
HAL Id: inria-00383325
https://hal.inria.fr/inria-00383325

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cluster-Wide Context Switch of Virtualized Jobs
Fabien Hermenier, Adrien Lebre, Jean-Marc Menaud

To cite this version:
Fabien Hermenier, Adrien Lebre, Jean-Marc Menaud. Cluster-Wide Context Switch of Virtualized
Jobs. [Research Report] RR-6929, INRIA. 2009. �inria-00383325�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50172775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00383325
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

29
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Cluster-Wide Context Switch of Virtualized Jobs

Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud
ASCOLA Research Group

EMN, INRIA, LINA UMR 6241
firstname.lastname@emn.fr

N° 6929

Avril 2009

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Cluster-Wide Context Switch of Virtualized Jobs

Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud
ASCOLA Research Group

EMN, INRIA, LINA UMR 6241
firstname.lastname@emn.fr

Thème COM — Systèmes communicants
Équipe-Projet ASCOLA

Rapport de recherche n° 6929 — Avril 2009 — 21 pages

Abstract: Clusters are massively used through Resource Management Systems with
a static allocation of resources for a bounded amount of time. Such an approach leads
to a coarse-grain exploitation of the architecture and an increase of the job completion
times since most of the scheduling policies rely on users estimates and do no consider
the real needs of applications in terms of both resources andtimes. Encapsulating
jobs into VMs enables to implement finer scheduling policiesthrough cluster-wide
context switches: a permutation between VMs present in the cluster. It results a more
flexible use of cluster resources and relieve end-users of the burden of dealing with
time estimates.

Leveraging the Entropy framework, this paper introduces a new infrastructure en-
abling cluster-wide context switches of virtualized jobs to improve resource manage-
ment. As an example, we propose a scheduling policy to execute a maximum number
of jobs simultaneously, and uses VM operations such as migrations, suspends and re-
sumes to resolve underused and overloaded situations. We show through experiments
that such an approach improves resource usage and reduces the overall duration of jobs.
Moreover, as the cost of each action and the dependencies between them is considered,
Entropy reduces, the duration of each cluster-wide contextswitch by performing a
minimum number of actions, in the most efficient way.

Key-words: Context Switch, Virtualization, Cluster

Changement de conexte pour tâches virtualisées à
l’échelle des grappes

Résumé : De nos jours, la gestion des ressources d’une grappe est effectuée en al-
louant des tranches de temps aux applications, spécifiées par les utilisateurs et de ma-
nière statique. Pour un utilisateur, soit les ressources demandées sont sur-estimées, et
la grappe est sous-utilisée, soit sous-dimensionnées, et ses calculs sont dans la plu-
part des cas perdus. L’apparition de la virtualisation a apporté une certaine flexibilité
quant à la gestion des applications et des ressources des grappes. Cependant, pour
optimiser l’utilisation de ces ressources, et libérer les utilisateurs d’estimations hasar-
deuses, il devient nécessaire d’allouer dynamiquement lesressources en fonction des
besoins réels des applications. Être capable de démarrer dynamiquement une appli-
cation lorsqu’une ressource se libère ou la suspendre lorsque la ressource doit être
ré-attribuée. En d’autres termes, être capable de développer un système comparable au
changement de contexte sur les ordinateurs standards pour les applications s’exécutant
sur une grappe. En s’appuyant sur la virtualisation, développer un tel mécanisme de
manière générique devient envisageable.
Dans cet article nous proposons une infrastructure offrantla notion de changement de
contexte d’applications virtualisées appliquée aux grappes. Cette solution a permit de
développer exécutant simultanément un maximum d’applications virtualisées. Nous
montrons qu’une telle solution augmente le taux d’occupation de notre grappe et réduit
le temps de traitement des applications.

Mots-clés : Changement de contexte, Virtualisation, Grappe

Cluster-Wide Context Switch of Virtualized Jobs 3

1 Introduction

Clusters are used for a wide range of applications providinghigh-performance com-
puting, large storage capacity, and high throughput communication. According to their
size and their objectives, clusters are exploited in different ways. However, few of
them are dedicated to one particular application and the most common way of exploit-
ing large cluster consists in using dedicated services especially Resource Management
System (RMS) where users request resources for a specific walltime according to their
estimated needs.

Several works have been proposed to provide more flexibilityto administrators
and users ([1], [2], [3],[4], . . .). However, cluster usage is still based on a reservation
scheme where a static set of resources, including potentially several nodes, is assigned
to a job during a bounded amount of time. If one may argue that providing dedicated
time slot per job is required in some situations (e.g. in the case of reproducible ex-
periments), a lot of end-users do not really take care about such critical requirements
and just want to benefit from clusters as soon as possible and as long as required. As
a consequence, this model of using large clusters by only considering resource and
time estimates leads to a coarse-grain exploitation of the architecture since resources
are reassigned to another job at the end of the slot without considering the real needs
of applications in terms of both resources and times. In the best case, the time-slot is
larger than the estimate and resources are simply under used. In the worst case, running
applications can be withdrawn from their resources leadingpotentially to the loss of all
the performed calculations and requiring to execute once again the same request.

In this paper, we propose to address the issue of static allocations by extending
the Entropy consolidation framework [5] with a cluster-wide context-switch mecha-
nism. A well-known approach to improve the resource utilization in clusters consists
in exploiting preemption mechanisms where jobs can be proceed, even partially, and
suspended according to the scheduler objectives. The RMS performs transitions be-
tween the current situation and the expected one: jobs to stop are stopped or suspended
to a disk while jobs to run are started or resumed from previously saved images. Such
transitions can be considered as a cluster-wide context switch. With virtualized jobs,
vjobs i.e. jobs encapsulated into Virtual Machines (VMs), it is possible to implement
finer job scheduling policies to significantly reduce the loss of computation time and to
provide a more transparent cluster usage for end-users: live migration [6] is useful to
adapt the assignments of VMs according to their current requirements [7, 8, 9], while
the suspend/resume operations provide persistent snapshotting capabilities to consider
distinct priorities between jobs [10].

Some works [11, 4] have stated the lack of flexibility in current resource allocation
policies but without considering cluster-wide context switch as a fundamental build-
ing block to improve cluster resource usage. Providing a such environment require to
consider several issues, such as maintaining the consistency of environments during
a suspend or a resume of several inter-connected VMs or dealing with dependencies
issues between the different actions to perform. In addition, a cluster-wide context
switch can be time consuming: migrate a VM takes up to 26 seconds, while resume a
VM to a distant node takes up to 3 minutes in our experiments. Thus, similarly to the
context switch of a process in a computer, the cost of a cluster-wide context switch has
to be evaluated and reduced as possible to minimize its impact on the cluster.

The prototype described in this paper provides the different mechanisms to effi-
ciently manage a cluster-wide context switch of virtualized jobs. Such a framework
facilitates the implementation and the evaluation of advanced cluster scheduling strate-

RR n° 6929

4Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

gies based on a VM granularity. As an example, we present a strategy which performs
a maximum number ofvjobssimultaneously according to their running priorities and
their resource requirements. By accessing external monitoring information service,
Entropy can react according to the cluster load. When some nodes are overloaded, the
framework performs VM migrations or suspend the lowest onesto give a sufficient
amount of CPU and memory resources to thevjobswith a higher priority. Similarly,
when the cluster is considered as underused,vjobs that were previously suspended
are resumed and/or newvjobsare started. In order to deal with dependency issues,
a dedicated module of Entropy reduce the cost of the whole reconfiguration. In our
experiments, a simulation using workload traces shows thatour approach can fit with
clusters composed of up to 200 nodes and almost 500 VMs. In addition, we find that an
execution with a static allocation of 9vjobsinvolving 72 VMs, implies a total execution
time of 250 minutes on 11 nodes while our approach, based on our sample scheduling
algorithm using cluster-wide context switches, reduces this time to 150 minutes with a
average duration for the context switches equals to 70 seconds.

The remainder of the paper is organized as follows: Section 2gives a brief overview
of the batch scheduler limitations and addresses the cluster-wide context switch of
VMs in a general way. Section 3 presents an overview of the architecture. Section 4
describes how the context switch is prepared and how it is optimized to reduce its
duration. Experiments are presented and discussed in Section 5. Section 6 addresses
related work, and Section 7 concludes this paper and gives some perspectives.

2 Principles

2.1 Batch Scheduler Limitations

As mentioned earlier, most of the clusters rely on a reservation scheme where tra-
ditional batch scheduler assigned a static set of resourcesto a job during a bounded
amount of time. The usual behavior consists in scheduling submitted jobs in aFirst
Come First Servestrategy with the EASY backfilling policy. Figure 1 depicts the
process: jobs arrive one after the other and are scheduled according to the estimated
execution-time and the estimated resource requirements. The backfilling mechanism
deals with fragmentation issues while guaranteeing a time reservation for the first job in
the queue (Figure 1 (b)). Even if there are more advanced strategies such as theConser-
vativeone (maintaining time guarantees for each waiting job in thequeue), backfilling
approaches have some strong limitations that prevent an optimal usage of the clus-
ter resources without exploiting advanced capacities suchas preemption mechanisms.
Such a functionality enables to run a job, even partially, each time it is possible (Figure
1 (c)).

Moreover, the users estimates delivered at job submission time are often not ac-
curate from time as from resources point of views [12]. Even if batch schedulers try
to backfill as soon as one job has been stopped, backfilling strategies cannot manage
application requirement changes. A job may complete beforethe end of its time slot
without referring the RMS that resources can be freed. In addition, "reservation mode"
available in the majority of RMS allows users to book more cluster nodes than required
without checking if all resources are really exploited during the application runtime. In
all of these situations, dynamic scheduling is mandatory tofinely exploit cluster re-
sources.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 5

job
in the
queue

1st
job

in the
queue

Time

Processors

Time

Processors

Time

Processors

(a) Jobs 1, 2, 3 and 4 arrive in the queue and have to be scheduled

Running

Running

Some resources are unused (gray areas).

(c) EASY backfilling with preemption.
The 4th job can be started sooner without impacting the first one.

Running

(b) FCFS + Easy backfilling: jobs 2 and 3 have been backfilled.

and preemption mechanisms, it is possible to improve the whole cluster usage.

job

A small piece of resources is still unused (dark gray). However by combining consolidation

in the
queue

2nd

4th job in
the queue

job
in the
queue

2nd

4th job in
the queue

job
in the
queue

2nd

4th job in
the queue

3rd job in
the queue

3rd job in
the queue

3rd job in
the queue

1st
job

in the
queue

1st

Figure 1: Backfilling limitations
Usually used for fault-tolerance issues, checkpointing solutions, like checkpointing-

based resource preemption, have been suggested to provide finer scheduling strategies
[13, 14]. However, these methods are strongly middleware orOS dependent. More-
over they do not consider application resource changes. Single System Images such as
openMosix or Kerrighed [15] have integrated advanced strategies based on preemptive
and migration approaches. Unfortunately, due to the development complexity, most
of SSI implementations have not been finalized. Thanks to thelatest improvements,
virtualization tools could resolve this lack of dynamicityin cluster scheduling policies
by specifically using migrate, suspend and resume actions. Each of these operations
changes the state of the ”virtualized” job.

2.2 Life Cycle of Virtualized Jobs

Relying on the VM abstraction, we propose to reconsider the batch scheduler granular-
ity from the usual job to the virtualized one. Avirtualized job(a vjob) can be spread
on one or several VMs.

At the submission, avjob is in Waitingstate, it will evolve through different states
described in Figure 2.

When enough resources are available for each VM that belongsto a waitingvjob,
the scheduler can execute the actionrun on all the associated VMs and switches the
vjob to theRunningstate. In some situations, such as an overloaded cluster, the sched-
uler can select some runningvjobsand executes severalsuspendoperations. These
actions, first, write the memory and the state of each concerning VM on a persistent
devices to free resources and second, switches the selectedvjobs to theSleepingstate.

RR n° 6929

6Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

Figure 2: The Life Cycle of avjob

VM memory size (in MB)

 30

 25

 20

 15

 10

 5

512 1024

stop/shutdown
migrate

start/run

 0

 45

C
om

pl
et

io
n

tim
e

2048

(in
 s

ec
)

 35

 40

(a) Run/Migrate/Stop

VM memory size (in MB)
20481024512

 0

 50

 100

 150

 200

(in
 s

ec
)

C
om

pl
et

io
n

tim
e

local
local+scp

local+rsync

(b) Suspend

 150

 100

 50

 0
512 1024 2048

local
local+scp

local+rsync

VM memory size (in MB)

(in
 s

ec
)

 200

C
om

pl
et

io
n

tim
e

(c) Resume

Figure 3: Duration of each transition (i.e of each VM contextswitch) according to the
amount of memory allocated to the VM

Thus, the pseudo-stateReadycombines the runnablevjobs, that isvjobsthat are in the
Sleepingor Waitingstates. When avjob is considered as finished by its owner, its VMs
are removed from the system astopaction and the vjob switches to theTerminated
state. Finally, themigrateaction does not affect the state of avjob. This operation
exploits live migration mechanism to switch a VM from its current host to a new one.
This latest transition enables to finely handle underused oroverloaded situations on
each working node but keep thevjob in theRunningstate.

We emphasize that this paper focus on VM context switches as abuilding block to
implement finer scheduling policies. The encapsulation of the vjob into one or several
VMs is beyond the scope of the present work and could be addressed later by leveraging
solutions such as [16] for instance.

The diagram described in this paragraph shows the differentactions that could oc-
cur from the scheduler point of view. We define each one of these operations as a VM
context switch.

2.3 Evaluation of a VM context switch

Evaluation the cost of a cluster-wide context switch, is mandatory since it can signifi-
cantly degrade the whole performance. According to Figure 1(c), starting the 4th job
can be useless if the suspend time is significant with regardsto the running one. In a
similar way, resuming the 4th job on distinct resources requires remote accesses which
can impact the global performances (locality issues). Moregenerally, migrating, sus-
pending and resuming a VM requires some CPU and memory bandwidth. When there
are busy VMs on the nodes concerning by the cluster-wide context switch, it will re-
duce access to these resources, and thus will take longer to complete the action. All
these points have to be analyzed in order to compare the costsof possible actions.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 7

Evaluations have been done on a cluster composed of 11 homogeneous nodes com-
posing of a 2,1 GHz Intel Core 2 Duo (1 CPU composed of 2 cores),4 GB of RAM and
interconnected through a giga ethernet network. Each node runs a linux 2.6.26-amd64
with xen 3.2 and 512 MB of RAM is allocated to the Domain 0. Three NFS storage
servers provides the virtual disks for all VMs (debian lennydomUs).

The purpose of these first experiments consists in evaluating the cost of each ac-
tion. In that sense, we disabled the SMP to have rigorous conditions and launched two
VMs on our test node. The first one has 1 GB of memory and aims at stressing the
CPU during each experiment. The second one is exploited to evaluate the cost of each
transition. The amount of memory allocated to this second VMvaries from 512 MB
to 2GB. We measured both the duration of each potential context switch operation and
the performance loss on the busy VM.

Figures 3(a), 3(b) and 3(c) show the average duration of eachaction in terms of
the memory amount allocated to the manipulated VM. As expected, we observe that
the duration of a start/run or stop/shutdown is independentfrom the VM memory size:
booting a VM takes around 6 seconds in our architecture whereas a clean shutdown
is longer with approximately 25 seconds (due to the different service timeouts). This
second time can be easily reduced by using a ”hard” shutdown of the VM. Concerning
migration, suspend and resume operations, first, we see thatthey clearly depend on
the amount of memory allocated to the manipulated VM. Moreover, the way of sus-
pend/resume actions are performed, impact the performance. We conducted several
benchmarks to evaluate the cost implied by a local vs. a remote suspend/resume opera-
tions (i.e the suspend is done locally and ascp or arsync is exploited to push the file
somewhere else and reciprocally for the resume). The difference between a local vs a
remote resume/suspend is quite significant (twice the duration). These results show the
importance of the locality issue in such operations.

Last but not the least, the deceleration factor on the busy VMdepends of the du-
ration of the operation1. From Figure 3(b) and Figure 3(c), we see that a suspend or a
resume operation is proportionally shorter when the memorysize of the VM increases.
Thus, the deceleration impact is proportionally weaker on the active VM. The average
is around 1.5 forscp orrsync and a bit lesser, 1.3, for local approach. In other word,
the impact reaches a maximum of 50% during the transition.

More generally, this study shows the cost of each transition. All these results have
to be carefully consider to reduce as many as possible both the global cost and the
degradation on running VMs when a cluster-wide context switch occurs.

3 Global Design

Cluster-wide context switch mechanisms are implemented inEntropy [5] that already
provide the separation between the scheduling strategy andthe mechanisms to perform
the changes. In a first section, we describe the architectureof Entropy and how the dif-
ferent modules that compose the environment are used. Second, we describe a sample
scheduling strategy that exploits the cluster-wide context switch to extend the possibil-
ity of common dynamic consolidation strategies to support critical situations such as
an overloaded cluster.

1Due to spaces limitations, we do not included resulting charts in the paper, reviewers can access them
directly on http://entropy.gforge.inria.fr website.

RR n° 6929

8Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

3.1 Architecture of Entropy

A cluster for Virtual Machines from Entropy point of view consists of a set of working
nodes that can host VMs, a set of storage nodes to serve the virtual disks of the VMs and
a set of service nodes that host services such as the head of the distributed monitoring
system and the Entropy service. Figure 4 shows the global design of Entropy.

Figure 4: The control loop of Entropy

Entropy acts as a loop that (i) observe the CPU and memory consumptions of the
running VMs by requesting an existent monitoring service, (ii) execute an algorithm in
the decision module that computes a new solution and indicates the state of the vjobs
for the next iteration, (iii) plan the actions to perform thecluster-wide context switch
according to the current state of the vjobs and the solution computed in the decision
module and (iiii) execute the cluster-wide context switch by performing the actions,
implemented withdrivers. Entropy then accumulates new informations about resource
usage, which takes about 10 seconds for our prototype, before repeating the iteration.
To reduce the duration of the cluster-wide context switch, the plannification algorithm
of Entropy try to compute a viable configuration, similar to the solution computed by
the decision module, that require a fewer amount of migrations and fastest resumes.

From technical point of view, Entropy currently works with Xen 3.2.1 [17] and
Ganglia 3.0.7 [18]. Each of the VMs and each of the Domain-0 are running a Ganglia
monitoring daemon. In addition, a shell script running on each Domain-0, provides
additional monitoring metrics. Drivers are implemented with SSH commands or use
the xen API [19]. The decision module has to be implemented bythe administrator to
fulfill a specific scheduling policy.

3.2 A Sample Decision Module for Dynamic Consolidation

The administrator uses the observations from the monitoring module such as the current
resources demand, the state or the assignment of the VMs and combines them with
a custom scheduling algorithm using common approaches suchas vjob weights or
priority queues.

The algorithm in the decision module is responsible of computing a new viable
configuration which indicates the state of the vjobs for the next iteration. A viable con-
figuration is a mapping of Virtual Machines (VMs), to nodes that gives every running
VMs access to sufficient memory and CPU resources. Figure 5(a) shows a non-viable
because the two VMs in gray require their own processing unitwhile their hosting node

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 9

has only 1 CPU. On the other hand, the two configurations in Figure 5(b) are viable
because each VM has access to sufficient memory and each node hosts at most one
busy VM. We do not consider the waiting and the sleeping vjobsas they do not have
any impact on memory or CPU resources. The problem of finding aviable configu-
ration is comparable to the NP-Hard2-Dimensional Bin Packing Problem[20], where
the dimensions correspond to the amount of memory and the capacity of the processing
units.

(a) Non-viable (b) 2 Viable configurations

Figure 5: Sample configurations with 3 uniprocessor nodes and 3 VMs. VM2 andVM3

(in gray) require an entire CPU

As an example, we develop an algorithm based on aFirst Come/First Serve(FCFS)
policy that provides dynamic consolidation. Every 30 seconds, the algorithm observes
the current resources demands of each of the VMs and uses the queue to select the max-
imum number of vjobs that can run on the cluster. We refer to the problem considered
in this phase as theRunning Job Selection Problem(RJSP).

To select the vjobs to run, we refer to the queue provided by FCFS policy. This
queue is ordered in a descending priority order. As the resources demands change
over the time for running VMs, some vjobs that were previously sleeping has to be
re-evaluated if some resources have been freed. As a consequence the whole queue has
to be considered when the new configuration is computed. For each vjob in the queue,
a temporary configuration is created and uses the First Fit Decrease (FFD) heuristic to
assign the vjob. This heuristic sorts the VMs in a decreasingorder regarding to their
memory and their CPU demands and try to assign each VM on the first node with a
sufficient amount of free resources. If it exists a host for each VM, the current vjob will
be considered as running. Otherwise, it will be considered as sleeping (if it is currently
sleeping or running) or waiting. After the last iteration over the queue, the list of the
vjobs that can run on the cluster is defined and the new configuration is created.

Figure 6 describes the algorithm with a queue of 3 vjobs that have to fit on 3 nodes.
Vjob 1 and 2 are currently running while the vjob 3 is waiting.At the first iteration,
the algorithm succeeds at computing a viable configuration that can run the VMs of
the vjob 1 (see Figure 6(b)). On the second iteration, the algorithm tries to add the
vjob 2 and fails as there is no enough free processing units. As the vjob 2 is currently
running, its VMs will be move to the sleeping state. Finally,there is a sufficient amount
of resources to compute a viable configuration with the vjob 1and the vjob 3 in the
running state (see Figure 6(c)). Thus, for this example, vjob 1 and vjob 3 will be
running while the vjob 2 will be suspended during the clusterwide context-switch.

In this situation, the cluster-wide context switch provides the ability to extend tra-
ditional dynamic consolidation algorithms that can not handle overloaded clusters. In-
deed, in a such environment, it is possible to fix overloaded nodes and maximize the
resource utilization by switching the state of the vjobs according to the solution com-
puted by the decision module.

RR n° 6929

10Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

(a) a queue of 3 vjobs. VMs in gray require an entire CPU.

(b) All the VMs of vjob 1
can run

(c) VMs of vjob 3 can run
with VMs of vjob 1

Figure 6: Sample construction for the RJSP with 3 vjobs and 3 uniprocessor nodes.
VMs in gray require an entire CPU

4 Performing a Cluster-wide Context Switch

A cluster-wide context switch consists to switch from the current configuration to a new
viable one computed by the decision module. In the rest of this section, we describe
the necessary steps to achieve the context switch with a highlevel of parallelism. Then
we estimate its cost. Finally, we explain how to compute a cluster-wide context switch
with a cost as reduced as possible using a Constraint Programming approach.

4.1 Planning the Cluster-wide Context Switch

The constraint of viability has to be taken into account not only in the final config-
uration but also during each temporary configuration created during the cluster-wide
context switch. In this way, at any time, we can only perform actions that arefeasible.
The actions that suspend and stop a VM liberate resources on its hosting node. The
actions that resume and run a VM require resources on their destination node. Finally,
the action that migrates a VM liberates resources on its hosting node and requires re-
sources on its destination node. Contrary to suspend and stop, the actions migrate,
resume and run are not always feasible and may require to perform actions that liberate
resources in prior. Thus it is necessary to plan the actions to ensure that they will be
executed when they are feasible.

We identify and resolve two types of plannification issues. First, we ensure the
feasibility of each action by ordering them, solving both the sequentialand theinter-
dependantconstraints. Second, we maintain consistency between inter-dependant VMs
(i.e. VMs that belong to the same vjob) to allow suspends and resumes of vjobs.

A reconfiguration graph is an oriented multigraph where eachedge denotes an ac-
tion on a VM between two nodes. Each edge specifies the action,the demand of mem-
ory dm and the demand of CPU resourcesdc. Each node denotes a node of the cluster,
with its memory capacitycm and its CPU capacitycc. Using this representation, it is
possible to identify and solve the sequential and the inter-dependant constraints.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 11

A sequential constraint occurs when an action requiring resources can only begin
when some actions that liberate resource has completed. In the example in Figure 7,
two actions have to be planned:suspend(VM2) andmigrate(VM1). However these two
actions cannot happen in any order or in parallel, because aslong asVM2 is onN2, it
consumes to much memory to hostVM1. Thus, the migration ofVM1 can only begin
once the suspend ofVM2 has completed.

Figure 7: A sequence of actions

An inter-dependant constraint occurs when a set of non-feasible migrations forms a
cycle. An example is shown in Figure 8(a), where, due to memory constraints,VM1 can
only migrate from nodeN1 to nodeN2 whenVM2 has migrated from nodeN2, andVM2

can only migrate from nodeN2 to nodeN1 whenVM1 has migrated from nodeN1. We
break such a cycle by inserting an additional migration. Apivotnode outside the cycle
is chosen to temporarily host one or more of the VMs. In Figure8(b), the cycle between
VM1 andVM2 is broken by migratingVM1 to the nodeN3, which is used as a pivot. After
breaking the cycle, an order can be chosen for the actions as in the previous example.
These actions include moving the VM on the pivot nodes to its original destination.

(a) Inter-dependant
migrations

(b) A bypass migration breaks the cycle

Figure 8: Cycle of non-feasible migration

A reconfiguration plan is a solution for the sequencing and the inter-dependant
constraints. It ensures the feasibility of each action. To reduce the duration of the
cluster-wide context switch and to increase reactivity, itis a necessary to perform as
many actions in parallel as possible, so that each action will take place in the minimum
possible delay. The plan is composed of a sequence ofpools, i.e. a set of actions. Pools
are executed sequentially, where the actions composing them are feasible in parallel.

The reconfiguration plan is created iteratively starting from a reconfiguration graph
between the current configuration and the destination configuration. In a first step, we
select all the actions that are directly feasible and group them into a pool. If there is
no feasible actions, it is necessarily due to an inter-dependant issue. In this situation,
we identify a cycle and break it with a bypass migration to create at least one feasible
action and add it to the current pool. Then the pool is appended to the plan and a new

RR n° 6929

12Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

reconfiguration graph is created using the temporary resulting configuration of the plan
and the configuration we expect. We repeat this step until theresulting configuration
of the plan equals the expected configuration.

Figure 9 describes a reconfiguration graph with 4 actions. The associated reconfig-
uration plan consists of 2 different pools of actions. The first pool executes in parallel
the actionssuspend(VM3) andmigrate(VM1) then the second pool executes the actions
resume(VM5) andrun(VM6).

Figure 9: A Reconfiguration Graph

Algorithm in the decision module computes a configuration where all the VMs
belonging to the same vjob are in the same state. However, during the cluster-wide
context switch, the state may not be consistent for a moment as actions are based on
a VM granularity. This may lead to timeouts or failures in thedistributed applications
running into the VMs. However, experiments show that applications are keep running
when the suspend and the resume of the VMs that compose a same vjob is made in
parallel and at the exact same time, always in the same order and in a short period [10].
These constraints are not satisfied by the construction of the reconfiguration plan as it
consider each VM independently.

A solution to maintain the consistency between the VMs belonging to a same vjob
is to alter the plan by grouping the resume and the suspend actions into a same pool
to execute them in a short period. The suspend actions are naturally grouped in the
first pool as they are always feasible while the resume actions are moved in the pool
that initially contains the last resume action. Finally, the actions are sorted using the
hostname of the VMs and are pipelined: Each action is startedone second after the
previous one. It ensures that the VMs are paused sequentially but makes a large part of
the writing process in parallel to reduce the duration of these sequences.

4.2 A Cost Function to evaluate a Cluster-wide Context Switch

The cost function estimates the cost of a reconfiguration plan. It is model as follow: the
cost of a whole plan equals the sum of the total costs of all theactions in the plan. The
total cost of an action is the sum of the costs of the precedingpools, plus the local cost
of the action. Finally, the cost of a pool corresponds to the cost of the most expensive
action in this pool. This model conservatively assumes thatdelayed an action degrades
the cluster-wide context switch.

The local costs are described in the Table 1 using the conclusion of the Section 2.3
where we estimate the cost of each action composing a cluster-wide context switch.
We have shown that the cost of the stop and the run action is notlead by the resources
demand of the VM but mostly by the software running into it. Inthis study, we consider

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 13

the cost of the run and the stop actions as a constant, arbitrary set to 0. In addition, we
have shown that the duration of the suspend action and the migration action is mostly
lead by the memory demand of the VM. For those two actions, thecost is set to the
amount of memory demand of the VM to manipulate. Finally, theduration of the
resume action depends on the memory demand of the VM and its destination location:
A local resume consists of restoring the state of a VM previously suspended on that
node while aremoteresume requires to move the state file on to destination node first.
In this situation, the cost of performing a remote resume is higher than the cost of a
local resume.

Action Cost

migrate(vmj) Dm(vj)
run(vmj) constant
stop(vmj) constant
suspend(vmj) Dm(vj)

resume(vmj)
Dm(vj) if local,

2 ×Dm(vj) otherwise

Table 1: Cost of an action on the VMvj . Dm(vj) denotes the memory demand of the
VM vj

4.3 Optimizing of the Cluster-wide Context Switch

Computing a context switch with a reduced cost using our model leads (i) to perform
actions as earlier as possible, (ii) to maximize the size of the pools and (iii) to avoid
migrations and remote resumes if possible. These will reduce the duration of the recon-
figuration plan, minimize the impact of the reconfiguration process on the environment
and on performance. As illustrated in the section 3.2, thereare several viable config-
urations that with the same state for all of the VMs. However,they differ from their
reconfiguration plan. Thus, a solution to reduce the cost of the context switch is to com-
pute a viable configuration with an associated cost as reduced as possible. In Entropy,
this optimization is made using Constraint Programming (CP).

The idea of CP is to define a problem by stating constraints (logical relations) that
must be satisfied by the solution. AConstraint Satisfaction Problem(CSP) is defined
as a set of variables, a set of domains representing the set ofpossible values for each
variable and a set of constraints that represent required relations between the values of
the variables. A solution for a CSP is a variable assignment (a value for each variable)
that simultaneously satisfies the constraints. To compute asolution, a constraint solver
perform an exhaustive search, based on a depth first search. Entropy uses the Choco
library 1.2.04 [21], which can solve a CSPs and optimizationproblems where the goal
is to minimize or maximize the value of a single variable.

To model the assignment of the VM as a CSP, we consider a set of nodesN and a set
of VMs V . The following vectors describe how to express the state andthe assignment
of each VM.

Definition 4.1 For each nodeni ∈ N , the bit vectorHi = 〈hi1, . . . , hij〉 denotes
the set of VMs running on the nodeni (i.e. , hij = 1 iff the nodeni is hosting the
VM vj). The bit vectorRdy = 〈r1, . . . , rj〉 denotes the set of VMs that are ready (i.e.

RR n° 6929

14Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

rj = 1 indicates that the VMvj is in state sleeping or waiting, depending on its current
configuration).

Using these vectors, we define three elementary constraints: keepV MState(vj)
ensures that the state of a VMvj must be identical to its current state, whilemustBeRunning(vj)
andmustBeReady(vj) respectively ensure that a VMvj will be in the Running state
in the resulting configuration and in the Ready state. We express the constraints for
viable configuration as follows: LetDc be the vector of CPU demand of each VM,Cc

be the vector of processing unit capacity associated with each node,Dm be the vector
of memory demand of each VM, andCm be the vector of memory capacity associated
with each node. The following inequalities express this constraint:

Dc · Hn ≤ Cc(ni) ∀ni ∈ N

Dm · Hn ≤ Cm(ni) ∀ni ∈ N

These two constraints dynamically evaluate the remaining free place (in terms of
both processing unit and memory availability) on each node.This is done in Entropy
by solving aMultiple Knapsackproblem using a dynamic programming approach [22].
Thus a solution to the assignment problem is a solution that satisfy both themulti −
knapsack constraint and the constraintkeepV MState for each VM.

Entropy dynamically estimates the cost of the plan associated with the configura-
tion being constructed based on informations about the VMs that have already been
assigned to a node. Then, it estimates a minimum cost for the complete future recon-
figuration plan. Finally, the solver determines whether thefuture configuration based
on this partial assignment might improve the solution or will necessarily be worse. In
the latter situation, the solver abandons the configurationcurrently being constructed
and searches for another assignment. In principle, the constraint solver must enumerate
each possible configuration, check whether it is viable and stop after computing the first
solution. In practice, this approach is unnecessarily expensive. Our implementation re-
duces the computation cost using a number of optimizations.The solver incrementally
checks the viability of a configuration as it is being constructed and it discards a partial
configuration as soon as it is found to be non-viable. This strategy reduces the number
of configurations that must be considered. Choco furthermore tries to detect non-viable
configurations by using afirst fail approach [23] in which VMs with important CPU
and memory requirements are treated earlier than VMs with lesser requirements. This
strategy reduces the chance of computing an almost completeconfiguration and then
finding that the remaining VMs cannot be placed successfully. Moreover, by trying
to assign each running VMs on there initial location in priority, the solution tends to
reduce the movements of the VMs faster.

5 Evaluation

In this section, we evaluate first the scalability of the cluster-wide context switch in
Entropy and the ability to reduce its duration. Second we evaluate our proposal with
our sample decision module on a cluster composed of 11 working nodes executing
vjobs running NAS Grid Benchmarks [24]

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 15

5.1 Experiments using Workload Traces

We estimate in this theoretical evaluation the scalabilityof our implementation of the
cluster-wide context switch. We compare the resulting reconfiguration plan with a
standard heuristic based on a FFD.

These evaluations are based on a set of generated configurations with 200 working
nodes, with 2 CPU and 4 GB of memory each, and a variable amountof VMs. For
each amount of VMs, 30 different samples are generated. The configurations are build
by aggregating several vjobs with specific workloads that correspond to 81 real traces
observable on the different benchmarks of the NAS Grid Benchmarks suite for the
sizes W, A and B. Each vjob uses 9 or 18 VMs, its initial state ischoosed randomly
and its assignment satisfies the memory requirement of all the VMs. Each VM requires
256 MB, 512 MB, 1024 MB or 2048 MB of memory and an entire processing unit if it
is supposed to execute a computation.

The dedicated node used for these experiments is a Macbook with a Intel Core Duo
1.83 GHz CPU2 and 2 GB or RAM. The Java heap is increased to 1 GB.

Figure 10 quantifies the reduction of the reconfiguration cost using Entropy. For
each configuration, we compare the cost of the reconfiguration plan computed by the
FFD in one part and with the cost of the plan computed by Entropy in the other part.
The maximum amount of time used by Entropy to reduce the cost of the cluster-wide
context switch is set to 40 seconds. We observe that the reconfiguration cost is reduced
by an average of 95% using Entropy and the gap becomes more important as the num-
ber of possible movements increases with the number of VMs inthe configuration.
The difference in the cost of the solutions is due to the heuristic that stops after the first
completed viable configuration while Entropy keeps computing configurations with a
reduced cost until it proves that the cost of the plan is minimum or hits the timeout.

 0

 2

 4

 6

 8

 10

 12

 14

 0 54 108 162 216 270 324 378 432 486

R
eo

rg
an

iz
at

io
n

co
st

 (
st

ep
 1

M
)

Nb. of VMs

First Fit Decrease
Entropy

Figure 10: Reconfiguration costs for configurations with 200nodes.

5.2 Experiments on a Cluster

The experimental architecture is the same as in Section 2.3.The experiment consists in
running 8 vjobs, each composed of 9 VMs. Vjobs are submitted at the same moment,
in a specific order. Each vjob is running an application composed of NASGrid Tasks.
The application embedded in the vjob is launched when all theVMs of the vjob are in
the Running state. When the application is terminated it signal to Entropy to stop its
vjob. Each VM requires a fixed amount of memory, from 512 MB to 2048 MB and

2only one core is used by Entropy

RR n° 6929

16Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

requires an entire processing unit when the NASGrid task is executing a computation
on the VM.

Figure 11 shows the cost of the cluster-wide context switches performed during the
experiment and their durations. Cluster-wide context switches with a small cost and
duration only perform migrations, run or stop actions. As anexemple, the five with
a cost equals to 0 only perform run and stop actions and takes at most 13 seconds to
be performed, the cluster-wide context switch with a cost equals to 1024 performs 3
migrations in 19 seconds. Cluster-wide context switches with a higher cost and dura-
tion perform in addition suspend and resume actions. As an example, the one with a
cost equals to 4608 takes 5 min 15 seconds to execute 9 stop actions, 18 run actions, 9
resume actions and 9 migrations. This difference in the duration between the cluster-
wide context switches is explained by the preliminary studyin section 2.3. We shown
that the duration of a suspend or a resume action is much long longer that the duration
of a migration, a stop or a run action. Finally, we observe that the cost function is a vi-
able solution to avoid to move VMs with migrations or remote resumes if possible: 21
over the 28 resume actions performed during the experimentswas made on the nodes
that perform the suspend earlier.

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 1 2 3 4 5 6 7 8 9

D
ur

at
io

n
in

 m
in

ut
e

Reconfiguration cost (step 1k)

Figure 11: Cost and duration of the 19 cluster-wide context switches performed in the
experiment

The second part of this evaluation shows the benefit using a dynamic consolida-
tion combined with a cluster-wide context switch as compared to a traditional static
allocation. First, we simulate a FCFS scheduler, the Figure12 shows its execution di-
agram. Figure 13(a) and 13(b) show the resources utilization of the VMs with the two
different decision modules. The average resource utilization is much more important
with in our module until the30th minute. At this moment, resources utilization with
Entropy decreases as there is no more vjob to run. At 2 minutes10, the cluster appears
to be overloaded as the running vjobs demand 29 processing units while only 22 are
available. In this situation, our decision module computesa new sample configuration
and indicates which of all the vjobs must be running to have a viable configuration and
the cluster-wide context switch module performs the transition by suspending the vjobs
selected by the decision module.

To conclude, exploiting the cluster-wide context switch mechanisms enable to de-
velop scheduling strategy for a fine use resources. Indeed, with the FCFS scheduler, the
global completion time is 250 minutes. With the decision module performing dynamic
consolidation, the time is reduced to 150 minutes, a reduction of 40%.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 17

Figure 12: Allocation Diagram for the jobs, with a FCFS Scheduler

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

M
em

or
y

U
til

iz
at

io
n

in
 G

B

Time in minutes

Entropy
FCFS

(a) Memory Utilization

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

%
 R

es
ou

rc
es

 U
til

iz
at

io
n

Time in minutes

Entropy
FCFS

(b) CPU Utilization

Figure 13: Resources utilization of the VMs

6 Related Works

Sotomayoret al. [25, 4] provide with Haizea the concept of lease as an abstraction for
resource provisioning. Users negotiate a amount of resources for a specific duration,
indicate if the lease is made in a best-effort mode or use advanced reservations and
specify if it is preemptible. Depending on their type, the lease may be migrated, or
suspended to free resources for non-preemptible leases or leases with advanced reser-
vations. This approach enables to renew a period of execution for a new amount of
time but do not provide a way to dynamically change the set of resources assigned to a
lease according to the application needs and the cluster resource changes.

Grit et al.[26, 27] consider some VMs replacement issues for resource management
policies in the context of Shirako [28] manager. They show the necessity of separat-
ing the management policy of the VMs and the mechanisms to perform the changes
as we argue in the present work. However, they only consider the VM migration ac-
tion to perform changes. Even if suspend/resume operationsare exploited to resolve
sequencing issues, they neglect opportunities provided bysuch VM transitions.

Fallenbecket al. [11] provide an environment to dynamically adapt the numberof
slots available for specific scheduling policies with multiple queues. A VM is available
on each working node for each queue. Depending on the size of each queue, the amount
of corresponding VMs activated varies. This approach reduces the number of idle
nodes in clusters as compared to clusters with a static partition scheme of the slots.
Our solution is different as we provide a single scheduling environment but improve the
resources utilization by acting on the jobs instead of acting on the number of dedicated
VMs.

More generally, works addressing the lack of flexibility in resource allocation re-
solve a particular case without considering a general approach as we describe in this
paper.

RR n° 6929

18Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

Finally, several works address the interest of dynamic consolidation in data-centers
to provide a efficient use of the resources. Khannaet al. [29] and Bobroffet al. [8]
provide algorithms to minimize the unused portion of resources. However, they do
not consider the sequencing and the cyclic issues during theapplication of the migra-
tions. Woodet al. [30] provide a similar environment but in addition, exploitthe page
sharing between the VMs to improve the packing. They show theinterest of planning
the changes to detect and avoid sequencing issues but do not consider inter-dependent
migrations. In general, all of these solutions provide a algorithm to compute a viable
configuration, regarding to some bounded resources specificto their objectives and
uses live migrations to perform the change. However, their approaches are limited as
they do not consider critical situations such as an overloaded cluster, with no viable
assignment to satisfy all the resources requirements. Thanks to the suspend/resume
mechanisms provided by the cluster-wide context switches in Entropy, these situations
become easily manageable and actions are performed more efficiently due to a finer
preparation.

7 Conclusion

Most of the clusters use Resources Manager System to schedule the jobs according to
users estimates. Recent works point the benefits of a finer scheduling policy by encap-
sulating jobs into Virtual Machines (VMs) based on their real resources requirements.
Each solution differs from its algorithm to manage the jobs but all of them use sim-
ilar mechanisms to perform the changes. These mechanisms are ad-hoc and cannot
easily evolve in order to explore new scheduling policies. In this paper, we have de-
fined the cluster-wide context switch, a generic approach toapply advanced scheduling
strategies for resources management based on the life cycleof virtualized jobs (vjobs).

The integration in Entropy provides the mechanisms to switch between the different
states using live migration, suspend and resume VM capabilities. The construction of
the cluster-wide context switch ensures the feasibility ofeach action while minimizing
its whole duration thanks to a cost function and a ConstraintProgramming approach
(CP).

The implementation of a first scheduling algorithm in the decision module shows
in our experiments a reduction of the completion time ofvjobsby 40% as compared
to a usualFirst Come/First Serveapproach while providing a solution to manage over-
loaded clusters.

In future works, we plan to provide additional low level relations between the VMs
in the decision module. Our approach, based on CP, provides aflexible environment
for administrators to specify some constraints such as hosting some VMs on differ-
ent nodes for high availability considerations. These constraints are already available
in Entropy, however they are not maintain during the optimization of the cluster-wide
context switch that only consider the state of each VM to compute equivalent configura-
tions. In a second time, we plan to extend the mechanisms provided by the cluster-wide
context switch by adding a sleeping state where the VM is simply suspended to ram.
This action provides fast resumes and suspend operations that may reduce the duration
of the cluster-wide context switch in some situations.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 19

References

[1] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, “Dy-
namic virtual clusters in a grid site manager,” inHPDC ’03: Proceedings of the
12th IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC’03). Washington, DC, USA: IEEE Computer Society, 2003, p. 90.

[2] G. Vallee, T. Naughton, and S. L. Scott, “System management software for virtual
environments,” inCF ’07: Proceedings of the 4th international conference on
Computing frontiers. New York, NY, USA: ACM, 2007, pp. 153–160.

[3] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lantéri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier,
O. Richard, E.-G. Talbi, and T. Iréa, “Grid’5000: a large scale and highly recon-
figurable experimental grid testbed.”International Journal of High Performance
Computing Applications, vol. 20, no. 4, pp. 481–494, Nov. 2006.

[4] B. Sotomayor, K. Keahey, and I. Foster, “Combining batchexecution and leasing
using virtual machines,” inHPDC ’08: Proceedings of the 17th international
symposium on High performance distributed computing. New York, NY, USA:
ACM, 2008, pp. 87–96.

[5] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy: a
consolidation manager for clusters,” inVEE ’09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments.
New York, NY, USA: ACM, 2009, pp. 41–50.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield, “Live migration of virtual machines,” inProceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’05), Boston, MA, USA, May 2005, pp. 273–286.

[7] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic live adap-
tation of virtual computational environments in a multi-domain infrastructure,”
Autonomic Computing, 2006. ICAC ’06. IEEE International Conference on, pp.
5–14, 2006.

[8] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines
for managing SLA violations,”Integrated Network Management, 2007. IM ’07.
10th IFIP/IEEE International Symposium on, pp. 119–128, May 2007.

[9] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of hpc ap-
plications,” inICS ’08: Proceedings of the 22nd annual international conference
on Supercomputing. New York, NY, USA: ACM, 2008, pp. 175–184.

[10] W. Emeneker and D. Stanzione, “Increasing reliabilitythrough dynamic virtual
clustering,” inHigh Availability and Performance Computing Workshop, 2006.

[11] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben, “Xen and the art of
cluster scheduling,” inVTDC ’06: Proceedings of the 2nd International Workshop
on Virtualization Technology in Distributed Computing. Washington, DC, USA:
IEEE Computer Society, 2006, p. 4.

RR n° 6929

20Fabien Hermenier, Adrien Lèbre, Jean-Marc Menaud ASCOLA Research Group EMN, INRIA, LINA UMR 6241firstname.lastname@emn.fr

[12] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and
user runtime estimates in scheduling the ibm sp2 with backfilling,” IEEE Trans.
Parallel Distrib. Syst., vol. 12, no. 6, pp. 529–543, 2001.

[13] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: the
condor experience.”Concurrency - Practice and Experience, vol. 17, no. 2-4, pp.
323–356, 2005.

[14] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr) for linux
clusters,”Journal of Physics: Conference Series, vol. 46, pp. 494–499, 2006.
[Online]. Available: http://stacks.iop.org/1742-6596/46/494

[15] R. Lottiaux, P. Gallard, G. Vallée, C. Morin, and B. Boissinot, “Openmosix,
openssi and kerrighed: a comparative study,” inCCGRID0́5: Proceedings of the
Fifth IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid0́5) - Volume 2. Washington, DC, USA: IEEE Computer Society, 2005, pp.
1016–1023, iSBN 0-7803-9074-1.

[16] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M. Rumble,
E. de Lara, M. Brudno, and M. Satyanarayanan, “Snowflock: rapid virtual ma-
chine cloning for cloud computing,” inEuroSys ’09: Proceedings of the fourth
ACM european conference on Computer systems. New York, NY, USA: ACM,
2009, pp. 1–12.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the
19th ACM Symposium on Operating Systems Principles. Bolton Landing, NY,
USA: ACM Press, Oct. 2003, pp. 164–177.

[18] M. Massie, “The ganglia distributed monitoring system: design, implementation,
and experience,”Parallel Computing, vol. 30, no. 7, pp. 817–840, July 2004.
[Online]. Available: http://dx.doi.org/10.1016/j.parco.2004.04.001

[19] “Xen management api,” http://wiki.xensource.com/xenwiki/XenApi, 2008.

[20] P. Shaw, “A constraint for bin packing,” inPrinciples and Practice of Con-
straint Programming (CP’04), ser. Lecture Notes in Computer Science, vol. 3258.
Springer, 2004, pp. 648–662.

[21] N. Jussien, G. Rochart, and X. Lorca, “The CHOCO constraint programming
solver,” in CPAIOR’08 workshop on Open-Source Software for Integer and
Contraint Programming (OSSICP’08), Paris, France, Jun. 2008. [Online].
Available: http://www.emn.fr/jussien/publications/jussien-OSSICP08.pdf

[22] M. Trick, “A dynamic programming approach for consistency and propagation
for knapsack constraints,” inProceedings of the Third International Workshop on
Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR-01), 2001, pp. 113–124.

[23] R. Haralick and G. Elliott, “Increasing tree search efficiency for constraint sat-
isfaction problems,”Artificial Intelligence, vol. 14, no. 3, pp. 263–313, October
1980.

INRIA

Cluster-Wide Context Switch of Virtualized Jobs 21

[24] M. Frumkin and R. F. V. der Wijngaart, “NAS grid benchmarks: A tool for grid
space exploration,”Cluster Computing, vol. 5, no. 3, pp. 247–255, 2002.

[25] B. Sotomayor, R. M. Montero, I. M. Llorente, and I. Foster, “Capacity leasing in
cloud systems using the opennebula engine,” inCloud Computing and Applica-
tions 2008 (CCA08), 2008.

[26] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual machine hosting for
networked clusters: Building the foundations for "autonomic" orchestration,” in
Virtualization Technology in Distributed Computing, 2006. VTDC 2006. First In-
ternational Workshop on, Nov. 2006, pp. 1–8.

[27] L. Grit, D. Irwin, V. Marupadi, and P. Shivam, “Harnessing virtual machine re-
source control for job management,” inProceedings of the First International
Workshop on Virtualization Technology in Distributed Computing (VTDC), Nov.
2007.

[28] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum, “Shar-
ing networked resources with brokered leases,” inATEC ’06: Proceedings of the
annual conference on USENIX ’06 Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2006, pp. 18–18.

[29] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Applicationperformance manage-
ment in virtualized server environments,”Network Operations and Management
Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pp. 373–381, 2006.

[30] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and M. D. Cor-
ner, “Memory buddies: exploiting page sharing for smart colocation in virtualized
data centers,” inVEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environments. New York, NY, USA:
ACM, 2009, pp. 31–40.

RR n° 6929

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

