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Abstract—We present a turnover based adaptive HELLO
protocol (TAP), which enables nodes in mobile networks to
dynamically adjust their HELLO messages frequency depending
on the current speed of nodes. To the best of our knowledge,
all existing solutions are based on specific assumptions (e.g.,
slotted networks) and/or require specific hardware (e.g., GPS)
for speed evaluation. One of the key aspects of our solution
is that no additional hardware is required since it does not
need this speed information. TAP may be used in any kind
of mobile networks that rely on HELLO messages to maintain
neighborhood tables and is thus highly relevant in the context of
ad hoc and sensor networks. In our solution, each node has to
monitor its neighborhood table to count new neighbors whenever
a HELLO is sent. This turnover is then used to adjust HELLO
frequency. To evaluate our solution, we propose a theoretical
analysis based on some given assumptions that provides the
optimal turnover when these assumptions hold. Our experimental
results demonstrate that when this optimal value is used as the
targeted turnover in TAP, the HELLO frequency is correctly
adjusted and provides a good accuracy with regards to the
neighborhood tables.

I. I NTRODUCTION AND MOTIVATION

In mobile ad hoc and sensor networks, because of the path
loss of radio communications, only close hosts may directly
communicate to each other. Long-distance communications re-
quire packets to be forwarded by multiple intermediate nodes.
While sensor networks are generally static, some applications
involve mobility (e.g., herd health control as targeted by the
WASP European project1). Localized routing schemes are a
resource-efficient way of achieving communication between
two end hosts. In such schemes, each intermediate node is only
expected to maintain knowledge about spatially nearby nodes
(its neighbors). In most existing works, this knowledge is
acquired thanks to beacon messages (the well-knownHELLO
messages): all nodes maintain a neighborhood table, and any
localized protocol may make decisions based on it [3], [8].

In this paper, we are interested in studying how nodes may
dynamically adjust the frequency of HELLO messages. In-
deed, because of mobility, neighborhood tables have a limited
lifetime and must be regularly updated. However, finding the
correct frequency is not obvious: if it is too low (i.e., with
regards to the speed of hosts), then tables quickly become
obsolete. On the contrary, if it is too high, then tables will
be up to date but a high part of the available bandwidth will

1http://wasp-project.org

be wasted to the detriment of data traffic. There obviously
exists a trade-off between these behaviors, but finding the
optimal one is not trivial. Moreover, this trade-off actually
depends on network characteristics (e.g., density, speed) that
may evolve over time, and a constant frequency is then not
the best choice. An efficient HELLO protocol should thus
be adaptive. A straightforward solution might be to let nodes
know their speed and choose the correct frequency based on
this information, but of course there is no easy and cheap way
for a node to determine its speed.

In this paper, we propose the Turnover based Adaptive
HELLO Protocol (TAP), an elegant solution that let nodes
dynamically adjust their HELLO frequency based on the
turnover of their neighborhood. One of the key aspects of our
solution is that it highly fits mobile wireless networks since it
is fully localized and does not require additional hardware. Our
solution is independent of any routing protocol. Nodes only
need to periodically make samples of their table to compute
the current turnover and adapt their HELLO frequency. TAP
may actually be seen as a generic framework rather than a
frozen protocol, since it is independent of the functions used
to adjust the HELLO frequency. Any such functions may be
used depending on the required behavior (e.g., favor bandwidth
usage to the detriment of up to date tables). To evaluate our
proposal, we provide a theoretical analysis in order to compute
the optimal turnover for the considered environment. This
allows to check the correctness of our scheme by means of
simulation results using the same assumptions.

We give the needed preliminaries in the next section, while
Section III proposes a literature review of related work.
In Section IV, we describe TAP and provide a theoretical
analysis that aims at finding the optimal turnover under known
parameters. We then give experimental results about the effec-
tiveness of TAP in Section V, and show that it is indeed able
to dynamically adapt the HELLO frequency without speed
information. We finally conclude in Section VI.

II. PRELIMINARIES

A. Network Model

Wireless networks are represented by a graphG = (V,E)
whereV is the set of nodes andE ⊆ V 2 the set of edges:
(u, v) ∈ E means thatu andv are neighbors (i.e., close enough
to communicate). The neighborhood set N(u) of a vertexu is
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equal to{v : (u, v) ∈ E ∨ (v, u) ∈ E}. The density is the
average number of neighbors per node. Each node is assigned
a unique identifier (e.g., a MAC address). Wireless links are
determined by the physical model. The most frequent one is
the unit disk graphmodel [2]:

E = {(u, v) ∈ V 2 | u 6= v ∧ |uv| ≤ R},

|uv| being the Euclidean distance between nodesu andv, and
R the maximum communication range.

B. Plain Periodic HELLO Protocol

The basic HELLO protocol, first described in OSPF [7],
works as follows. Nodes regularly send HELLO messages to
signal their presence to close nodes, and maintain a neighbor-
hood table. The frequency of these messages is notedfHELLO

and the delay between themdHELLO (i.e., dHELLO = 1/fHELLO).
When a nodeu receives such a message from a nodev, u adds
v to its table, or updates the timestamp of the entry ifv was
already there. We do not make assumptions about the content
of HELLO messages, but they must contain the identifier of
the sender.

III. R ELATED WORK

In [1], authors claim that the usefulness of a HELLO
protocol depends on the size of the beacon messages, their
transmission rate and the lifetime of deprecated entries of
the neighborhood table. While these aspects are important,
only a few studies have been performed about them. Among
the proposed enhancements of the basic HELLO protocol,
most of them require a slotted network. For instance, [6]
aims at reducing the overall energy consumption, assuming a
static network. Nodes can be in three different states:sending,
listening or sleeping. At each slot, nodes choose a state with
a probabilitypstate: the difficulty is then to determine optimal
values ofpsmboxstate. In [10], [12], three different protocols
are proposed for both single channel and multichannel net-
works. In the first one (RP), nodes send a HELLO at each slot
with probability p and listens with probability1 − p. In the
second one (AP), nodes immediately answer upon reception
of a message. In the last one (LP), the following condition
is added to RP: nodes listen the carrier if they have sent
a HELLO on the slot before. Upon reception of a HELLO,
nodes trigger a backoff time and send a new HELLO when
the countdown expires. As a result, LP presents the best trade-
off when the number of nodes is known. Of course, knowing
the number of nodes in a decentralized and dynamic network
is a rather unrealistic assumption. Moreover, all the proposals
assume a slotted network, which means that synchronization
among nodes is needed, which is by itself not a trivial problem.

As stated earlier, a low HELLO frequency leads to obsolete
tables while a high one may saturate bandwidth to the detri-
ment of data traffic. The trade-off depends on characteristics
(e.g., density, speed) that may evolve over time, leading to the
need for an adaptive protocol. Nevertheless, only a few studies
have tried to tackle this problem. In [5], a simple adaptive
protocol is proposed, in which nodes evaluate two values by

monitoring their neighborhood: the time link failure (TLF)and
the time without change (TWC). Moreover, they periodically
send HELLO at a frequencyflow again. If a node notices that
the measured TWC becomes greater than a given threshold,
it switches to the “high dynamics rate” and sends HELLO
messages at a frequencyfhigh. On the contrary, if the estimated
TLF becomes smaller than a threshold, it goes back to the “low
dynamics rate” and sends HELLO at a frequencyflow. In this
solution, finding the correct thresholds is not obvious since the
thresholds themselves may need to evolve over time.

In [4], authors propose three protocols in order to approach
the best trade-off. The first one is calledAdaptive HELLO
protocol: each node simply sends a HELLO each time it has
gone throughX meters. Though straightforward, this scheme
assumes that nodes are aware of their speed and their location.
The second protocol is calledReactive HELLO protocol. It is
based on the idea that nodes should build their neighborhood
table only when needed. Thus, when a node sends a data
packet, it first sends a HELLO message and waits during
a time t for an answer. If no answer is received, then it
repeats the same behavior up toX times. Upon reception of a
HELLO message, nodes trigger a timeout before answering, to
avoid collisions. While this scheme minimizes the quantity of
HELLO messages, it introduces a high latency before sending
data packets, and should not be used in networks with high
mobility. The third protocol proposed in [4] is calledevent-
based HELLO protocol. Nodes perform the classic periodic
HELLO protocol, but if they do not receive any message and
do not need to send data packets during a given time period,
then they stop sending beacon messages until reception of a
HELLO message. The main drawback of this protocol is that
some nodes may never be detected by mobile nodes.

In [11], an optimal HELLO frequency which depends on
the relative speed between objects is described. The idea is
that a node which strides more than a given distance in the
communication area of another node has to be detected by
the latter. If the two nodes move with a speedS, the optimal
frequencyfopt is equal to:

fopt =
2S

aR
, (1)

whereaR is the threshold distance in communication area to
be detected (a < 1).

IV. T HE TAP PROTOCOL

A. Description

We suppose that each node sends HELLO messages at
the frequencyfHELLO. Whenever a node receives a HELLO
message, it updates its neighborhood table, thus generating
someturnover. We assume in this paper that given a period
of time ∆t, the turnoverr∆t is equal to the ratio between
the number of new neighbors (i.e., nodes that were not yet
neighbors∆t units of time earlier) and the current total
number of neighbors. Obviously, the turnover depends on both
∆t and fHELLO, but if we assume that∆t = 1/fHELLO (that
is, the turnover is computed each time a HELLO message is



d

θ

∆

∆

d

ω

k

u1

u0

v1
v0

C

C
u0, R

u1, R

C
u1,  

v1
C

d

Fig. 1. A new neighborv of a nodeu - Global view.

sent), then it only depends onfHELLO. For the sake of clarity,
we denote the turnover byr through the rest of this paper.

The protocol we propose is based on the idea that nodes
can aim at the optimal HELLO frequencyfopt (see (1)) by
measuring the turnover. The analysis given in the next section
shows the relationship between the optimal turnoverropt and
the optimal frequency. Indeed, if a node aims at keepingr
constant, then it has to modifyfHELLO. Keeping the turnover
close to ropt should makefHELLO tend toward an optimal
HELLO message frequencyfopt. Nodes should thus compute
the current turnoverr each time they send a HELLO message.
To do so, they just have to make a backup of their table before
sending a HELLO message, in order to identify new neighbors
which will appear. Oncer is computed, two cases may happen:

• Whenr is too small (r < ropt), this means thatfHELLO is
too high and there are not enough changes in the table.
The frequencyfHELLO should be decreased.

• Whenr > ropt, fHELLO is too low and there are too many
changes. The frequencyfHELLO should thus be increased.

One can note that this description is generic, and does not
depend on any external update function. It simply assumes
that nodes are aware of the value ofropt and are able to
observe their neighborhood table to determine the number of
new neighbors each time a new HELLO is sent. We will later
provide in Section IV-C some possible functions that may be
used to adaptfHELLO based on the observed turnoverr.

B. From optimal frequency to optimal turnover

The principal issue that remains opened is: what is the
optimal frequency? Finding the correct value forfopt is indeed
not trivial and may depend on a lot of parameters. We propose
in this section to theoretically computeropt to derivefopt by
setting these parameters. We thus assume a Unit Disk Graph
and a mobility model where nodes move at a constant speed
s in a random direction. While these assumptions may not be
the most realistic ones, we used them as a first step in order
to experiment our HELLO protocol.

In this analysis, we suppose that nodes are randomly de-
ployed in a1× 1 square using a Poisson Point Process (node
positions are independent) with an intensityλ > 0, λ being the
mean number of nodes per surface unit. We are first interested
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Fig. 2. A new neighborv of a nodeu - Zoom.

in finding the mean number of new neighbors of a node after
a time period∆t. Let v be a point at distanced ≤ R from
nodeu at time t1 = t0 + ∆t (v is thus a neighbor ofu). We
need to compute the probabilityP(d) that nodev is actually
a newneighbor ofu. OnceP(d) is known, the mean number
of new neighbors of a nodeu after a time period∆t (noted
E[N ]∆t) is simply equal to:

E[N ]∆t =

∫ R

d=0

2λπd × P(d)dd. (2)

Let u0 (resp. v0) be the position of nodeu (resp. v) at
time t0 and u1 (resp.v1) its position at timet1. Let also be
∆d = S×∆t. We are thus interested in finding the probability
that |u0v0| > R knowing that|u1v1| < R. We denote byω the
direction−−→u0u1 andθ the direction−−→v0v1. ω andθ are chosen in
a uniformly random fashion in [−π, π] (each direction has the
same probability to be chosen). Fig. 1 illustrates our model.
Cu,R is the circle centered atu with radiusR andk = |u0v1|.
The blue dashed circleCu1,∆d (resp. red dotted circleCv1,∆d)
represents the possible position ofu0 (resp.v0). We can first
notice that the shorter∆t, the less likelyv is to be a new
neighbor ofu. This leads to the fact that there existsdmin =
min(0, R−2∆d) s.t. if d < dmin, P(d) = 0 whateverω andθ.

Givend andω, computing the probabilityP(d, ω) that node
v is a new neighbor of nodeu amounts to computing the
probability that nodev comes from the dotted blue angular
sector of Fig. 2, Thus, we have:

P(d, ω) =

∫ θmax

0

dθ

2π
. (3)

By using notations on Fig. 2, we have2π = θmax+ 2â and
â = arccos(∆d2

−R2
+k2

2k∆d
). We deduce :

θmax = 2arccos(
R2 − ∆d2 − k2

2k∆d
). (4)

Givend andω, nodev can be a new neighbor iffCu0,R and
Cv1,∆d intersect (see Fig. 2). If not, that means that nodesv
andu were already neighbors att0. Cu0,R andCv1,∆d intersect
only if:

R − ∆d ≤ k ≤ R + ∆d. (5)
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From (5), we can deduce the angular sectorΩ = [ωmin, ωmax]
of ω for which nodev is a new neighbor.

We havek =
√

∆d2 + d2 − 2d∆d cos(ω) and k < d +
∆d∀ω ∈ {0, π}. Sinced < R, we havek < R + ∆d ∀ω ∈
{0, π} and soωmax = π. We can also notice thatk > R−∆d
for ω > ωmin such thatk(ω = ωmin) = R − ∆d.

R − ∆d = k ⇔ ωmin = arccos(
d2 + 2R∆d − R2

2d∆d
)

Thus, given a distanced, nodev is a new neighbor ofu iff
ω ∈ Ω = [ωmin, ωmax]:

ωmin = arccos(
d2 + 2R∆d − R2

2d∆d
) ≤ ω ≤ π.

Now, we can compute the probabilityP(d) that a nodev is
a new neighbor ofu:

P(d) = 2 ×

∫ π

0

P(d, ω)

π
dω

=

{

1

π2

∫ π

ωmin
θmaxdω if dmin ≤ d ≤ R,

0 otherwise.
(6)

Fig. 3 plots P(d) for several values ofR, ∆t = 0.2s,
S = 2m.s−1 andλ = 100

1000×1000
. As expected,P(d) increases

whend or S increases and is proportional toR.
From (6), we can deduce the number of new neighbors that

nodeu encounters during a time period∆t:

E[n]∆t = 2πλ

∫ R

dmin

dP(d)dd =
λ

π

∫ R

dmin

∫ π

ωmin

d ∗ θmaxdωdd.

(7)
Equation (7) allows us to theoretically computeropt (see

Section IV-A). Indeed,ropt is the ratio obtained between two
HELLO packets sent at frequencyfopt. Thus:

ropt =

E[n]∆t= 1

fopt

λπR2
.

The speed parameterS appears in the result ofE[n]∆t only
through∆d = S×∆t. For∆t = 1

fopt
, we have∆d = S∗ aR

2S
=

aR
2

. Thus, since∆d does not depend onS anymore,ropt is
independent of the speed and only depends onR.

Fig. 4 and 5 plot the theoretical values ofropt as a function
of R for different values ofa. Note that with the help of
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this study, by watching its neighborhood during∆t, a node
can count the number of new neighbors and from this quantity,
deduces its relative speedS (from correspondence tables). This
can help for many applications.

C. Implementation

There are still some remaining issues regarding how our
TAP protocol may be implemented. One of them is about how
a node may obtain a correct turnover value. In the previous
section we indeed showed that this value may be very small
(e.g., 0.04) while it is nearly impossible for a node to observe
a so small turnover between two successive HELLO messages.
A solution to this problem is to let nodes archive more than
one table into a history of sizeX: if X is sufficiently large,
then a correct value may be expected. The turnover may then
be computed by counting neighbors present in the most recent
table that are not present in the oldest one and by using the
current HELLO delay as:

r = nb new neighbors×
currentdHELLO

elapsed time
.

To adaptfHELLO, one also needs to define some functions
based on the turnoverr. For instance, the amplitude at which
fHELLO should be modified (either increased or decreased)
should be determined by the difference betweenr and ropt:
the higher the difference, the more likelyfHELLO andfopt are
really different from each other. To compute this amplitude,
we propose to use the following functiong(x):

g(x) =

{

(
r−ropt

ropt
)2 if r < 2 × ropt,

1 otherwise.
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This function is illustrated by Fig. 6, whereropt is fixed to
0.04 in accordance with theoretical results (see Fig. 4). With
this function, whenr andropt are only slightly different, then
fHELLO is only slightly modified. Opposed to this case, the
higher the difference betweenr and ropt, the fastestfHELLO

should converge to the optimal frequency. Of course, any other
interesting functiong(x) such thatg(ropt) = 0 may be used
for this purpose since our protocol does not depend on this
particular one.

Finally, to adapt the delay between two HELLO messages
and thus the resulting turnover, we propose to use the follow-
ing series:

dHELLO =

{

dHELLO +
dHELLO

4
× g(r) if r ≤ ropt,

dHELLO −
dHELLO

4
× g(r) otherwise.

}

Once again, any other function may be used to adapt the
delay between HELLO messages. For instance, it may be
possible to adjust the functions in order to favor certain
aspects, like the bandwidth usage. Evaluating what kind of
functions may be used to favor such or such behavior is
actually beyond the scope of the current paper.

V. EXPERIMENTAL RESULTS

Our experimental results were obtained thanks to a home-
made simulation tool, using the Unit Disk Graph model. In
our simulations, we used a Poisson point process of intensity
λ = 100

A
in a square area of sizeA = 1000 × 1000.

The results obtained are within a95% confidence interval.
For each iteration, a new network is generated. We used
the functions described in Section IV-C with a history size
X = 10. Regarding TAP, the targeted turnover is fixed to
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0.04. In these experiments, we do not consider the problem
of determining the lifetime of an entry of the neighborhood
table: an entry is removed as soon as the corresponding node
has not sent a HELLO at the right time. We chose to discard
all other protocols presented in Section III since they rely
on very specific assumptions (e.g., slotted network, dedicated
hardware). To evaluate our TAP protocol, we chose to compare
it to two other schemes:

• Constant: fHELLO is fixed to0.2 and never varies.
• Optimal : fHELLO is set tofopt (refer to Section IV-B)

based on the current speed.
We first provide results that demonstrate the correctness

of the theoretical analysis performed in Section IV-B. We
thus give the expected average number of newreal neighbors
per node for an observation period∆t = 5s. The neighbors
referenced here are the real physical neighbors, and no neigh-
borhood table is used. On Fig. 7,R is fixed to 150m and S
increases. On Fig. 8,S is fixed to2m.s−1 andR increases. In
both cases, one may notice that experimental and theoretical
results perfectly match.

On Fig. 9 the observed turnover for all selected protocols is
provided. As expected, the turnover increases for the Constant
scheme since the observation periods have a fixed duration
(dHELLO is set to 5s) while the speed increases. A higher
number of new neighbors is thus observed at each HELLO,
and the turnover increases accordingly. The Optimal scheme
adjustsfHELLO by using the exact value of the current speed,
and provides a constant turnover. The observed turnover is
close to0.04, thus validating the theoretical value computed
in Section IV-B. Regarding TAP, it is interesting to note that
it is effectively able to aim at a given ratio (set to0.04 here),
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providing a constant turnover. The observed value is slightly
higher than expected, but this may be corrected by using
different adjustment functions and/or by targeting at a slightly
lower turnover.

On Fig. 10, we give the observed value ofdHELLO for
varying speed. Of course, the delay of the Constant scheme
does not vary since it does not take the speed into account.
The Optimal scheme computesfHELLO based on the real speed
and should thus provide an optimal value ofdHELLO. Regarding
TAP, the real speed value is not used, since it is not available.
As explained in Section IV, nodes only observe the turnover
and adjust the delay based on this observation. One can note
that it is very effective. When the “optimal” turnover value of
0.04 is targeted, the delay is not the same as with the Optimal
scheme because, as observed in Fig. 9, the real turnover is
slightly higher than expected.

We finally give in Fig. 11 the accuracy of the neighborhood
tables, which is equal to the percentage of nodes present in the
table of a node that are really physical neighbors of this node:
if fHELLO is too low, then tables are not up to date and the
accuracy drops. The Constant scheme does not adaptfHELLO

with the speed, and the accuracy thus quickly drops. Both the
Optimal and TAP schemes are able to keep a correct accuracy
of the tables because of the adjustment ofdHELLO observed in
Fig. 10. The accuracy provided by TAP is slightly lower than
with the Optimal scheme becausedHELLO is slightly higher
than expected. While this may be easily corrected by using
different adjustment functions, the provided accuracy is still
sufficient for most applications.

VI. CONCLUSION AND OPEN ISSUES

We presented TAP, an adaptive HELLO protocol for mobile
ad hoc and sensor networks that simply estimates the neighbor-
hood turnover and adjusts the HELLO frequency based on this
observation, to aim at a given optimal frequency. Besides the
fact that our protocol is simple to implement, it is especially
well-tailored to standard mobile ad hoc and sensor networks
since it does not rely on any specific hardware to achieve the
adjustment. We theoretically computed the optimal turnover
based on given assumptions, and experimentally showed that
the TAP protocol provides a good accuracy when aiming at
that optimal turnover under these assumptions.

There are some remaining open issues that we did not con-
sider in this paper. One of them is about the timeout that should
be used to remove deprecated neighbors from the table. We
indeed focused on the frequency of HELLO messages and did
not consider the problem of determining the optimal lifetime
of a table entry. This problem is important since considering
deprecated entries may lead to serious problems. Using a
constant lifetime is not a good solution since it should depend
on the speed of the nodes, just as the HELLO frequency.
Another issue that we did not address is about networks
with heterogeneous speed or driven by more realistic mobility
models. A better physical layer model (e.g., the lognormal
shadowing model [9]) might also be considered since HELLO
messages may then get lost before being received. We would
like to further study the consequences of these more realistic
assumptions and adapt our TAP protocol consequently.
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