Finally, let us fix a non-zero natural number N and assume that the property holds for every 3-path
of size N. Let us consider a 3-path F of size N + 1. Then one decomposes F into G x, H where G is a
3-path of size N and H is an elementary 3-path. Then we apply the induction hypothesis to G and the
previous case to H to conclude. O

2.5 Conservative functorial interpretations

Intuitively, the following definition gives a bound on all the intensities of currents that one can find in the
vicinity of any 2-cell inside a 2-path.

Definition 2.5.1. Let P be a 3-polygraph equipped with a functorial interpretation ¢. One denotes
by 0 the differential interpretation of P, over ¢ and into (N, max,0), sending every 2-cell &) with
valence (m,n), i.e. with arity m and coarity n, to the following map from ¢ (s15) to N:

a(pljj = maX{l»lm) Hno(p(l:::l)}»

ie. 0pEm(x1,...,Xm) = max{xi,...,Xm,Y1,...,Yn} if (Y1,...,yn) denotes @(ER)(x1,...,Xm).
For every 3-cell « of P, one says that ¢ is conservative on o« when 0, is compatible with «. One says
that ¢ is conservative when it is conservative on every 3-cell of P, i.e. when 9, is compatible.

Example 2.5.2. The functorial interpretations of Examples 2.1.4/and 2.1.5/are conservative. Indeed, we
shall see later that their values on structure and constructor 2-cells ensure that they are conservative on
structure 3-paths. Let us check conservativeness on, for example, the last computation 3-cell of the sort
function 2-cell @:

O¢p <§‘) (1,1,2x+ 1) = max{1, 2x+ 1, 2x + 2, 2X—|—3}

= 2x+3
= max{1, 2x+ 1,2 |x/2|+1, 2-[x/2] +1,
2-x/2]+2,2-[x/2] +2, 2x+ 3}

. (1,1,2x +1).

20

2.6. Polygraphic interpretations

When a functorial interpretation is both compatible and conservative, the intensities of currents inside
2-paths do not increase during computations.

Proposition 2.5.3. Let ¢ be a compatible and conservative functorial interpretation of a polygraphic
program. Then, for every 3-path F, the inequality 0 ,(s2F) > 04(t2F) holds.

Proof. By definition of conservativeness and using Proposition2.4.3 on 0. O

2.6 Polygraphic interpretations

Definition 2.6.1. A polygraphic interpretation of a 3-polygraph P is a pair (¢,) made of a functorial
interpretation ¢ of P, together with a differential interpretation 0 of P over @ and into (N, 4, 0). In that
case, @ and 0 respectively are the functorial part and the differential part of (¢, d).

Let us fix a 3-cell x. A polygraphic interpretation (@, 0) is compatible (with) when both ¢ and 9
are. It is strictly compatible (with &) when @ is compatible with « and 0 is strictly compatible (with o).
It is conservative (on o) when @ is.

Example 2.6.2. The functorial and differential interpretations we have built on the polygraphic programs
of division and of fusion sort are two examples of polygraphic interpretations that are conservative,
compatible with every structure 3-cell and strictly compatible with every computation 3-cell.

Let us consider the trivial functorial interpretation and the differential interpretation ||-||y over it, for
some family X of 2-cells. They form a polygraphic interpretation that is conservative but that has no
general reason to be compatible with any 3-cell.

We recall the following theorem:

Theorem 2.6.3 ([18]). If a 3-polygraph has a polygraphic interpretation which is strictly compatible
with all of its 3-cells, then it terminates.

Proof. By application of Proposition 2.4.3) one knows that d(s>F) > 0(t,F) holds for every elementary
3-cell F. Furthermore, these are maps with values into N. Since there is no infinite strictly decreasing
sequence of such maps for the pointwise order, one concludes that P must terminate. O

In what follows, we use Theorem 2.6.3/in several steps, thanks to the following result:

Proposition 2.6.4. Let P be a 3-polygraph and let X be a set of 3-cells of P. Let us assume that there
exists a compatible polygraphic interpretation on P whose restriction to X is strictly compatible. Then P
terminates if and only if P — X does.

Proof. TIf P terminates, its reduction graph has no infinite path. Since it contains the reduction graph of
the 3-polygraph P — X, the latter does not have any infinite path either. Hence P — X terminates.

Conversely, let us assume that P does not terminate. Then there exists an infinite sequence (Fn)nen
of elementary 3-paths in P such that, for every n € N, F,, and F,,; are composable. The polygraphic
interpretation is compatible, hence one can apply Proposition 2.4.3/to get the following infinite sequence
of inequalities in N:

0(s2Fo) > 0O(taFo) = 9(s2F1) > (---) = 0(s2Fn) > O(t2Fn) = O(s2Fny1) > (---)

21

2. Polygraphic interpretations

Furthermore, for every n € N such that F, € (X), one has a strict inequality 0(s2Fn) > 9(t2Fy) since
the polygraphic interpretation is strictly compatible with every 3-cell of X. Hence, there are only finitely
many n in N such that F,, is in (X): otherwise, one could extract, from (9(s2Fn))nen, an infinite, strictly
decreasing sequence of maps with values in N. Thus, there exists some ng € N such that (Fy)n>n, i an
infinite path in the reduction graph of P — X: this means that P — X does not terminate. O

Example 2.6.5. Let us consider the polygraphic programs for division and fusion sort, given in Exam-
ples 1.3.2/ and [1.3.3. We have seen that each one admits a compatible polygraphic interpretation that
is strictly compatible with their computation 3-cells. Furthermore, as proved later, the structure 3-cells,
alone, terminate. Thus Proposition 2.6.4/ gives the termination of both polygraphic programs.

Actually, in what comes next, we produce a standard differential interpretation that is strictly compatible
with structure 3-cells. However, in general, it is not compatible, even in a non-strict way, with computa-
tion 3-cells: informally, each application of such a cell can increase the "structure heat". The purpose of
the rest of this section is to bound this potential augmentation.

Lemma 2.6.6. Let P be a 3-polygraph equipped with a polygraphic interpretation (@, 0). Then, for
every 2-path f in P and every x in @(s1f), the following inequality holds in N:

of(x) < Y Ifll - 088 (34f(x), ..., Dpf(x)).

EeP,

Remark. Let us note that we apply 0EZ) to arguments 9 ,f(x) that are not necessarily in its domain. In
that case, one considers an extension of df&) sending x to 0E)(y), where y is the maximum element of
the set @ (s16) that is below x.

Proof. We proceed by induction on the size of the 2-path f. Let us assume that f is degenerate. Then one
has Hfll_ = 0 for every 2-cell “ and, since 0 is a differential interpretation, 0f = 0. Hence both sides
of the sought inequality are equal to 0.

Now, let us consider an elementary 2-path f. One decomposes f into wxo oV, where &5 is a 2-cell
and u and v are 1-paths. Then Hf||¢:] is T when [} is (& and 0 otherwise. Let us fix x, y and z respectively
in @(u), @(s1E7) and @(v). Using the differential relations of 9 and 9, one gets df(x,y,z) = i (y)
and 0, (x,y,z) = & (y). If (&) has valence (m,n) andy = (y1,...,Ym), one uses the definition
of 9, to get, forevery i € {1,..., m}

diE(y) = max { um(y), wno @(EM)(Y) } > s

Then one computes:

D Il - 0 (06f(x,1,2), -, Vpf(x,u,2)) = OH (Dl(Y), ..., dHE(Y))

(EP>
= of(x,y,z).

Finally, let us fix a non-zero natural number N and assume that the property holds for every 2-path of
size at most N. We consider a 2-path f of size N + 1: there exists a decomposition f = g x; h where g

22

2.6. Polygraphic interpretations

and h are 2-paths of size at most N. Then, using the differential relations of ||- H”, for any 2-cell {2, and
of 0, one gets:

fllw = gl + Ml and 3y(f) = max{deg, doho @lg)).
We fix a x in @(s1f) and compute:

of(x) = 9d(gx1h)(x)
= 0g(x)+dhoo(g)(x)

< D gl - 0 (3p9(x), ..., dp0(x))

HeP,
+) Ihlg - 36 (dpho 9(g)(x), ..., dpho @(g)(x))
=eP;
<) gl - 088 (04f(x), ..., pf(x))
EHeP,
+) Il - 088 (3pf(x), ..., d4f(x))
=eP;
= > (lloll + Nl) - 088 (20F(x), ..., 2of(x))
EHeP,
=) Iflle - 08 (0f(x), ..., pf(x)).
EHeP;

O

Proposition 2.6.7. Let P be a 3-polygraph, let & be a 3-cell of P and let F be an elementary 3-path in (x).
One assumes that P is equipped with a polygraphic interpretation (@, 9) such that ¢ is compatible with
and conservative on . Then, for every x € @©(s1F), the following inequality holds in 7.:

A(t2F)(x) —3(s2F)(x) < D Ilta(o)llis - O (Dg(s2F)(x), ..., Dgls2F)(x)).

B=eP;

Proof. Since F is a 3-path of size 1 in («), one can decompose s,F and t,F as follows:

Let us denote by p, q and m the respective sizes of u, v and s1F. The map ¢(f) takes its values in a
part of NPT™+4: we decompose it into three maps denoted by @1(f), @2(f) and @3(f), with the same
domain and respectively taking their values in parts of NP, N™ and N9, Let us fix a x € ¢@(s1F). The
functorial and differential relations give:

A(s2F)(x) = of(x) + d(s20) 0 @2(f)(x) + dg(@1(f)(x), @(s20) 0 P2(F)(x), @3(f)(x)).

23

3. Complexity of polygraphic programs

With the same arguments, one gets the same decomposition for 9(t,F), with s, replaced by tyoc. Thus,
the following holds in Z:

0(t2F)(x) — 9(s2F)(x) = (t2x) o @2(f)(x) — d(s2) o @2(f)(x)
+ 99 (@1(f)(x), @(t2x) o 2(f)(x), @3(f)(x))
— 3g (@1(f)(x), @(s2x) 0 @2(F)(x), @3()(x)).

Let us prove that 9(toF)(x) — 0(s2F)(x) < 0(tya) o @2(f)(x) holds. First, one has 0(s,x) > 0.
Moreover, ¢ is compatible with «, which means that @(syx) > @(t2) holds; since the map 9g is
monotone, the following holds in N:

dg (@1(f)(x), @(s20) 0 @2(f)(x), @3(f)(x)) > 3g ((@1(f)(x), @(t20) 0 P2(f)(x), @3(f)(x)).

There remains to bound 9 (t2) o @2(f)(x). One applies Lemma 2.6.6/to t2() to get:

(t2x) 0 @2(f)(x) < D ta(et)llyy - 08 (D (t20x) 0 P2(F)(x), ..., Dp(t2ex) 0 2(f)(x)).
P,

By assumption, ¢ is conservative on o and, thus, 0,t2(x) o @2(f)(x) < 0¢ps2(x) o @2(f)(x) holds.
Moreover, using the differential properties satisfied by 9, one gets 0,52(x) o @2(f)(x) < 04(s2F).
One concludes by invoking the monotony of . O

3 Complexity of polygraphic programs

In this section, we specialize polygraphic interpretations to polygraphic programs to get information on
their complexity. In particular, we introduce additive polygraphic interpretations and use them as an
estimation of the size of values. This way, we give bounds on the size of computations, with respect
to the size of the arguments. We conclude this work with a characterisation of a class of polygraphic
programs that compute exactly the FPTIME functions.

3.1 Additive functorial interpretations and the size of values

Definition 3.1.1. Let P be a polygraphic program. One says that a functorial interpretation ¢ of P is
additive when, for every constructor 2-cell § of arity n, there exists a non-zero natural number Cy such

that, for every (x1,...,xn) in @($197), the following equality holds in N:
O(P)(x1,...,%n) = X1+ +xn +Cco.
In that case, one denotes by <y the greatest of these numbers, i.e. :
Y = max{cv, "V'ETPZC}.
A polygraphic interpretation is additive when its functorial part is.

Example 3.1.2. The functorial interpretations we have built for the polygraphic programs D and F are
additive. In both cases, v is 1.

24

3.1. Additive functorial interpretations and the size of values

Lemma 3.1.3. Let @ be an additive functorial interpretation of a polygraphic program P and let t be a
value with coarity 1. Then the following equality holds in N:

o(t) = Z lItllg - -

vePs

Proof. Let us prove this result by induction on the size of the 2-path t. There is no degenerate value with
coarity 1. If t is an elementary value with coarity 1, then t is a constructor 2-cell O with arity 0. Since ¢
is additive, one has @(0) = ¢, Moreover, HtHy is 1 when % = 0 holds and 0 otherwise, yielding the
equality one seeks.

Now, let us fix a non-zero natural number N and assume that the result holds for every value with
coarity 1 and size at most N. Let us fix a value t with coarity 1 and size N + 1. Then t admits a
decomposition t = (t1 *0 ** *0 tn) x1 ¥, where ¥ is a constructor 2-cell with arity n and each t,
i e {1,...,n}, is a value with coarity 1 and size at most N. As a consequence, for every constructor
2-cell N/, one has:

il = Ml Tty +1 i Y =9,
Y Ul -+ lltalls otherwise.

Finally, one computes:

o(t) = @(F) o (@(t1) x -+ x @(tn)) from the functorial relations of ¢,
= @(t1)+ -+ oltn) tco since ¢ is additive,
= Z (||t1\|v +--+ Ht“HV) T e by induction hypothesis
Yers
= Z [t - co from previous remark.
Yers

O

Proposition 3.1.4. Let ¢ be an additive functorial interpretation of a polygraphic program P. Then,
for every value t with coarity 1, the inequalities |[t|| < @(t) < v|[t|| hold in N. As a consequence,
for every value t, one has v(t) < @(t) < yv(t), where v is the functorial interpretation introduced in
Example2.1.6|

Proof. Let us assume that t is a value with coarity 1. From Lemma 3.1.3} one has:
o(t) = Z lItll - -
vePs

By additivity of ¢ and by definition of y, one has 1 < ¢ <y for every constructor 2-cell . One
concludes by using the following equality, that holds since t is in (P$):

=5 lithy-

vePs
When tq, ..., t are values with coarity 1 and when t = t7 g - - - %o t;1, one concludes thanks to the
equalities @(t) = (@(t1),..., @(tn)) and v(t) = ([Itsll, ..., [[tnll). O

25

3. Complexity of polygraphic programs

Lemma 3.1.5. Let ¢ be an additive functorial interpretation of a polygraphic program P. For every
value t with coarity 1, the equality 0 ot = @(t) holds. As a consequence, for every value t with coarityn,
one has ot = pn 0 @(t).

Proof. Let us proceed by induction on the size of t. If © is a constructor 2-cell with arity 0, then the
equality holds by definition of 0,0.

Now, let us fix a non-zero natural number N and assume that the result holds for every value with
coarity 1 and size at most N. Let us consider a value t with coarity 1 and size N + 1. One decomposes t
into t = (ty %o - - - *0 tn) *x1 ¥, with 9 a constructor 2-cell and where t; is a value with coarity 1 and
size at most N, for every i € {1,...,n}. Using the differential relations of d, one gets:

dpt = max{ p(t1), ..., Vg(tn), 3o (@(t1),..., @(tn)) }.
The definition of 0, gives:

%Y (oltr), - 0(tn)) = max{p(tr), ..., @(tn), @(F) (0 ()., @lta) }-

Since ¢ is additive, @ () ((p(t1)y e, (p(tn)) is greater than every ¢ (t;), which is 0(t;) by induction
hypothesis applied to t;. Thus one gets the following equality and uses the functorial relations of ¢ to
conclude:

dot = @(F)(@(t1),...,0(tn)).

Finally, let us consider a value t with coarity n. One denotes by (tq,...,t,) the family of values with
coarity 1 such that t = tyxo- - -xotn holds. One invokes the differential relations of 0, to get the equality
0ot = max { Op(t1), ..., 0p(tn) } One uses the induction hypothesis on each t; and concludes, thanks
to the functorial relations satisfied by . O

Proposition 3.1.6. Let ¢ be an additive functorial interpretation on a polygraphic program P. For every
function 2-cell (&) and every value t of type s1({), one has 3, (t x1 E) = 0 & o @(t).

Proof. Let us assume that ” has valence (m, n). One uses the differential relations of 0, to produce:
dp(t*1) = max {a(pt, dplE o (p(t)} .

But, by definition of 9, one has 9, o @(t) > pm o @(t). There remains to use Lemma3.1.5 on t to
get 0ot = pun o @(t). 0

Notation 3.1.7. Let & be a function 2-cell with arity m in a polygraphic program P, equipped with an
additive functorial interpretation ¢. Thereafter, we denote by My the map from N™ to N defined by:

M (X1, xXm) = 0 (vx1, ..oy YXm).

The next result uses the map My and the size of the initial arguments to bound the size of intermediate
values produced during computations, hence of the arguments of potential recursive calls.

Proposition 3.1.8. Let P be a polygraphic program, equipped with an additive, compatible and conser-
vative functorial interpretation . Let (&8 be a function 2-cell and let t be a value of type s168). Then,
for every 3-path F with source t x1 B3, the following inequality holds in N:

dp(t2F) < My ov(t).

26

3.2. Cartesian polygraphic interpretations and the size of structure computations

Proof. The functorial interpretation ¢ is compatible and conservative: by Proposition 2.5.3, we know
that 3 (t2F) < 04(t 7 E5) holds. Since @ is additive, one may use Proposition 3.1.6/ to produce the
equality 0 (t x1 BH)) = 0, o ¢(t). Furthermore, Proposition 3.1.4 gives @(t) < yv(t): one argues
that 9, is monotone to conclude. O

Example 3.1.9. Applied to Example|1.3.3, Proposition 3.1.8/tells us that, given a list t, any intermediate
value produced by the computation of the sorted list @(t) has its size bounded by M (lItll) = [[t]l. This
means that recursive calls made during this computation are applied to arguments of size at most ||t]|.

3.2 Cartesian polygraphic interpretations and the size of structure computations

Here we bound the number of structure 3-cells that can appear in a computation. For that, we consider
polygraphic interpretations that take special values on structure 2-cells.

Definition 3.2.1. Let P be a polygraphic program. A functorial interpretation ¢ of P is said to be
cartesian when the following conditions hold, for every 1-cells & and (:

o (Ag)x) = (x0) and o (<) (u) = (v,%).

A polygraphic interpretation is cartesian when its functorial part is cartesian and when its differential
part sends every constructor and structure 2-cell to zero.

Proposition 3.2.2. If a functorial interpretation of a polygraphic program P is cartesian, then it is
compatible with and conservative on all the structure 3-cells.

Proof. Let @ be a cartesian functorial interpretation of a polygraphic program P. We start by computing
the values of ¢ and 9, on the structure 2-paths, by induction on their size. This way, one proves that the
following equalities hold, for any 1-path u and x € @(u), any 1-cell £ andy € @(&):

o (S=ue) v = W, o (=) X = (k)
¢ (A) = (xx), o (&)X ==

Then, when u = x, all these 2-paths are degenerate, so that they are sent on 0 by the differential inter-
pretation 0. Now, when u is non-degenerate, with x = (x1,...,Xn), one gets:

00 (S2,,) (6y) = max(xr, o xn,u) = 3 (282,) (u,%)
0o (Au (x) = max{xj,...,xn} = 0¢p (“u) (x).

Now, we fix a 1-path u, T-cells &, ¢ and a constructor 2-cell 9 : u — & in P. Let us consider x € @(u)
and y € @(() and check that the following equalities hold, yielding the compatibility of ¢ on structure

3-cells: N -
o (Td) vl = ot = o (7)) (xu,
o (L) twrt = ot = o (7)),

27

3. Complexity of polygraphic programs

With the same notations, we now check the conservativeness of ¢ with the structure 3-cells, i.e the
compatibility of 0, with them:

O

Definition 3.2.3. Let ¢ be a functorial interpretation of a polygraphic program P. We denote by a§p and
call structure differential interpretation generated by @ the differential interpretation of P, over ¢ and
into (N, 4, 0), that sends every constructor and function 2-cell to zero and such that the following hold:

a§p>< (x,y) = xy, apr (x) = x?, afpb (x) = x.

Lemma 3.2.4. Let @ be a functorial interpretation of a polygraphic program P. If @ is both additive
and cartesian, then aﬁ, is strictly compatible with all the structure 3-cells of P.

Proof. We start by computing a?P on the structure 2-paths, by induction on their size:

0% (%) (x1,-. . xn,y) = 05, (282) (U, x,-.xn) = U+ Y jcicn i)
35, () (x1,. .) = Y qcicien i X 05 (&) (x1,...,xn) = X 1cicn Xie

Now, let us fix a constructor 2-cell 9 with arity n. Let us consider x = (x1,...,%n) in @(s1¥).
Since ¢ is additive, one notes that @()(x) > %7 + -+ + xy holds. Then, given ay € N — {0}, one
checks that the following strict inequalities hold in N — {0}:

o5 (2d)) = w0100 > v Y = 03 (P e

1<i<n
o5 (L) v = w0090 > v 3w = 05 (79 txow)
1<i<n
3 (X) = (910 > T weows = 03 (€%) 10,
1<i<i<n
5 (T) (0 = 0101 > ¥ xi = 0% () .
1<i<n

28

3.2. Cartesian polygraphic interpretations and the size of structure computations

The following result gives sufficient conditions on a polygraphic interpretation such that one does not
have to bother with the structure 3-cells to prove termination.

Proposition 3.2.5. If a polygraphic program admits an additive and cartesian polygraphic interpretation
that is strictly compatible with every computation 3-cell, then it terminates.

Proof. Let (@, 0) be a polygraphic interpretation with the required properties. One applies Proposi-
tion 3.2.2/ to get the compatibility of ¢ with structure 3-cells. Then Lemma 3.2.4/tells us that (¢, 9% v) 18
strictly compatible with structure 3-cells: hence Theorem 2.6.3|yields termination of CPS

Since 0 sends every constructor and structure 2-cell to zero, one has 9(syx) = a(tzoc) = 0 for
every structure 3-cell o: thus (¢, 9) is compatible with every structure 3-cell and, by hypothesis, strictly
compatible with every other 3-cell. One applies Proposition 2.6.4/to conclude. O

Definition 3.2.6. Let P be a polygraphic program. One denotes by K the maximum number of structure
2-cells one finds in the targets of computation 3-cells:

K = max {th(OC)H:pg , &€ T?} .

Let ¢ be an additive functorial interpretation of P. For every function 2-cell & with arity m, one
defines Syy as the map from N™ to N given by:

Seg (X1, xm) = K-Mzh(xh...,xm).

The following lemma proves that, during a computation, if one applies a computation 3-cell, then the
structure heat increase is bounded by a polynomial in the size of the arguments.

Lemma 3.2.7. Let P be a polygraphic program, equipped with an additive, cartesian, compatible and
conservative functorial interpretation ¢. Let & be a function 2-cell and t be a value of type s1(i53).
Let f and g be 2-paths such that t x1 (& reduces into f which, in turn, reduces into g by application of a
computation 3-cell o. Then, the following inequality holds in Z.:

05,0 — 05f < Sy ov(t).

Proof. Since ¢ is compatible and conservative, one can apply Proposition [2.6.7 on the 3-path from f
to g, to get the following inequality:

050 —05f < > lta(o)llp - 054 (3 - 0p(f)).
eP,

By definition of 3%, one has 93 o8 = 0 except when [is a structure 2-cell. Thus one gets:

050 — 35 f < [lta(a)lls - 95,5< (dg(f), dg(f))
+ lta(@)lls - 05, (26(f))
+ lltz()lle - 056 (36(f))
= [[ta(@)llss - (3(F)? + [lt2(e)ll & - (3(F)* + l[ta()lle - B(F)
< Ilta(@llgs - (36(1)°

<K- (36(f)°

29

3. Complexity of polygraphic programs

Finally, we recall that @ is additive, compatible and conservative: an application of Proposition 3.1.8/to
the 3-path with source t x1 &5} and target f yields 9, (f) < Mg © v(t) and concludes the proof. O

Example 3.2.8. For the polygraphic program of Example 1.3.3, we have K = 1. The polynomials
bounding the structure interpretation increase after application of one of the computation 3-cells of this
polygraphic program are:

Se(x)=x% Si(x)=x* Sgxu)=(x+y—1%

3.3 The size of computations

Definition 3.3.1. Let P be a polygraphic program, with an additive polygraphic interpretation (¢, 9).
For every function 2-cell (&9 with arity m, one denotes by P and by Quy the maps from N™ to N
defined by:

PH(X])“')XT]‘L) = a” (’YX.I)“')YXTTL))
Qu(x1,. -y xm) = P”(x1,...,xm)-<1 —I-S”(m,...,xm)).

The following result bounds the number of computation 3-cells in a reduction 3-path, with respect to the
size of the arguments.

Proposition 3.3.2. Let P be a polygraphic program, equipped with an additive and cartesian polygraphic
interpretation (@, 0) which is strictly compatible with every computation 3-cell. Let (& be a function
2-cell and t be a value of type s1(8&). Then, for every 3-path F with source t x1 §&, the following
inequality holds:

IFlllps < P ovi(t).

Proof. 1f F is degenerate, then |||F|H(P§ = 0 holds. Otherwise, the 3-path F decomposes this way:
F = Ho*z G] *2H1 *2 Gz*z- sk Gk*sz,

where each Gj is elementary in <fP3R> and each Hj lives in <‘.P_§;> Hence H|FH|:])§ = k. Since the
polygraphic interpretation is cartesian, it is compatible with every structure 3-cell, so that one has
d(s2Hj) > 0(t2H;), for every j € {0,...,k}. Since it is also strictly compatible with every com-
putation 3-cell, one applies Proposition 2.4.3/ to get the following chain of (in)equalities, for every
ie{0,...,k—1}

d(s2Hi) > 0(ta2Hi) = 8(s2Gi) > 0(t2Gi) = d(s2Hit1).
By induction on i, one proves the following chain of (in)equalities:
O(t*1) = 0(s2G1) > 9(s2G2) > - -+ > d(s2Gy) > d(t2Gy).
Furthermore we have 9(t,Gy) > 0 and, consequently:
[=

Finally, let us bound 9(t %7 §&5)), which is equal to 08 o @(t) + 0t, thanks to the differential relations
of 0. But (¢, 9) is cartesian, yielding 0t = 0, and Proposition 3.1.4/tells us that @ (t) < yv(t) holds.
One uses the definition of Py to conclude. O

30

3.3. The size of computations

Proposition 3.3.3. Let P be a polygraphic program, equipped with an additive and cartesian polygraphic
interpretation (@, 0) which is strictly compatible with and conservative on every computation 3-cells.
Let (& be a function 2-cell and let t be a value of type s1&8. Then, for every 3-path F with source
t x1 (&, the following inequality holds:

IFIl < Quov(t).

Proof. If |||F||| = 0, then the inequality does hold. Otherwise, there exists a 3-cell that we can apply to
the starting 2-path t %7 E; moreover, this is a computation 3-cell since no structure 3-cell can be applied
to such a 2-path. Hence the 3-path F decomposes this way:

F = GixaHix2 Gk« %2 Gk Hy,
where each Gj is elementary in <(P'§> and each Hj is in <fP§ > As a consequence, we have:
IIFI = k4 [[Hlll 4 -+ IH]

Furthermore k = |HF|||3>3R holds and, thus, so does k < Py o v(t) thanks to Proposition[3.3.2. We prove
that the following inequality holds to conclude:

IHI -+ H] < k- (S 0 v(1)).

Towards this goal, letus fix ani € {1,...,k}. Since afp is strictly compatible with every structure 3-cell,
one gets from Proposition 2.4.3:

IHll + 95 (t2Hy) < 9%, (s2Hy).
Furthermore, from Lemma |3.2.7, one knows that the following inequality holds:
05, (t2G1) < 9%,(52Gy) + S 0 V(1)
Since t,G; = syH; holds, one has:
IHlll + 9%, (t2H;) < 95,(s2Gi) + Sigy 0 v(1).

Or, written differently:
IIHll < 93(s2G1) — 35, (t2Hy) + S 0 V(1)
One sums this family of k inequalities, one for every iin {1,...,n}, to produce:

k k
HGII -+ DIH < Y 85(s2G) — 3 a5 (t2H) + k- Sy 0 v(1).

i=1 i=1

By hypothesis, one has s,G1 = t x1 %, toHy = toF and, forevery i € {1,...,k}, t2H; = $2Gi41, so
that the following inequality holds:

IHl+ -+ IHl] < 9%, (s2F) — 35, (t2F) + k- Sy 0 v(1).

Finally, one argues that both afp(t x1 @) = 0 and 6i(tzF) > 0 hold by definition of afp to get the
result. L]

31

3. Complexity of polygraphic programs

Example 3.3.4. Let us compute these bounding maps for the fusion sort function 2-cell @ of the poly-
graphic program J:

Po(2x+1) = 2*+1 and Qu(2x+1) = (2x*+1)- (1+ (2x+1)?).

Let us fix a list [i;...;1n] of natural numbers. One can check that, in &, this list is represented by a
2-path t such that @(t) = [[t]| = 2n + 1. The polynomial P, tells us that, during the computation of the
sorted list [[#]] (t), there will be at most 2n?+ 1 applications of computation 3-cells. The polynomial Qe
bounds the total number of 3-cells of any type.

For example, when 1 is 2, one computes [[ﬂ] (t) by building a 3-path of size at most Q4(5) = 234,
containing no more than Pg(5) = ¢ computation 3-cells. One can check that the 3-path presented
in Example [1.4.8 is (way) below these bounds: it is made of seven 3-cells, six of which are of the
computation kind.

3.4 Polygraphic programs and polynomial-time functions

Definition 3.4.1. Let P be a polygraphic program. A differential interpretation 0 of P is polynomial
when, for every function 2-cell (&5, the map 0= is bounded by a polynomial. A functorial interpreta-
tion ¢ of P is polynomial when 0, is. A polygraphic interpretation is polynomial when both its functorial
part and differential part are.

We denote by P the set of polygraphic programs which are confluent and complete and which ad-
mit an additive, cartesian and polynomial polygraphic interpretation that is conservative on and strictly
compatible with their computation 3-cells.

As a consequence of previous results, the two polygraphic programs D, computing euclidean division,
and F, computing the fusion sort of lists, are in P. We also introduce another example that we shall use
thereafter.

Definition 3.4.2. Let us denote by N the polygraphic program with the following cells:
1. Tt has one 1-cell n.
2. Its 2-cells are the three possible structure 2-cells plus:

(a) Constructor 2-cells: O for zero and O for the successor.
(b) Function 2-cells: ¢ for addition and ¢ for multiplication.

3. Its 3-cells are the eight structure 3-cells plus the following computation 3-cells:

V| YT st .Y

32

3.4. Polygraphic programs and polynomial-time functions

Proposition 3.4.3. The polygraphic program N is in P and it computes the addition and multiplication
of natural numbers.

Proof. The polygraphic program N is orthogonal, hence locally confluent, and complete. Furthermore,
the following hold:

[~N, [¥]mn)=m+n, [¥](mn)=mn

Then, one checks that the following polygraphic interpretation has all the required properties:

en) =N—-{0}), co=co=1, 0PIy =x+y, o(¥ixy) =xy,

OV(xy)=x and 3W(xy)=(x+1y.
O

Remark. So N computes addition and multiplication of natural numbers. As we have seen, it also
computes duplication and permutation on them. As a consequence, for every polynomial P in N[x], one
can choose a 2-path B in N such that [#] is P. Moreover, by induction, one proves that ¢ (#) = P and
that 0® is bounded by a polynomial in N[x].

Theorem 3.4.4. The polygraphic programs of P compute exactly the FPTIME functions.

Proof. The fact that a function computed by a polygraphic program in P is in FPTIME is a consequence
of the results of Proposition 3.3.3. Indeed, it proves that the size of any computation of [l‘,:',l]] is bounded
by Qg applied to the size of the arguments: from the polynomial assumption and the definition of Q.
this map is itself bounded by a polynomial. Moreover each 3-cell application modifies only finitely many
2-cells: hence the sizes of the 2-paths remain polynomial all along the computation. Furthermore, any
step of computation can be done in polynomial time with respect to the size of the current 2-path. Indeed,
it corresponds to finding a pattern and, then, replace it by another one: it is just a reordering of some
pointers with a finite number of memory allocations. So, the computation involves a polynomial number
of steps, each of which can be performed in polynomial time. Thus, the normalization process can be
done in polynomial time.

Conversely, let f : (X) — (X) be a function of class FPTIME. This means that there exists a Turing
machine M = (X, Q, qo, df, ®) and a polynomial P in N[x] such that the machine M computes f and,
for any word w of length n in (X), the number of transition steps required by M to compute f(w) is
bounded by P(n). We extend the polygraphic program N into P(M, P), by adding the following extra
cells, adapted from the ones of the polygraphic Turing machine P(M) used in the proof of Theorem(1.5.2,
in order to use P as a clock:

1. An extra 1-cell w.

2. Extra 2-cells include the five new structure 2-cells plus:

(a) Constructor 2-cells: the empty word O : * = w and each letter ® : w = w of L.

(b) Function 2-cells: the main @ : w = w for f, plus the modified , g€ Qanda € I, now
from n %o wxo w to w, plus an extra size function @ : w = n.

33

3. Complexity of polygraphic programs

3. Extra 3-cells include the new structure ones plus:

(a) The computation 3-cells for the auxiliary function M:

" =0 9

(b) Timed versions of the computation 3-cells for the Turing machine:

=

w = w both when 6(q1,a) = (q2,¢c,L)
o

s -
WS @ = %O both when 6(q1,a) = (qgz,¢c,R)
= 66 |

One checks that P(M, P) is orthogonal and complete. We equip it with the polygraphic interpretation
based on the one defined on N in the proof of Proposition [3.4.3, extended with the following values:

o =c¢cy =1,

oM)(x)=x, o) (x,y,z)=x+y+z, @@)x)=PKx) +x+]1,
om(x) = dm@(x,y,z) =%, 0@(x) =0m(x)+P(x)+x+1.

One checks that this polygraphic interpretation is additive, cartesian, polynomial, compatible with and
conservative on all the computation 3-cells. Hence, P(M, P) is a polygraphic program in P. Furthermore,
one has [n] ~ N and [w] ~ (X). We also note that, among functions computed by P(M, P), one proves
that [M] : [w] — [n] is the length function.

The four middle families of computation 3-cells of N are once again in bijection with the rules
defining the transition relation of the Turing machine M. Hence, the configuration (q, a, w, w;) reduces
into (q’, a’, w{,w;) in k € N steps if and only if, for any n > k, one has:

(1 %0 Wi %0 W) * ‘ = (n_k*oﬁ*OVLQ *1 ‘

Finally, let us fix a word w of length n in (X). The Turing machine computes f, so that (qo, £, e, w)
reduces into a unique configuration (q¢, a, v, f(w)), after a finite number k of transition steps. Then we
check the following chain of equalities, yielding [[#]] =f:

[#] (w) = [mmm] (Pn) %00 xow) = [(P(n) — kxovroflw)) = fw).

34

Future directions

Future directions

Polygraphic programs — The definition we have chosen for this study stays close to the one of first-order
functional programs. We shall explore generalization along different directions.

We think that an important research trail concerns the understanding of the algebraic properties of the
if-then-else construction in polygraphic terms. Towards this goal, we want to describe strategies as sets
of 4-dimensional cells. The 3-paths will contain all the computational paths one can build when there
is no fixed evaluation strategy, while the strategies and conditions will be represented by the 4-paths,
seen as normalization processes of 3-paths. In particular, this setting shall allow us to internalize the
test used to compute the merge function in the fusion sort algorithm, but also to describe conditional or
probabilistic rewriting systems.

On another point, in the polygraphs we consider here, we have fixed a sublayer made of permu-
tations, duplications and erasers, together with natural polygraphic interpretations for them. However,
one can see them as a special kind of function 2-cells. Thus, we shall define a notion of hierarchical
programs, where one builds functions level after level, giving complexity bounds for them modulo the
previously defined functions. However, this does not prevent us to build modules that a programmer can
freely use as sublayers, without bothering with the complexity of their functions: for example, a module
that describes the evaluation and coevaluation. We think of this module system as a first possibility to
integrate polymorphism into the polygraphic setting.

Removing duplication and erasure from the standard definition means that one moves from a carte-
sian setting to a monoidal one. According to a variant of André Joyal’s paradox [29], this is necessary to
describe functions such as linear maps on finite-dimensional vector spaces. Thus, one should be able to
compute, for example, algebraic cooperations, such as the ones found in Jean-Louis Loday’s generalized
bialgebras [33], or automorphisms of C™, such as the universal Deutsch gate [37] of quantum circuits.

Going further, at this step, there will be no reason anymore to consider constructor 2-cells with one
output only or values with no output. This way, one could consider algorithms computing, for example,
on braids or knots. However, this also suggests to change our notion of function 2-cells to some kind of
"polygraphic context", a notion of 2-path with holes whose algebraic structure has yet to be understood.
In particular, this is the second solution we think of to describe polymorphic types and functions.

For all this research, we shall consider a more abstract definition of polygraphs: they are special
higher-dimensional categories, namely the free ones. This formulation, though leading to a steeper
learning curve, shall provide enlightenments about the possibilities one has when one wants to extend
the setting. But, more importantly, this will make easier the adaptation of tools from algebra for program
analysis.

Analysis tools — In future work, we shall use other possibilities provided by polygraphic interpretations,
together with other algebraic tools, to study the computational properties of polygraphs.

We restricted interpretations to be polynomials with integer coefficients. This is close to the tools
considered in [8]]. Following this last paper, a straightforward characterization of exponential-time (resp.
doubly exponential-time) can be done by considering linear (resp. polynomial) interpretations for con-
structors, instead of additive ones. However, some studies are much more promising. First, to turn to
polynomials over reals give some procedures to build interpretations (see [11]) via Alfred Tarski’s de-
cidability [44]. Second, we plan to consider differential interpretations with values in multisets (instead
of natural numbers), to characterize polynomial-space computations.

35

REFERENCES

For each generalization of the notion of polygraphic program, such as the ones mentioned earlier, we
shall adapt polygraphic interpretations in consequence. We think that, if these generalizations are done
in an elegant way, this task will be easier. For example, if one considers "symmetric" values, i.e. values
with inputs, one can use a third part of polygraphic interpretations we have not used here: ascending
currents, described by a contravariant functorial part, such as in the original definition [18]].

As pointed earlier, polygraphs are higher dimensional-categories. Philippe Malbos and the second
author are currently adapting the finite derivation criterion of Craig Squier [40] to them, as was done
before for 1-categories [34]. We think that this will lead us to a computable necessary condition to
ensure that a function admits a finite, convergent polygraphic program that computes it.

The same collaboration has more long-term aims: using tools from homological algebra for program
analysis. For example, the functorial and differential interpretations are special cases of, respectively, left
modules over the 2-category of 2-paths (or bimodules, when there are ascending currents) and derivations
of this same 2-category into the given module. Moreover, a well-chosen cohomology theory yields, in
particular, information on derivations: thus, one can hope to get new tools such as negative results about
the fact that a given algorithm lives in a given complexity class.

Cat — The main concrete objective of this project is to develop a new programming language, codenamed
Cat. In this setting, one will build a program as a polygraph, while using the algebraic analysis tools we
provide to produce certificates that guarantee several properties of the code, such as grammatical ones,
computational ones or semantical ones. As in Caml [13], a Cat program will have two aspects: an
implementation and an interface.

In the implementation, one builds the code, describing the cells and assembling them to build paths,
i.e. building the data types, the functions, the computation rules and the evaluation strategies. Thanks to
the dual nature of polygraphs, one shall be able to perform this using an environment that is either totally
graphical, totally syntactical or some hybrid possibility between those.

The interface part contains all the information the programmer can prove on its code, in the form of
certificates. These guaranteed properties will range from type information, as in Caml, to polygraphic
interpretations proving termination or giving complexity bounds, to proofs of semantical properties in the
form of polygraphic three-dimensional proofs [19]. For all these certificates, we shall propose assistants,
with tactics that automatize the simpler tasks and leave the programmer concentrate on the harder parts.

Finally, given such a polygraphic program, the question of evaluation arises. One can think of several
solutions, whose respective difficulty ranges from "feasible" to "science-fiction": first, a compiler or an
interpreter into some existing language, such as Tom [45]], a task that has already been started; then, a
distributed execution where each 2-cell is translated into a process, whose behaviour is described by the
corresponding 3-cells; finally, concrete electronic chips dedicated to polygraphic computation.

References

[1] Colin Adams, The knot book, American Mathematical Society, 2004.

[2] Thomas Arts and Jiirgen Giesl, Termination of term rewriting using dependency pairs, Theoretical Computer
Science 236 (2000), no. 1-2, 133-178.

[3] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press, 1998.

[4] John Baez and Aaron Lauda, A history of n-categorical physics, draft version, 2006.

36

REFERENCES

(5]

(6]

(7]

(8]

[9]

Patrick Baillot and Kazushige Terui, Light types for polynomial time computation in lambda-calculus, Pro-
ceedings of the 19th Symposium on Logic in Computer Science (LICS 04), 2004, pp. 266-275.

Stephen Bellantoni and Stephen Cook, A new recursion-theoretic characterization of the poly-time functions,
Computational Complexity 2 (1992), 97-110.

Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélene Touzet, Complexity classes and rewrite
systems with polynomial interpretation, Proceedings of the 12th International Workshop on Computer Sci-
ence Logic (CSL 98), Lecture Notes in Computer Science, vol. 1584, 1999, pp. 372-384.

, Algorithms with polynomial interpretation termination proofs, Journal of Functional Programming
11 (2001), no. 1, 33-53.

Guillaume Bonfante and Yves Guiraud, Intensional properties of polygraphs, Proceedings of the 4th Inter-
national Workshop on Term Graph Rewriting (TERMGRAPH 07), vol. 203, Electronic Notes in Computer
Science, no. 1, 2008, pp. 65-77.

Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen, Quasi-interpretations: a way to control
resources, Theoretical Computer Science (2005), to appear.

Guillaume Bonfante, Jean-Yves Marion, Jean-Yves Moyen, and Romain Péchoux, Synthesis of quasi-
interpretations, Logic and Complexity in Computer Science, 2005.

Albert Burroni, Higher-dimensional word problems with applications to equational logic, Theoretical Com-
puter Science 115 (1993), no. 1, 43-62.

The Caml Language, caml.inria.fr.

Adam Cichon and Pierre Lescanne, Polynomial interpretations and the complexity of algorithms, Lecture
Notes in Artificial Intelligence 607 (1992), 139-147.

Daniel Dougherty, Pierre Lescanne, and Luigi Liquori, Addressed term rewriting systems: application to a
typed object calculus, Mathematical Structures in Computer Science 16 (2006), no. 4, 667-709.

Jean-Yves Girard, Light linear logic, Information and Computation 143 (1998), no. 2, 175-204.

Yves Guiraud, Présentations d’opérades et systemes de réécriture, Ph.D. thesis, Université Montpellier 2,
June 2004.

, Termination orders for 3-dimensional rewriting, Journal of Pure and Applied Algebra 207 (2006),
no. 2, 341-371.

, The three dimensions of proofs, Annals of Pure and Applied Logic 141 (2006), no. 1-2, 266-295.

, Two polygraphic presentations of Petri nets, Theoretical Computer Science 360 (2006), no. 1-3,
124-146.

, Polygraphs for termination of left-linear term rewriting systems, preprint, 2007.

Dieter Hofbauer and Clemens Lautemann, Termination proofs and the length of derivations, Lecture Notes
in Computer Science 355 (1988), 167-177.

Martin Hofmann, A type system for bounded space and functional in-place update, Nordic Journal of Com-
puting 7 (2000), no. 4, 258-289.

Neil Jones, Computability and complexity, from a programming perspective, MIT Press, 1997.

, Logspace and ptime characterized by programming languages, Theroretical Computer Science 228
(1999), 151-174.

37

REFERENCES

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]

38

Yves Lafont, Interaction nets, Proceedings of the 17th Symposium on Principles of Programming Languages
(POPL 90), 1990, pp. 95-108.

, Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184 (2003),
no. 2-3, 257-310.

, Soft linear logic and polynomial time, Theoretical Computer Science 318 (2004), 163-180.

Joachim Lambek and Philipp Scott, Introduction to higher-order categorical logic, Cambridge University
Press, 1986.

Dallas Lankford, On proving term rewriting systems are noetherian, Tech. report, Louisiana Tech University,
1979.

Daniel Leivant, A foundational delineation of computational feasability, Proceedings of the 6th Symposium
on Logic in Computer Science (LICS 91), 1991, pp. 2-11.

Daniel Leivant and Jean-Yves Marion, Lambda-calculus characterizations of poly-time, Fundamenta Infor-
maticae 19 (1993), no. 1-2, 167-184.

Jean-Louis Loday, Generalized bialgebras and triples of operads, preprint, 2006.

Philippe Malbos, For string rewriting systems the homotopical and homological finiteness conditions coin-
cide, preprint, 2007.

Jean-Yves Marion and Romain Péchoux, Resource analysis by sup-interpretation, Lecture Notes in Computer
Science 3945 (2006), 163-176.

Yiannis Moschovakis, What is an algorithm?, Mathematics Unlimited — 2001 and Beyond (Bjorn Engquist
and Wilfried Schmid, eds.), Springer, 2001, pp. 919-936.

Michael Nielsen and Isaac Chuang, Quantum computation and quantum information, Cambridge University
Press, 2000.

Karl-Heinz Niggl and Henning Wunderlich, Certifying polynomial time and linear/polynomial space for
imperative programs, STAM Journal of Computing 35 (2006), no. 5, 1122-1147.

Detlef Plump, Term graph rewriting, Handbook of Graph Grammars and Computing by Graph Transforma-
tion 2 (1999), 3-61.

Craig Squier, A finiteness condition for rewriting systems, Theoretical Computer Science 131 (1994), no. 2,
271-294, Revised by Friedrich Otto and Yuji Kobayashi.

Ross Street, Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8 (1976), no. 2, 149-181.
, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), no. 3, 283-335.

, Higher categories, strings, cubes and simplex equations, Appl. Categ. Structures 3 (1995), no. 1,

29-717.

Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, 1951,
2nd edition.

Tom, tom.loria.fr.

John von Neumann, Theory of self-reproducing automata, University of Illinois Press, 1966.

