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Conic Fitting Using the Geometric Distance

Peter Sturm and Pau Gargallo

INRIA Rhoéne-Alpes and Laboratoire Jean Kuntzmann, France

Abstract. We consider the problem of fitting a conic to a set of 2D
points. It is commonly agreed that minimizing geometrical error, i.e. the
sum of squared distances between the points and the conic, is better than
using an algebraic error measure. However, most existing methods rely on
algebraic error measures. This is usually motivated by the fact that point-
to-conic distances are difficult to compute and the belief that non-linear
optimization of conics is computationally very expensive. In this paper,
we describe a parameterization for the conic fitting problem that allows
to circumvent the difficulty of computing point-to-conic distances, and
we show how to perform the non-linear optimization process efficiently.

1 Introduction

Fitting of ellipses, or conics in general, to edge or other data is a basic task
in computer vision and image processing. Most existing works concentrate on
solving the problem using linear least squares formulations [3,4,16]. Correcting
the bias introduced by the linear problem formulation, is often aimed at by
solving iteratively reweighted linear least squares problems [8-10, 12, 16], which
is equivalent to non-linear optimization.

In this paper, we propose a non-linear optimization approach for fitting a
conic to 2D points, based on minimizing the sum of squared geometric distances
between the points and the conic. The arguments why most of the algorithms
proposed in literature do not use the sum of squared geometrical distances as
explicit cost function, are:

— non-linear optimization is required, thus the algorithms will be much slower.

— computation of a point’s distance to a conic requires the solution of a 4th or-
der polynomial [13, 18], which is time-consuming and does not allow analyti-
cal derivation (for optimization methods requiring derivatives), thus leading
to the use of numerical differentiation, which is again time-consuming.

The main goal of this paper is to partly contradict these arguments. This is
mainly achieved by parameterizing the problem in a way that allows to replace
point-to-conic distance computations by point-to-point distance computations,
thus avoiding the solution of 4th order polynomials. The problem formulation
remains non-linear though. However, we show how to solve our non-linear opti-
mization problem efficiently, in a manner routinely used in bundle adjustment.



2 Problem Formulation

2.1 Cost Function

Let qp = (2,,9p,1)",p = 1...n be the homogeneous coordinates of n measured
2D points. The aim is to fit a conic to these points. Many methods have been
proposed for this task, often based on minimizing the sum of algebraic distances
[3,4,12] (here, C is the usual symmetric 3 x 3 matrix representing the conic):

n
Z (Cr1izp + Cooy + 2C12apyp + 2C13T, + 2Ca3y, + 033)2
p=1
This is a linear least squares problem, requiring some constraint on the un-
knowns in order to avoid the trivial solution. For example, Bookstein proposes
the constraint C% +2C%, + C3, = 1, which allows to make the solution invariant
to Euclidean transformations of the data [3]. Fitzgibbon, Pilu and Fisher impose
4(C11C22 — C%) = 1 in order to guarantee that the fitted conic will be an ellipse
[4]. In both cases, the constrained linear least squares problem can be solved by
solving a 3 x 3 symmetric generalized eigenvalue problem.
The cost function we want to minimize (cf. section 5), is

> dist (qp, C)? (1)

where dist(q, C) is the geometric distance between a point q and a conic C,
i.e. the distance between q and the point on C, that is closest to q. Determining
dist(q, C) requires in general to compute the roots of a 4th order polynomial.

2.2 Transformations and Types of Conics

Let P be a projective transformation acting on 2D points (i.e. P is a 3 x 3 matrix).
A conic C is transformed by P according to (~ means equality up to scale):

C'~ P TCP )

In this work we are only interested in real conics, i.e. that do not only contain
imaginary points. These can be characterized using the eigendecomposition of
the conic’s 3 x 3 matrix: imaginary conics are exactly those whose eigenvalues
have all the same sign [2]. We are thus only interested in conics with eigenvalues
of different signs. This constraint will be explicitly imposed, as shown in the
following section. In addition, we are only interested in proper conics, i.e. non-
degenerate ones, with only non-zero eigenvalues. Concerning different types of
real conics, we distinguish the projective and affine classes:

— all proper real conics are projectively equivalent, i.e. for any two conics, there
exists at least one projective transformation relating them according to (2).
— affine classes: ellipses, hyperbolae, parabolae.



In the following, we formulate the optimization problem for general conics,
i.e. the corresponding algorithm may find the correct solution even if the initial
guess is of the “wrong type”. Specialization of the method to the 3 affine cases
of interest, is relatively straightforward; details are given in [15].

3 Minimizing the Geometrical Distance

In this section, we describe our method for minimizing the geometrical distance
based cost function. The key of the method is the parameterization of the prob-
lem. In the next paragraph, we will first describe the parameterization, before
showing that it indeed allows to minimize geometrical distance. After this, we
explain how to initialize the parameters and describe how to solve the non-linear
optimization problem in a computationally efficient way.

3.1 Parameterization

The parameterization explained in the following, is illustrated in figure 1.

For each of the n measured points q,,, we parameterize a point q,, such that
all q, lie on a conic. The simplest way to do so is to choose the unit circle as
support, in which case we may parameterize the ¢, by an angle o, each:

oS Qypy
ap = | sinoy,
1
Furthermore, we include in our parameterization a 2D projective transfor-
mation, or, homography, P.
We then want to solve the following optimization problem:

n
. . A2
o min - ;::1 dist (qp, Pd,) (3)

In section 3.2, we show that this parameterization indeed allows to minimize
the desired cost function based on point-to-conic distances.

At first sight, this parameterization has the drawback of a much larger num-
ber of parameters than necessary: n + 8 (the n angles a,, and 8 parameters for
P) instead of 5 that would suffice to parameterize a conic. We will show how-
ever, in section 3.4, that the optimization can nevertheless be carried out in a
computationally efficient manner, due to the sparsity of the normal equations
associated to our least squares cost function.

Up to now, we have considered P as a general 2D homography, which is
clearly an overparameterization. We do actually parameterize P minimally:

P ~ R X =R diag(a,b,c)

where R is an orthonormal matrix and a,b and c are scalars. We show in the
following section that this parameterization is sufficient, i.e. it allows to express
all proper real conics.



Fig. 1. Illustration of our parameterization.

We may thus parameterize P using 6 parameters (3 for R and the 3 scalars).
Since the scalars are only relevant up to a global scale factor, we may fix one and
thus reduce the number of parameters for P to the minimum of 5. More details
on the parameterization of the orthonormal matrix R are given in section 3.4.

3.2 Completeness of the Parameterization

We first show that the above parameterization allows to “reach” all proper real
conics and then, that minimizing the associated cost function (3) is equivalent
to minimizing the desired cost function (1).

For any choice of R,a,b and ¢ (a,b,c # 0), the associated homography will
map the points g, to a set of points that lie on a conic C. This is obvious since
point-conic incidence is invariant to projective transformations and since the q,
lie on a conic at the outset (the unit circle). The resulting conic C is given by:

1 1/a®
C~P T 1 P1~R 1/b? RT
-1 —1/c?

unit circle

We now show that any proper real conic C’ can be “reached” by our param-
eterization, i.e. that there exist an orthonormal matrix R and scalars a,b and ¢
such that C ~ C’. To do so, we consider the eigendecomposition of C’:

al

C =R % R/T

Cl

where R’ is an orthonormal matrix, whose rows are eigenvectors of C’, and o', 0’
and ¢ are its eigenvalues (any symmetric matrix may be decomposed in this
way). The condition for C’' being a proper conic is that its three eigenvalues



are non-zero, and the condition that it is a proper and real conic is that one
eigenvalue’s sign is opposed to that of the two others.

If for example, ¢’ is this eigenvalue, then with R = R,a = 1//]d/|,b =
1/4/]¥'| and ¢ = 1//|¢|, we have obviously C ~ C'. If the “individual” eigenvalue
is @’ instead, the following solution holds:

1 1 1

= b= c=—— R= -1 R’

Vel vid Vel 1
and similarly for ' being the “individual” eigenvalue. Hence, our parameteriza-
tion of an homography via an orthonormal matrix and three scalars, is complete.

We now show that the associated cost function (3), is equivalent to the desired
cost function (1), i.e. that the global minima of both cost functions correspond
to the same conic (if a unique global minimum exists of course). Let C’ be the
global minimum of the cost function (1). Let, for any measured point q,, ¥, be
the closest point on C'. If more than one point on C' are equidistant from q,,
pick any one of them.

We have shown above that there exist R, a, b and ¢, such that P maps the unit
circle to C'. Let w, = P~1¥,. Since ¥, lies on C/, it follows that W, lies on the

a

unit circle. Hence, there exists an angle a,, such that W, ~ (cosay,sina,,1)".
Consequently, there exists a set of parameters R, a,b, ¢, a1, ..., a, for which the
value of the cost function (3) is the same as that of the global minimum of (1).
Hence, our parameterization and cost function are equivalent to minimizing the
desired cost function based on geometrical distance between points and conics.

3.3 Initialization

Minimizing the cost function (3) requires a non-linear, thus iterative, optimiza-
tion method. Initial values for the parameters may be taken from the result of
any other (linear) method. Let C' be the initial guess for the conic. The initial
values for R,a,b and ¢ (thus, for P) are obtained in the way outlined in the
previous section, based on the eigendecomposition of C'.

As for the angles a,, we determine the closest points on C’ to the measured
dp, by solving the 4th order polynomial mentioned in the introduction or an
equivalent problem (see [15] for details). We then map these to the unit circle
using P and extract the angles o, as described in the previous section.

3.4 Optimization

We now describe how we optimize the cost function (3). Any non-linear opti-
mization method may be used, but since we deal with a non-linear least squares
problem, we use the Levenberg-Marquardt method [7]. In the following, we de-
scribe how we deal with the rotational components of our parameterization (the
orthonormal matrix R and the angles ), we then explicitly give the Jacobian
of the cost function, and show how the normal equations’ sparsity may be used
to solve them efficiently.



Update of Rotational Parameters. To avoid singularities in the parame-
terization of the orthonormal matrix R, we estimate, as is typical practice e.g.
in photogrammetry [1], a first order approximation of an orthonormal “update”
matrix at each iteration, as follows:

1.
2.

Let Rp be the estimation of R after the previous iteration.

Let Ry = RpA be the estimation to be obtained after the current iteration.
Here, we only allow the update matrix A to vary, i.e. Ry is kept fixed. Using
the Euler angles «, 3,7, we may parameterize A as follows:

cos 3 cosy sin asin 3 cosy — cos asin -y cos asin 3 cos -y + sin asin vy
A = | cosfsiny sin asin §siny + cos a cosy cos asin Fsiny — sin v cos 7y
—sin 3 sin . cos (3 cos a.cos 3
(4)

. The update angles «, 8 and ~y will usually be very small, i.e. we have cosa ~ 1

and sina =~ «. Instead of optimizing directly over the angles, we thus use
the first order approximation of A:

I —y p
A= v 1 -«
-8 a 1

. In the cost function (3), we thus replace R by RgA’, and estimate «, 3 and

~. At the end of the iteration, we update the estimation of R. In order
to keep R orthonormal, we do of course not update it using the first order
approximation, i.e. as Ry = RgA’. Instead, we compute an exact orthonormal
update matrix A using equation (4) and the estimated angles, and update
the rotation via R; = RpA.

. It is important to note that at the next iteration, R; will be kept fixed on

its turn, and new (small) update angles will be estimated. Thus, the initial
values of the update angles at each iteration, are always zero, which greatly
simplifies the analytical computation of cost function’s Jacobian.

The points q, on the unit circle, are updated in a similar manner, using a

1D rotation matrix each for the update:

cos pp —sin p, 0
V, = |sinp, cosp, 0
0 0 1

and its first order approximation:

, L —pp
V,=1p 1
0

0
0
0 1

Points are thus updated as follows: q, — WV,q, (where, as for R, the update
angles are estimated using the first order approximations W7,).



Cost Function and Jacobian. Let the measured points be given by q, =

(p,9p,1)", and the current estimate of the @, by @, = (Z,,8,,1)' . At each
iteration, we have to solve the problem:

min d? RA'TV § 5
a,b,c,a,B,7,p1 pn ; (q;l? pqp) ( )

This has a least squares form, i.e. we may formulate the cost function using
2n residual functions:

2n ~ ~
RA'T Vg, RA'YV.§;
Z rJQ» with 79,1 =2, — (/73(}1)1 and 1o =y; — (/73%
= (RA'ZVIq;), (RA'ZVIq;),
As for the Jacobian of the cost function, it is defined as:
91 9 9y Ori 9ri 9 O O . O
da ob Oc da 9B Oy Op1  Op2 Opn
J=1 ¢+ 0
Oran Oran Orgn Oran Oran Oran Oren Orgn .. Oren
da ob dc da 9B Oy Op1  Op2 Opn
It can be computed analytically, as follows. Due to the fact that before each
iteration, the update angles «,3,v,p1,...,pn are all zero, the entries of the

Jacobian, evaluated at each iteration, have the following very simple form:

Ziuir Jruiz vz (bfruis — cuiz) (cuir — aZiuiz) (aZiuiz — bjruir) uia -+ O
Zivir Jiviz viz (bfivis — cviz2) (cvir — adivis) (adiviz — byivir) vig oo 0

i’nunl gnunQ Un3 (bgnunS - Cun2) (Cunl - ai’nunS) (ajnun2 - b’gnunl)

0 © Un4a
i‘nvnl annz Un3 (bgnvnB - C'Un2) (CUnl — ai’n’l}ng) (ai’nvnQ — bgnvnl) 0o .- VUnd
with
bR237y; — cRa2 cR12 — DR139;
2 cR21 — aR23%; 2 aR13%; — cRn1
u; = S; N ~ Vi = S8; N A
aR22%; — bR21Y; bR119: — aR122;
c¢(bR21%; + aR227;) — abRa3 abR13 — c¢(bR11&; + aR129;)

and s; = (aR;ni"i + bR329; + CR33)71.
As for the residual functions themselves, with «, 3,7, p1, - .., pn being zero
before each iteration, they evaluate to:

r2i-1 = T; — 8; (aR113; + bR127; + cRi3)

r2i = yi — 8i (aR21%i + bR22y; + cRas)
With the explicit expressions for the Jacobian and the residual functions, we
have given all ingredients required to optimize the cost function using e.g. the
Levenberg-Marquardt or Gauss-Newton methods. In the following paragraph,

we show how to benefit from the sparsity of the Jacobian (nearly all derivatives
with respect to the p, are zero).



Hessian. The basic approximation to the Hessian matrix used in least squares
optimizers such as Gauss-Newton is H = JT J. Each iteration of such a non-linear
method comes down to solving a linear equation system of the following form:

Asxe6 Boxn | (X6) _ (a6
BT Duxn) \¥n b,

where D is, due to sparsity of the Jacobian (see previous paragraph) a di-
agonal matrix. The right-hand side is usually the negative gradient of the cost
function, which for least squares problems can also be computed as —JTr, r be-
ing the vector of the 2n residuals defined above. As suggested in [14], we may
reduce this (6 +n) x (6 + n) problem to a 6 x 6 problem, as follows:

1. The lower set of equations give:

y=D"'(b—-B'x) (6)

2. Replacing this in the upper set of equations, we get:

(A—BD'B")x=a—BD'b (7)

3. Since D is diagonal, its inversion is trivial, and thus the coefficients of the
equation system (7) may be computed efficiently (in time and memory).
4. Once x is computed by solving the 6 x 6 system (7), y is obtained using (6).

Hence, the most complex individual operation at each iteration is the same
as that in iterative methods minimzing algebraic distance — inverting a 6 x 6
symmetric matrix or, equivalently, solving a linear equation system of the same
size. In practice, we reduce the original problem to (5+mn) x (5+n), respectively
5 x 5, by fixing one of the scalars a, b, ¢ (the one with the largest absolute value).
However, most of the computation time is actually spent on computing the
partial derivatives required to compute the coefficients of the above equation
systems. Overall, the computational complexity is linear in the number of data
points. A detailed complexity analysis is given in [15].

With a non-optimized implementation, measured computation times for one
iteration were about 10 times those required for the standard linear method
(Linear in the next section). This may seem much but note that e.g. with 200
data points, one iteration requires less than 2 milli-secs on a 2.8 GHz Pentium 4.

4 Experimental Results

Points were simulated on a unit circle, equally distributed over an arc of varying
length, to simulate occluded data. Each point was subjected to Gaussian noise
(in z and y). Six methods were used to fit conics:

— Linear: least-square solution based on the algebraic distance, using the con-
straint of unit norm on the conic’s coefficients.
— Bookstein: the method of [3].
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Fig. 2. Two examples: 50 points were distributed over an arc of 160°, and were sub-
jected to a Gaussian noise of a standard deviation of 5 percent the radius of the circle.
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Fig. 3. Relative error on estimated minor axis length, as a function of noise (the unit
of the y-axis is 100%). The graphs for the three non-linear optimization methods are
superimposed.

— Fitzgibbon: the method of [4].
— Non-linear optimization using our method, using the results of the above
methods as initialization: Linear-opt, Book-opt and Fitz-opt.

We performed experiments for many combinations of noise level, amount of
occlusion and number of points on the conic, see [15] for a detailled account. Fig-
ure 2 shows two typical examples. With all three initializations, the optimization
method converged to the same conic in a few iterations each (2 or 3 typically).

It is not obvious how to quantitatively compare the methods. Displaying
residual geometrical point-to-conic distances for example would be unfair, since
our method is designed for minimizing this. Instead, we compute an error mea-
sure on the estimated conic. Figure 3 shows the relative error on the length of
the estimated conic’s minor axis (one indicator of how well the conic’s shape
has been recovered), relative to the amount of noise. Each point in the graph
represents the median value of the results of 50 simulation runs. All methods



Fig. 4. Sample results on real data: fitting conics to catadioptric line images. Colors
are as in figure 2; reference conics are shown in white and data points in black, in the
common portion of the estimated conics.

degrade rather gracefully, the non-linear optimization results being by far the
best (the three graphs are superimposed). We also tested our approach with the
results of a hyperbola-specific version of [4] as initialization. In most cases, the
optimization method is capable of switching from an hyperbola to an ellipse,
and to reach the same solution as when initialized with an ellipse.

Figure 4 shows sample results on real data, fitting conics to edge points of
catadioptric line images (same color code as in figure 2). Reference conics are
shown in white; they were fitted using calibration information on the catadioptric
camera (restricting the problem to 2 dof) and serve here as “ground truth”. The
data points are shown by the black portion common to all estimated conics.
They cover very small portions of the conics, making the fitting rather ill-posed.
The ill-posedness shows e.g. in the fact that in most cases, conics with widely
varying shape have similar residuals. Nevertheless, our approach gives results
that are clearly more consistent than for any of the other methods; also note
that in the shown examples, the three non-linear optimizations converged to the
same conic each time. More results are given in [15].

5 Discussion on Choice of Cost Function

Let us briefly discuss the cost function used. A usual choice, and the one we
adopted here, is the sum of squared geometrical distances of the points to the
conic. Minimizing this cost function gives the optimal conic in the maximum like-
lihood sense, under the assumption that data points are generated from points
on the true conic, by displacing them along the normal direction by a random
distance that follows a zero mean Gaussian distribution, the same for all points.
Another choice [17] is based on the assumption that a data point could be gener-
ated from any point on the true conic, by displacing it possibly in other directions
than the normal to the conic. There may be other possibilities, taking into ac-
count the different densities of data points along the conic in areas with different
curvatures. Which cost function to choose depends on the underlying application
but of course also on the complexity of implementation and computation.



In this work we use the cost function based on the geometrical distance
between data points and the conic; it is analytically and computationally more
tractable than e.g. [17]. Further, if data points are obtained by edge detection,
i.e. if they form a contour, then it is reasonable to assume that the order of the
data points along the contour is the same as that of the points on the true conic
that were generating them. Hence, it may not be necessary here to evaluate the
probability of all points on the conic generating all data points and it seems
reasonable to stick with the geometric distance between data points and the
conic, i.e. the distance between data points and the closest points on the conic.
A more detailed discussion is beyond the scope of this paper though.

A final comment is that it is straightforward to embed our approach in any
M-estimator, in order to make it robust to outliers.

6 Conclusions and Perspectives

We have proposed a method for fitting conics to points, minimizing geometrical
distance. The method avoids the solution of 4th order polynomials, often con-
sidered to be one of the main reasons for using algebraic distances. We have
described in as much detail as possible how to perform the non-linear opti-
mization computationally efficiently. A few simulation results are presented that
suggest that the optimization of geometrical distance may correct bias present
in results of linear methods, as expected. However, the main motivation for this
paper was not to measure absolute performance, but to show that conic fitting
by minimization of geometrical distance, is feasible.

Recently, we became aware of the work [5], that describes an ellipse-specific
method very similar in spirit and formulation to ours. Our method, as presented,
is not specific to any affine conic type. This is an advantage if the type of conic
is not known beforehand (e.g. line-based camera calibration of omnidirectional
cameras is based on fitting conics of possibly different types [6]), and switching
between different types is indeed completely natural for the method. However,
we have also implemented ellipse-, hyperbola- and parabola-specific versions of
the method [15].

The proposed approach for conic fitting can be adapted to other problems.
This is rather direct for e.g. the reconstruction of a conic’s shape from multiple
calibrated images or the optimization of the pose of a conic with known shape,
from a single or multiple images. Equally straightforward is the extension to the
fitting of quadrics to 3D point sets. Generally, the approach may be used for
fitting various types of surfaces or curves to sets of points or other primitives.

Another application is plumb-line calibration, where points would have to be
parameterized on lines instead of the unit circle. Besides this, we are currently
investigating an extension of our approach to the estimation of the shape and/or
pose of quadrics, from silhouettes in multiple images. The added difficulty is that
points on quadrics have to be parameterized such as to lie on occluding contours.
This may be useful for estimating articulated motions of objects modelled by
quadric-shaped parts, similar to [11] which considered cone-shaped parts.



Other current work is to make a MATLAB implementation of the proposed
approach publicly available, on the first author’s website and to study cases when
the Gauss-Newton approximation of the Hessian may become singular.
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