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Abstract

In this paper, we consider the problem of the online allocation of a very large number of identical
tasks on a master-slave platform. Initially, several masters hold or generate tasks that are transfered
and processed by slave nodes. The goal is to maximize the overall throughput achieved using this
platform, i.e. the (fractional) number of tasks that can be processed within one time unit. We model the
communications using the so-called bounded degree multi-port model, in which several communications
can be handled by a master node simultaneously, provided that bandwidths limitation are not exceeded
and that a given server is not involved in more simultaneous communications than its maximal degree.
Under this model, it has been proved in [4] that maximizing the throughput (MTBD problem) is NP-
Complete in the strong sense but that a small additive resource augmentation (of 1) on the servers degrees
is enough to find in polynomial time a solution that achieves at least the optimal throughput. In this
paper, we consider the reasonable setting where the set of slave processors is not known in advance but
rather join and leave the system at any time, i.e. the online version of MTBD. We prove that no fully
online algorithm (where nodes cannot be disconnected even if they do not leave the system) can achieve
a constant approximation ratio, whatever the resource augmentation on servers degrees. Then, we prove
that it is possible to maintain the optimal solution at the cost of at most one change per server each
time a new node joins and leave the system. At last, we propose several other greedy heuristics to solve
the online problem and we compare the performance (in terms of throughput) and the cost (in terms of
disconnexions and reconnections) of proposed algorithms through a set of extensive simulation results.

1 Introduction

Nowadays, scientific research has brought challenging calculations to solve intractable problems for a single
machine. Desktop Grids has appeared as an interesting and cheap solution to perform such computations.
Desktop Grids profits of machine idle times in a network to, altogether, perform a hard computation. On
the Internet, where only 5 to 10% of the computational power of personal computers is used, platforms like
BOINC [1] or Folding@home [17] uses volunteers machines to perform hard computations in mathematics,
biology, medicine or to search for intelligent life outside earth in case of SETI@home. Each machine performs
a small part of a huge computation, small enough to not disturbing the work of the volunteer machines,
but where altogether complete the whole work. All the applications running on these platforms consist in
a huge number of independent tasks and all communications take place under master-worker paradigm. As
an example of the power these platform can achieve, the SETI@home project uses the CPU power of several
hundred of thousands of volunteer PCs (around 500,000). Combined, their overall capacity is around 500
TeraFLOPs and already contributed over two million years of CPU time [23].
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In this context, makespan minimization, i.e, minimizing the minimal time to process a given number
of tasks, is usually intractable. An idea to circumvent the difficulty of makespan minimization is to lower
the ambition of the scheduling objective. Instead of aiming at the absolute minimization of the execution
time, why not consider asymptotic optimality and optimize the throughput (i.e. the fractional number of
tasks that can be processed in one time-unit once steady-state has been reached)? After all, the number of
tasks to be executed in applications such as Seti@home [2] or Folding@home [17] is huge. This approach
has been pioneered by Bertsimas and Gamarnik [6] and has been extended to task scheduling in [3] and
collective communications in [5]. Steady-state scheduling allows to relax the scheduling problem in many
ways. Initialization and clean-up phases are neglected. The precise ordering and allocation of tasks and
messages are not required, at least in the first step. The main idea is to characterize the activity of each
resource during each time-unit: which rational fraction of time is spent sending and processing tasks and to
which client tasks are delegated?

In this paper, we restrict our attention to steady-state scheduling of independent equal-sized tasks. In
order to consider a more general model than current settings where a single server is used, we consider
that a set of servers initially hold (or generate) the tasks to be processed. Each server Sj is characterized
by its outgoing bandwidth bj (i.e. the number of tasks it can send during one time-unit) and its maximal
degree dj (i.e. the number of open connexions that it can handle simultaneously). On the other hand, each
client Ci is characterized by its capacity wi (i.e. the number of tasks it can handle during one time-unit).
wi encompasses both its processing and communication capacities. More specifically, if compi denotes the
number of tasks Ci can processed during one time-unit, and commi denotes the number of tasks it can receive
during one time-unit, then we set wi = min(compi, commi).

Our goal is to build a bipartite graph between servers and clients. We do not assume that the underlying
network topology is known. Such an assumption would be completely unrealistic for large scale computing
platforms such as BOINC, where Internet is the underlying network. Even for smaller scale platforms, such as
Grids, automatic topology discovery tools, such as [12, 22] are much too slow for quickly evolving resources.
Moreover, the underlying core network is usually over-sized, so that contentions mostly take place at node
networking interfaces.

To model contentions, we rely on the bounded multi-port model, that has already been advocated by
Hong et al. [14] for independent task distribution on heterogeneous platforms. In this model, server Sj can
serve any number of clients simultaneously, each using a bandwidth w′

i ≤ wi provided that its outgoing
bandwidth is not exceeded, i.e.

∑
i w′

i ≤ bj . This corresponds to modern network infrastructure, where each
communication is associated to a TCP connexion.

This model strongly differs from the traditional one-port model used in scheduling literature, where
connexions are made in exclusive mode: the server can communicate with a single client at any time-step.
Previous results obtained in steady-state scheduling of independent tasks [3] have been obtained under this
model, which is easier to implement. For instance, Saif and Parashar [19] report experimental evidence
that achieving the performances of bounded multi-port model may be difficult, since asynchronous sends
become serialized as soon as message sizes exceed a few megabytes. Their results hold for two popular
implementations of the MPI message-passing standard, MPICH on Linux clusters and IBM MPI on the SP2.
Nevertheless, in the context of large scale platforms, the networking heterogeneity ratio may be high, and
it is unrealistic to assume that a 100MB/s server may be kept busy for 10 seconds while communicating a
1MB data file to a 100kB/s DSL node. Therefore, in our context, all connexions must directly be handled
at TCP level, without using high level communication libraries.

It is worth noting that at TCP level, several QoS mechanisms enable a prescribed sharing of the band-
width [7, 15]. In particular, it is possible to handle simultaneously several connexions and to fix the bandwidth
allocated to each connexion. In our context, these mechanisms are particularly useful since wi encompasses
both processing and communication capabilities of Ci and therefore, the bandwidth allocated to the con-
nexion between Sj and Ci may be lower than both bj and wi. Nevertheless, handling a large number of
connexions at server Sj with prescribed bandwidths consumes a lot of kernel resources, and it may therefore
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be difficult to reach bj by aggregating a large number of connexions. In order to avoid this problem, we
introduce another parameter dj in the bounded multi-port model, that represents the maximal number of
connexions that can simultaneously be opened at server Sj .

Therefore, the model we propose encompasses the benefits of both bounded multi-port model and one-
port model. It enables several communication to take place simultaneously, what is compulsory in the context
of large scale distributed platforms, and practical implementation is achieved using TCP QoS mechanisms
and bounding the maximal number of connexions.

In this context, the offline problem has been considered in [4]. It has been proved that the additional
parameter on the number of simultaneous communications a server can handle makes the problem of maxi-
mizing the overall throughput (i.e., the fractional number of tasks that can be processed within one time-unit)
NP-Complete. On the other hand, a polynomial time algorithm, based on a slight resource augmentation,
has been proposed to solve this problem. More specifically, if dj denotes the maximal number of connections
that can be opened at server Sj , then the throughput achieved using the algorithm [4] and dj +1 connections
is at least the same as the optimal one with dj connections.

Formally, let Sj be a server, and let bj and dj denotes the outgoing bandwidth of server Sj , and the
maximal number of connections that server Sj can handle simultaneously, respectively. Also, let Ci denotes

a client and wi its capacity. Finally, let us denote by wj
i the fraction of outgoing bandwidth assigned from

server Sj to client Ci. Then, a valid assignation must satisfy the following conditions:

∀j,
∑

i wj
i ≤ bj outgoing bandwidth constraint at Sj (1)

∀j, Card{i, wj
i > 0} ≤ dj degree constraint at Sj (2)

∀i,
∑

j wj
i ≤ wi capacity constraint at Ci (3)

Therefore, MTBD is defined as follows:

Maximize
∑

j

∑

i

wj
i under constraints (4),(5) and (6).

Due to the dynamic nature of large scale heterogeneous platforms and the results mentioned above, it
becomes interesting to study MTBD in the more realistic dynamic scenario, when clients join and leave the
system at any moment. In the online context, it makes sense to compare the algorithms according to their
cost, in terms of the number of changes in platform topology induced by a client arrival or departure, and
their performance, in terms of achieved throughput. With respect to this dual goal, we prove that no fully
online algorithm (where nodes cannot be disconnected even if they do not leave the system) can achieve a
constant approximation ratio, whatever the resource augmentation on servers degrees. On the other hand,
we prove that it is possible to maintain the optimal solution at the cost of at most one change per server
each time a new node joins and leave the system.

The rest of the paper is organized as follows. In Section 2, we present the communication model we use
and formalize the scheduling problem we consider. Related works are discussed in Section 3. In Section 4,
we prove that no fully online algorithm can achieve a constant approximation ratio, whatever resource
augmentation is used. In Section 5, we present an online algorithm that maintains the optimal throughput
(using an additive resource augmentation of 1 on servers degrees) at that involves and most four operations
per server each time a client is added or removed.

2 Platform Model and Maintainance Costs

Let us denote by bj the capacity of server Sj and by dj the maximal number of connections that it can
handle simultaneously (its degree). The capacity of client Ci is denoted by wi. All capacities are normalized
and expressed in terms of (fractional) number of tasks per time-unit. Moreover, let us denote by wj

i the
number of tasks per time-unit sent from server Sj to client Ci.
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A valid solution is thus an assignment of values wj
i satisfying the following conditions

∀j,
∑

i wj
i ≤ bj capacity constraint at Sj (4)

∀j, Card{i, wj
i > 0} ≤ dj degree constraint at Sj (5)

∀i,
∑

j wj
i ≤ wi capacity constraint at Ci (6)

and MTBD problem consists in maximizing the number of tasks that can be processed within one time-unit.
In the online version of MTBD, we introduce rounds. At each round, a new client may join or leave the

system, so that no duration is associated to a round. We denote by Ct the set of clients present at round
t (with their respective capacities). Client C joins (resp. leaves) the system at round t if C ∈ Ct\Ct−1

(resp. C ∈ Ct−1\Ct). The arrival or departure of a client can therefore only take place at the beginning of a
round and i.e., |Ct\Ct−1| + |Ct−1\Ct| ≤ 1, ∀t. Let us denote by S the set of servers (with their respective
bandwidth and degree constraints).

Solving the online version of MTBD comes into two flavours. First, one may want to maintain the
optimal throughput (what is possible using resource augmentation on the degree) at a minimal cost in terms
of deconnexions and reconnexions of already existing clients to servers. Second, one may want to achieve a
minimal number of connexions and reconnexions at each server and to obtain the best possible throughput.
In order to compare online solutions, we need to define precisely the cost of the modifications to existing
allocation of clients to servers.

Let us denote by wj
i (t) the fraction of outgoing bandwidth assigned from server Sj to client Ci at round

t. We say that client Ci is connected to server Sj at round t if wj
i (t) > 0. Furthermore, let Sj(C

t) = {Ci :

wj
i (t) > 0} be the set of clients connected to server Sj at round t. Then, we define the set of new connections

to server Sj in round t as Sj(C
t)\Sj(C

t−1), the set of clients connected to server Sj in round t but not
connected to server Sj in round t − 1. Similarly, we define the set of disconnections of server Sj in round
t as Sj(C

t−1)\Sj(C
t), the set of clients connected to server Sj in round t − 1 but not connected in round t.

Lastly, we say that the connection between server Sj and client Ci changes at round t if wj
i (t − 1) 6= wj

i (t),
and both are positive (Ci is connected to Sj in round t − 1 and in round t). Let us denote by Chj(C

t) the
set of clients connected to server Sj at round t and whose connexion changes at round t.

In our context, since we use complex QoS mechanisms to achieve prescribed bandwidth between clients
and servers, any change in bandwidth allocation induces some cost. If a new client connects to a server, a new
TCP connexion needs to be opened, what also induces some cost. On the other hand, disconnexions come
for free and all modifications at the different server nodes can take place in parallel. Therefore, we introduce
the following definitions to measure and compare the algorithms that solves online MTBD providing the
same levels of throughput.

Definition 2.1 Let A be an algorithm solving the online version of MTBD. It is said that A produces at
most l disconnections per round if maxt maxSj∈S |Sj(C

t−1)\Sj(C
t)| = l.

Definition 2.2 Let A be an algorithm solving the online version of MTBD. It is said that A produces at
most l new connections per round if maxt maxSj∈S |Sj(C

t)\Sj(C
t−1)| = l.

Definition 2.3 Let A be an algorithm solving the online version of MTBD. It is said that A produces at
most l changes in already existing connections per round if maxt maxSj∈S |Chj(C

t)| = l.

3 Related Work

A closely related problem is Bin Packing with Splittable Items and Cardinality Constraints. The goal in
this problem is to pack a given set of items in as few bins as possible. The items may be split, but each
bin may contain at most k items or pieces of items. This is very close to the problem we consider, with
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two main differences: in our case the number of servers (corresponding to bins) is fixed in advance, and the
goal is to maximize the total bandwidth throughput (corresponding to the total packed size), whereas the
goal in Bin Packing is to minimize the number of bins used to pack all the items. Furthermore, we consider
heterogeneous servers.

As far as we know, Bin Packing with splittable items and cardinality constraints was introduced in the
context of memory allocation in parallel processors by Chung et al. [9], who considered the special case
when k = 2. They showed that even in that case this problem is NP-Complete, and proposed a 3/2-
approximation algorithm. Epstein and van Stee [11] showed that Bin Packing with splittable items and
cardinality constraints is NP-Hard for any fixed value of k, and that the simple NEXT-FIT algorithm has
an approximation ratio of 2 − 1/k. They also designed a PTAS and a dual PTAS [10] for the general case
with constant k.

Other related problems were introduced by Shachnai et al. [21], in which the size of an item increases
when it is split, or there is a global bound on the number of fragmentations. The authors prove that theses
two problems do not admit a PTAS, and provide a dual PTAS and an asymptotic PTAS. In a multiprocessor
scheduling context, another related problem is scheduling with allotment and parallelism constraints [20],
where the goal is to schedule a certain number of tasks, where each task has a bound on the number of
machines that can process it simultaneously, and another bound on the overall number of machines that can
participate in its execution. This problem can also be seen as a splittable packing problem, but this time
with a bound ki on the number of times an item can be split. In [20], an approximation algorithm of ratio
maxi(1 + 1/ki) is presented.

In a related context, resource augmentation techniques have already been succesfully applied to on-line
scheduling problems [16, 18, 8, 13] in order to prove optimality or good approximation ratio. More precisely,
it has been established that several well-known on-line algorithms, that have poor performance from an
absolute worst-case perspective, are optimal for the problems in question when allowed moderately more
resources [18]. In this paper, we consider a slightly different context, since the off-line solution already
requires resource augmentation on the servers degrees. We prove that it is possible in the on-line context
to maintain at relatively low cost a solution that achieves the optimal throughput with the same resource
augmentation as in the off-line context.

4 Unapproximability Results for Totally Online MTBD

In this section, we prove that no totally online algorithm can achieve a constant approximation ratio for the
online MTBD problem. This result holds true even if we allow any constant resource augmentation ratio of
the degree of the servers, what strongly differs from the offline setting, where a constant additive resource
augmentation of 1 is eough to achieve optimal throughput. The proof is by contra-example.

We will say that an algorithm Aα uses α ≥ 1 resource augmentation factor when the maximal degree
used by a server Sj is dj + α while its original degree is dj . Moreover, let us denote by OPT (I) the optimal
throughput when I is the instance, and by Aα(I) the throughput provided by Algorithm Aα on instance I.

Theorem 4.1 Given a resource augmentation factor α and a constant k; there exists an instance I of online
MTBD, such that for any totally online algorithm Aα,

A(I) <
1

k
OPT (I).

Proof: The proof is by exhibiting an instance I on which any totally online algorithm will fail in achieving a
constant approximation ratio. More spefically, let us denote by α the allowed resource augmentation factor
and by k the target approximation ratio.

This instance consists in only one server S with bandwidth b > 1 and degree constraint d = k. On the
other hand, there are α × d + 1 different sets of clients, denoted by S0, S1, . . . , Sα×d. There are exactly d
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clients in set Si, ∀i < α × d − 1 with capacity ǫαd−i. The value of ǫ is set such that d
∑α·d

i=1
ǫi < 1 (in

particular, ǫ < 1

d2·α
). The last set Sα×d contains exactly one client with capacity b. In instance I, clients

arrive one after the other, and the clients of set Si, i ≥ 1 arrive after the clients of set Si−1. We will denote
by Phase i the d steps corresponding to the arrival of Si clients.

The key observation is that at the end of phase i, any totally online algorithm must connect at least one
client of Si to the server. Otherwise, it would fail in achieving d approximation ratio, since the d × (i + 1)
clients from previous phases are too small (even if we forget about the degree constraint at the server).
Indeed,

i−1∑

j=0

d · ǫαd−j = d · ǫαd−i ·
i∑

j=0

ǫj < ǫαd−i,

and the solution at the end of Phase i should have throughput at least ǫαd−i, since the optimal solution
consists in connecting all Phase i clients to the server, thus achieving throughput d × ǫαd−i.

Therefore, since the approximation ratio d must hold true at the end of any step (and in particular at
the end of any phase), at least one client of each set Si, 0 ≤ i ≤ α × d − 1 should connect to the server.
Since disconnexions are not allowed, all possible d × α connexions are busy at the end of Phase α × d − 1
and the client of Sα×d cannot connect to the server and d approximation ratio is violated after Phase Sα×d.

5 Optimal Solution with m Reallocations

Previously, it was proved that it is not possible to approximate online MTBD by any constant factor if
the algorithm is totally online, even if the algorithm connects more clients with the servers than what it is
allowed originally. Hence, it becomes interesting to know how many new connections per round are required
in order to achieve some desired approximation factor. Or better for our purpose, and since it is known
that with one extra connection in the resource augmentation for the degree of the servers it is possible to
obtain the optimal throughput, how many new connections per round are required to achieve the optimal
throughput for online MTBD, assuming a resource augmentation of one extra connection for the degree
of the servers? In this section, first it is explained OSeq algorithm, an adaptation of algorithm Seq to
solve online MTBD. Then, it is proved that algorithm OSeq produces at most one new connection, one
disconnection, and two changes in already existing connections per server each time a client arrives or leaves
the system. Furthermore, the algorithm OSeq provides the optimal throughput using only one connection
more than the number of connections allowed per server (degree constraint).

Let us start with the seed of the algorithm, the criterion to connect clients from a known list of clients
to a single server. Let C = C1, C2, . . . , Cn be the list of clients. Assume that the list of clients is increasingly
ordered following the size of the clients, w1 ≤ w2 ≤ · · · ≤ wn. Let C(l, k) =

∑k

i=l wi denotes the sum of
the capacities of the clients in C between Cl and Ck, both included. Additionally, let S be a server with
outgoing bandwidth b, and let d be its maximal number of connexions it can handle simultaneously (degree
constraint). Therefore, using b and d, it is defined a criterion to connect clients from C to S as follow:

Definition 5.1 Let S(C) be the set of clients in C connected with server S. If there exists an index l in C
such that C(l, l + d − 1) < b and C(l + 1, l + d) ≥ b then,

S(C) := Cl, Cl+1, . . . , Cl+d−1, C
′
l+d, (7)

where C′
l+d is the fraction of Cl+d such that C(l, l + d − 1) + w′

l+d = b.
Otherwise, either C(1, d) ≥ b or C(n − d + 1, n) < b. When C(1, d) ≥ b ,

S(C) := C1, C2, . . . , Cl, C
′
l+1, (8)

6



where l is the index such that C(1, l) < b and C(1, l + 1) ≥ b, and C′
l+1

is the fraction of Cl+1 such that
C(1, l) + w′

l+1
= b.1 Finally, when C(n − d + 1, n) < b,

S(C) := Cn−d+1, Cn−d+2, . . . , Cn−1, Cn. (9)

Note that, in the first case the criterion connect d+1 clients to the server using all the outgoing bandwidth
of the server. In the second case, the outgoing bandwidth of the server is used completely with less than
d + 1 clients, in that case the criterion connects as much complete clients as possible (it uses the smallest
clients). Finally, when the outgoing bandwidth of the server can not be used completely by the d clients
with biggest capacity, then the criterion establish d connections with the d biggest clients. The last point is
important in order to avoid new connections since always there is an available connection when a server still
has available bandwidth.

Once Definition 5.1 is applied to connect clients in C with S, the list of clients C is actualized. To do
that, S(C) is removed from the list and the remaining part of the split client (if there exist) is reinserted in
the list following its size and maintaining the increasing order. Let us denote by CS the actualized list of
clients. For the actualized list, it is possible to say exactly where will be reinserted the split client. It will
use the same place it used in the previous list. Better explained in the following lemma.2

Lemma 5.2 Let C = C1, C2, . . . , Cn be a list of clients and S be a server. If the list of clients allocated in S
following Definition 5.1 is S(C) = Cl, Cl+1, . . . , Cl+d−1, C

′
l+d, and C′′

l+d is the remaining part of the split client
Cl+d. Then the actualized list will be:

CS = C1, C2, . . . , Cl−1, C
′′
l+d, Cl+d+1, . . . , Cn.

Besides the above explained way to connect clients of a list with one server, it is possible to recursively
connect clients with several servers. Pursuing this prospect, let S1,S2, . . . ,Sm be the list of servers. Hence,
applying Definition 5.1 and then actualizing the list of clients consecutively, first to S1, then to S2 and so
on until Sm, each server shall have assigned an allocation of clients. We therefore present Online Algorithm
Seq (OSeq), an algorithm that solves online MTBD. In each round, algorithm OSeq recomputes the
connections for all the servers using Definition 5.1. Algorithm 1 provides a formal description of Algorithm
OSeq.

Algorithm 1 Algorithm OSeq

For round t;
Set S the list of servers;
Set C = sort(Ct) the ordered list of clients at round t;
for j = 1 to |S|: do

Compute Sj(C) the set of clients in C to connect with server Sj applying Def. 5.1
Set C = CSj

, the actualized list of clients.
end for
RETURN Si(C

t) = Si(C) for 1 ≤ i ≤ |S|; THE ALLOCATION AT ROUND t.
Wait for round t + 1;

Lemma 5.3 The throughput provided by algorithm OSeq at every round is at least as much as the optimal
throughput when the degree constraint is satisfied.

1It is possible that w1 ≥ b, in that case l is considered to be 0 and S(C) only contains C′

1
, the fraction of C1 with size equal

to b.
2For a clean presentation, and due to the size of the paper, all the proofs of this section are omitted and presented in an

appendix.
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We refer the reader to Theorem 3.4 in [4] for the proof of this lemma. In particular, Lemma 3.3 in [4] is
true for algorithm OSeq and the proof is the same presented in in [4] with a slightly modification for case
3. Hence, Theorem 3.4 is true for algorithm OSeq.

However, with algorithm OSeq, when a new client arrives or leaves the system, possibly several new
connections are performed. Here, it is proved that algorithm OSeq produces at most one new connection,
one disconnection, and two changes in already existing connections per server in a round. Before state and
prove the main result, useful definitions and lemmas are provided.

Definition 5.4 Let C = C1, C2, . . . , Cp−1, Cp, . . . , Cn be a list of clients. It is said that C is increased if the
new list of clients, denoted by C+, contains a new client Y with capacity w placed between clients Cp−1 and
Cp, i.e., wp−1 ≤ w ≤ wp. And, Cp increases its capacity maintaining the position. If C′

p denotes the actualized
client Cp and w′

p its new capacity, then wp ≤ w′
p ≤ wp+1. Hence, the transformed list of clients will be:

C+ = C1, C2, . . . , Cp−1,Y, C′
p, . . . , Cn, with wp ≤ w′

p ≤ wp+1.

C+

C

Figure 1: Example of an increased list of clients

Definition 5.5 Let C = C1, C2, . . . , Cp−1, Cp, . . . , Cn be a list of clients. It is said that C is decreased if
the new list of clients, denoted by C−, contains one client less, let’s say client Cp. And, Cp+1 decreases
its capacity maintaining the position. If C′

p+1 denotes the actualized Cp+1 and w′
p+1 its new capacity, then

wp ≤ w′
p+1 ≤ wp+1. Hence, the transformed list of clients will be:

C− = C1, C2, . . . , Cp−1, C
′
p+1, . . . , Cn with wp ≤ w′

p+1 ≤ wp+1.

C−

C

Figure 2: Example of a decreased list of clients

Note that this two definitions represents when a client arrives or leaves the system, but also includes a more
general situation which is produced with the recursion of the assignation for one server after other. Figures
1 and a 2 shows how an increased and decreased list looks like. The following lemmas shows that increase
or decrease the list of clients does not produce great changes at the moment of recompute the allocations.

Lemma 5.6 Given C and S, a list of clients and one server. And, obtaining S(C) and CS (the clients
connected with S and the actualized list of clients, respectively) using Definition 5.1. If C is increased (or
decreased) to C+ (or C−) and Definition 5.1 is used to establish connections from C+ (C−) with S. Then,
there will be at most one new connection, one disconnection, and two changes in already existing connections
for server S. And, the new actualized list of clients C+

S
(C−

S
) will be equal to (CS)+ ((CS)−), the previous

actualized list increased (or decreased), or it will be equal to CS the previous list without any transformation.
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Lemma 5.6 is the brick to prove our main result, it is used as the base of an induction. Algorithm
OSeq computes first server by server the allocations and then it goes round by round recomputing the
allocations, where in each round it recomputes server by server again. The transformation of the list of
clients (increased or decreased) represents the rounds, and Lemma 5.6 ensures that if the list of clients
suffers a transformation, then for the first server there is at most one disconnection, one new connection,
and two changes on the already existing connections. But also, it says that the actualized list of clients is a
transformed list. Hence, applying again the Lemma for the second server, also it is possible to ensure that
it has at most one disconnection, one new connection, and two changes on the already existing connections,
and that the actualized list is a transformed list. Finally, applying recursively Lemma 5.6 for all the servers
from S1 until Sm as it is showed in Figure 3 we can state our main result.

Theorem 5.7 When the online algorithm OSeq is used to solve the online version of MTBD, at most one
new connection, one disconnection and two changes on already existing connections are produced per server
per round.

R
ou

n
d

t
R

ou
n
d

t
+

1

Sm

Sm

S2

S2

S1

S1C−(+) C
−(+)
S1

C
−(+)
S2

C
−(+)
Sm

CSm
CS2

CS1
C

Figure 3: Application of Lemma 5.6 recursively first to server S1 until Sm.
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Appendix

6 Proof of Lemma 5.2

Proof: In order to prove the lemma, it is necessary prove that the part of split client, which was not allocated
in the server, is reinserted in the list between Cl−1 and Cl+d+1, the border clients not allocated in the server.
On one hand, since the remaining part of the split client is smaller than the hole client, then we have:

w′′
l+d < wl+d ≤ wl+d+1.

On the other hand, due to C(l + 1) ≥ b, w′
l+d = b − C(l, l + d − 1), and w′

l+d + w′′
l+d = wl+d we have:

w′′
l+d = C(l, l + d − 1) + wl+d − b

w′′
l+d = wl + C(l + 1) − b

w′′
l+d ≥ wl ≥ wl−1

7 Proof of Lemma 5.6

Proof:

Increased list Let Y be the new client, and w its capacity. Also, let C′
p and w′

p denotes the actualized Cp

and its new capacity, respectively. Due to the fact that C+ has a new client placed between Cp−1 and Cp, it
is possible to say that all the clients before Y maintains its position in the list, and all the clients after Y
has an index shifted in one to a bigger index. Then, when C+(l, l + d − 1) is computed we have:

C+(l, l + d − 1) = C(l, l + d − 1) for l + d − 1 < p

C+(l, l + d − 1) = C(l − 1, l + d − 2) for p + 1 < l,

i.e., if the transformation does not affect the clients connected with S, the same clients will be connected
after the list is increased. Consequently, no new connection is performed and the actualized list will be
C+

S
= (CS)+.
In the following, it is assumed that the transformation suffered by the list is among the clients connected

with S. The proof is split for the three different cases in Definition 5.1.

The clients connected with server S satisfy condition (7): Let S(C) = Cl, Cl+1, . . . , Cl+d−1, C
′
l+d be

the clients connected with S. And, let CS = C1, C2, . . . , Cl−1, C
′′
l+d, Cl+d+1, . . . , Cn be the actualized list of

clients after the connection is done. (Both of them, S(C) and CS , defined before the list is increased.) Due
to the fact that w ≤ wp and w′

p ≤ wl+d−1
3, we have:

C+(l, l + d − 1) = C(l, l + d − 1) + w + w′
p − wp − wl+d−1 < b.

And, due to w ≥ wl+1
4 and w′

p ≥ wp, it is possible to say:

C+(l + 2, l + d + 1) = C(l + 1, l + d) + w + w′
p − wp − wl+1 ≥ b.

3In the case p = l + d, Y appears between Cl+d−1 and Cl+d. Then, C+(l, l + d− 1) = C(l, l + d− 1) because there are no new
client between Cl and Cl+d−1.

4In the case p = l + 1, Y appears between Cl and Cl+1. Then, C+(l + 2, l + d + 1) = C(l + 1, l + d) because there are no new
client between Cl+1 and Cl+d.
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Hence, either the new clients connected with S are S(C+) = Cl, . . . ,Y, C′
p, . . . , C

′
l+d−1

and the actualized list
is equal to

C+

S
= C1, . . . , Cl−1, C

′′
l+d−1, Cl+d, Cl+d+1 . . . , Cn.

Or, the new clients connected with S are S(C+) = Cl+1, . . . ,Y, C′
p, . . . , C

′′′
l+d and the actualized list is

C+

S
= C1, . . . , Cl−1, Cl, C

′′′′
l+d, Cl+d+1, . . . , Cn.

In both cases, Y is the only new connection for S. And also, there is only one new client appearing
in the new actualized list of clients, either C′′

l+d−1
or Cl. Finally, client Cl+d is actualized with a new

capacity. To conclude that C+

S
= (CS)+, it is necessary to prove that: either w′′

l+d ≤ wl+d ≤ wl+d+1 or
w′′

l+d ≤ w′′′′
l+d ≤ wl+d+1 depending on what was the new connection and the new actualized list of clients.

The first case comes from the definition of C′
l+d and the initial assumption that wl+d ≤ wl+d+1. In the

second case, by definition we have w′′
l+d = C(l, l + d) − b and w′′′′

l+d = C+(l + 1, l + d + 1) − b. And also:

C+(l + 1, l + d + 1) = C(l, l + d) + w + w′
p − wp − wl,

using the fact that wp ≤ w′
p and w ≤ wl, it is possible to conclude C(l, l + d) ≤ C+(l + 1, l + d + 1) and then

w′′
l+d ≤ w′′′′

l+d. Hence, C+

S
= (CS)+.

The clients connected with server S satisfy condition (8): Let S(C) = C1, C2, . . . , Cl, C
′
l+1

be the
list of clients connected with server S and CS = C′′

l+1
, Cl+2, . . . , Cn be the actualized list of clients after the

connection is done, (before the list is increased). Due to the transformation suffered by C, it is possible to
say that:

C+(1, l) = C(1, l) + w + w′
p − wp − wl < b

and
C+(1, l + 2) = C(1, l + 1) + w + w′

p − wp ≥ b,

the first inequality is due to w ≤ wp and w′
p ≤ wl

5. And the second inequality is due to w ≥ 0 and w′
p ≥ wp.

Hence, either S(C+) = C1, . . . ,Y, C′
p, . . . , C

′
l and the actualized list is

C+

S
= C′′

l , Cl+1, . . . , Cn,

or S(C+) = C1, . . . ,Y, C′
p, . . . , C

′′′
l+1

and the actualized list is equal to

C+

S
= C′′′′

l+1, Cl+1, . . . , Cn.

In both cases, Y is the only new connection for S. Also in the first case, it is possible to say that C′′
l is the

new client appearing in the new actualized list, and Cl+1 is a bigger fraction of C′
l+1

. In the second case, it
is possible to assume that there exist a new client Y but with capacity w = 0. And finally, by definition we
have that w′′

l+1
= C(1, l +1)− b and w′′′′

l+1
= C+(1, l +2)− b. Since, C+(1, l +2) = C(1, l +1)+w it is possible

to say that C+(1, l + 2) ≥ C(1, l + 1) and then w′′′′
l+1

≥ w′′
l+1

, to finally conclude that C+

S
= (CS)+.

The clients connected with server S satisfy condition (9): Let S(C) = Cn−d+1, Cn−d+2, . . . , Cn be
the clients connected with S and CS = C1, C2, . . . , Cn−d be the actualized list of clients after the connections
are performed. (Both of them, S(C) and CS , defined before the transformation is done.) In this case, due to
w ≤ wp and w′

p ≤ wn
6 it is possible to say that:

C+(n − d, n − 1) = C(n − d + 1, n) − wn + w − wp + w′
p < b.

5When w′

p > wl and the transformation is among the first allocated clients, means that p = l +1. Hence, Y is the l th client

and C+(1, l) = C(1, l) + w − wl, what is smaller than b due to w ≤ wl.
6When wn < w, it means that Y is the last client and then C+(n − d, n − 1) = C(n − d + 1, n).
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Hence, if C+(n − d + 1, n) ≥ b condition (7) is used to allocate clients into S. Therefore, S(C+) =
Cn−d+1, Cn−d+2, . . . ,Y, C′

p, . . . , C
′
n, where Y is the only new client connected for S. And, the actualized list

of clients is (CS)+ = C1, C2, . . . , Cn−d, C
′′
n. Here, C′′

n is the new client appearing in the list, and since it is the
last client, then it is not necessary to prove nothing about the client after it. Otherwise, C+(n−d+1, n) < b
and then the allocated clients into S are S(C+) = Cn−d+2, Cn−d+3, . . . ,Y, C′

p, . . . , Cn with Y as the only new

connection for S. And, the actualized list C+

S
will be equal to CS = C1, C2, . . . , Cn−d, Cn−d+1.

Decreased list The proof for a decreased list is similar to the previous proof. Again, if the transformation
of the list does not tach the clients connected with the server, then they will be connected again with the
server and the actualized list will be the previous actualized list but decreased. Hence, it is assumed that the
transformation affects the clients connected with the server. Also, the proof is split in the cases of Definition
5.1.

The clients connected with server S satisfy condition (7): Let S(C) = Cl, Cl+1, . . . , Cl+d−1, C
′
l+d be

the clients connected with S. And, let CS = C1, C2, . . . , Cl−1, C
′′
l+d, Cl+d+1, . . . , Cn be the actualized list of

clients after the connection is done (before the list is decreased).
The decreased list is equal to C− = C1, . . . , Cp−1, Cp+1, . . . , Cn, with wp ≤ w′

p+1 ≤ wp+1. Then, we can
say that C−(l − 1, l + d − 2) = C(l, l + d − 1) − wp + wl−1 − wp+1 + w′

p+1 < b, because wl−1 ≤ wp and
w′

p+1 ≤ wp+1. Also we can say, C−(l + 1, l + d) = C(l + 1, l + d) − wp + w′
p+1 − wp+1 + wl+d+1 ≥ b, because

wp+1 ≤ wl+d+1 and wp ≤ w′
p+1. Therefore, it happens either:

S(C−) = Cl−1, Cl−2, . . . , Cp−1, C
′
p+1, . . . , Cl+d−1, C

′′′′
l+d and C−

S
= C1, . . . , Cl−2, C

′′′
l+d, . . . , Cn,

or
S(C−) = Cl, Cl+1, . . . , Cp−1, C

′
p+1, . . . , Cl+d, C

′
l+d+1 and C−

S
= C1, . . . , Cl−1, C

′
l+d+1, . . . , Cn.

In both cases there is only one new connection for server S, either Cl−1 or Cl+d+1. For the side of the
actualized list, in both cases there is one client less, either Cl−1 or Cl+d. And, since C−(l − 1, l + d − 2) <
C(l, l + d − 1) then w′′′

l+d ≤ w′
l+d. Also, wl+d+1 ≤ wl+d+1. And then, C−

S
= (CS)−.

The clients connected with server S satisfy condition (8): Let S(C) = C1, C2, . . . , Cl, C
′
l+1

be the
list of clients connected with server S and CS = C′′

l+1
, Cl+2, . . . , Cn be the actualized list of clients after the

connection is done (before the list is decreased).
The decreased list of clients C− = C1, C2, . . . , Cp−1, C

′
p+1, . . . , Cn is affecting the already clients connected

with S. Then p ≤ l + 1. Therefore, using wp ≤ w′
p+1 ≤ wp+1 we have either C−(1, l − 1) = C(1, l) − wp −

wp+1 + w′
p+1 < b and C−(1, l + 1) = C(1, l + 1)−wp + w′

p+1 −wp+1 + wl+2 ≥ b. Hence, the list of connected
clients to server S and the actualized list of clients are either

S(C−) = C1, C2, . . . , Cp−1, C
′
p+1, . . . , Cl, C

′′′′
l+1 and C−

S
= C′′′

l+1, Cl+2, . . . , Cn,

or
S(C−) = C1, C2, . . . , Cp−1, C

′
p+1, . . . , Cl+1, C

′
l+2 and C−

S
= C′′

l+2, Cl+3, . . . , Cn.

In the first case, there is no new connection for server S. And, since C−(1, l−1) < C(1, l), then the size of the
first element of the actualized list of clients (C′′′′

l+1
) is smaller than the size of the first element of the previous

actualized list of clients (C′′
l+1

), therefore C−

S
= (CS)−. In the second case, there is one new connection to

server S, Cl+2. And, the actualized list of clients C−

S
is the previous actualized list of clients decreased (CS)−.

(The first client of CS was deleted and the second client has a smaller size.)
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The clients connected with server S satisfy condition (9): Let S(C) = Cn−d+1, Cn−d+2, . . . , Cn be
the clients connected with S and CS = C1, C2, . . . , Cn−d be the actualized list of clients after the connections
are performed (before the transformation is done).

The new list C− is equal to C1, C2, . . . , Cp−1, C
′
p+1, . . . , Cn. And, either p = n − d or p ≤ n − d + 1

(if it is smaller than n − d, then it does not affect the clients connected with the server). Hence, either
C−(n−d+1, n) = C(n−d+1, n)−wp+1+w′

p+1 or C−(n−d+1, n) = C(n−d+1, n)−wp+1+w′
p+1−wp+wp−1. In

both cases C−(n−d+1, n) < b, due to wp+1 ≥ w′
p+1 and wp ≥ wp−1. Therefor, S(C−) = Cn−d, C

′
n−d+2

, . . . , Cn

or S(C−) = Cn−d, Cn−d+2, . . . , C
′
p+1, . . . , Cn, with Cn−d as the only new connected client to S. Finally, in

both cases C−

S
= C1, C2, . . . , Cn−d−1 = (CS)−.

8 Proof of Theorem 5.7

Proof: The proof is by induction over the order of the list of servers. The first step of the induction is the
first sever. It is analyzed whether the first server has a new connection in a round and then how this affects
the new connections of the rest of the servers. Lemma 5.6 is the basis of the analysis. First, note that from
one round to another the list of clients is increased, decreased or it stays equal. If the list of clients stay
equal then the algorithm has nothing to do, and no new connections are established. When the list of clients
has increased or decreased, to apply Lemma 5.6, according to the case for the first server, let us continue
applying the same lemma to establish the connections for all servers, concluding that all of them will have
at most one new connection and that the list will be ready for the next server. This argument is valid for
any round, and hence the result is concluded.
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