
HAL Id: inria-00384569
https://hal.inria.fr/inria-00384569

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Allocation of Splitable Clients to Multiple
Servers on Large Scale Heterogeneous Platforms

Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, Christopher Thraves

To cite this version:
Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, Christopher Thraves. Online Allocation of
Splitable Clients to Multiple Servers on Large Scale Heterogeneous Platforms. AlgoTel, 2009, Carry-
Le-Rouet, France. �inria-00384569�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50171888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00384569
https://hal.archives-ouvertes.fr

Online Allocation of Splitable Clients to

Multiple Servers on Large Scale

Heterogeneous Platforms

Olivier Beaumont1 and Lionel Eyraud-Dubois1 and Hejer Rejeb1

and Christopher Thraves1 †

1INRIA Bordeaux – Sud-Ouest, University of Bordeaux, LaBRI

Dans cet article, nous considérons l’allocation dynamique (online) d’un très grand nombre de tâches identiques et

indépendantes sur une plate-forme maı̂tres-esclaves. Initialement, plusieurs nœuds maı̂tres possèdent ou génèrent

les tâches qui sont ensuite transférées et traitées par des nœuds esclaves. L’objectif est de maximiser le débit (i.e.,

le nombre fractionnaire de tâches qui peuvent être traité en une unité de temps, en régime permanent, par la plate-

forme). Nous considérons que les communications se déroulent suivant le modèle multi-port à degré borné, dans lequel

plusieurs communications peuvent avoir lieu simultanément sous réserve qu’aucune bande passante ne soit dépassée et

qu’aucun serveur n’ouvre simultanément un nombre de connections supérieur à son degré maximal. Sous ce modèle,

la maximisation du débit correspond au problème Maximum-Throughput-Bounded-Degree (MTBD) qui a été analysé

dans [BEDRT08]. Il a été montré que le problème est NP-Complet au sens fort mais qu’une augmentation (additive)

de ressources minimale (de 1) sur le degré maximal des serveurs permet de le résoudre en temps polynomial. Dans

cet article, nous considérons une extension de MTBD à la situation plus réaliste, dans le contexte des plates-formes

de calcul à grande échelle, dans laquelle les nœuds esclaves rejoignent et quittent dynamiquement la plate-forme à des

instants arbitraires (problème online MTBD). Nous montrons tout d’abord qu’aucun algorithme complètement à la

volée (c.-à.-d. qui n’autorise pas les déconnections) ne peut conduire à un facteur d’approximation constant, quelle que

soit l’augmentation de ressources utilisée. Ensuite, nous montrons qu’il est en fait possible de maintenir à tout instant

la solution optimale (avec une augmentation de ressource additive de 1) en ne réalisant à chaque modification de la

plate-forme qu’une déconnection et qu’une nouvelle connection par maı̂tre.

Keywords: task allocation, large scale platforms, desktop grid computing, online algorithms, resource augmentation.

1 Introduction

Nowadays, scientific research has brought challenging calculations to solve intractable problems for a single

machine. Desktop Grids have appeared as an interesting and cheap solution to perform such computations.

Desktop Grids take benefit of machine idle times in a network to, altogether, perform a hard computa-

tion. On the Internet, where only 5 to 10% of the computational power of personal computers is used,

platforms like BOINC [And04] uses volunteer machines to perform hard computations in mathematics,

biology, medicine or to search for intelligent life outside earth in the case of SETI@home. Each machine

performs a small chunk of a huge computation, small enough not to disturb the work of the volunteer ma-

chines. All the applications running on these platforms consist in a huge number of independent tasks

and all communications take place under master-worker paradigm (i.e., there are no direct communication

between workers). In this context, we consider the problem of allocating a large number of independent,

equal-sized tasks to a heterogeneous large scale computing platform.

†This work was partially supported by the French ANR project Alpage.

Olivier Beaumont and Lionel Eyraud-Dubois and Hejer Rejeb and Christopher Thraves

We model the platform using a set of servers that initially hold (or generate) the tasks to be processed by

a set of workers (volunteers). All resources have different speeds of communication and computation, and

we model contentions using the bounded multi-port model. Under this model, a processor can be involved

simultaneously in several communications, provided that neither its incoming nor its outgoing bandwidths

is exceeded. But, for the sake of realism, another parameter needs to be introduced in order to bound the

number of simultaneous connections that can be opened and handled at a server node.

Formally, let S j be a server, and let b j and d j denote the outgoing bandwidth of server S j and the maximal

number of connections that it can handle simultaneously, respectively. Also, let us denote by wi the capacity

of client Ci. Finally, let us denote by w
j
i the fraction of the outgoing bandwidth allocated by server S j to

client Ci. Then, a valid allocation must satisfy the following conditions

∀ j, ∑i w
j
i ≤ b j outgoing bandwidth constraint at S j (1)

∀ j, Card{i, w
j
i > 0} ≤ d j degree constraint at S j (2)

∀i, ∑ j w
j
i ≤ wi capacity constraint at Ci (3)

Therefore, MTBD is defined as follows

Maximize ∑
j
∑

i

w
j
i under constraints (1), (2) and (3).

Under this model, it was proved in [BEDRT08] that the additional parameter (2) makes MTBD problem

NP-Complete. On the other hand, a polynomial time algorithm, called SEQ, has been proposed. It is based

on the use of a small resource augmentation on the maximal number of connections a server can handle

simultaneously. More specifically, the throughput achieved using algorithm SEQ and d j +1 connections for

server S j is at least the same as the optimal one using d j connections.

Due to the dynamic nature of large scale heterogeneous platforms and the results mentioned above, it

becomes interesting to study MTBD in the more realistic dynamic scenario, when clients join and leave the

system at any moment.

2 Model

In order to formalize the dynamism of the platform, online MTBD is defined using rounds. A new round

begins each time a client joins or leaves the system. Let LC t be the list of clients in round t (with their

respective capacity constraints). Client C joins the system at round t if C ∈ LC t\LC t−1. Equivalently,

Client C leaves the system at round t if C ∈ LC t−1\LC t . Thus, arrivals and departures of clients only take

place at the beginning of a round and exactly one arrival or one departure of a client takes place at each

round, i.e., |LC t\LC t−1|+ |LC t−1\LC t | = 1 for all t. Let us denote by LS the list of servers (with their

respective bandwidths and the number of connections they can handle simultaneously). Therefore Online

MTBD consists in

Solving MTBD for each round using the corresponding input sets LS and LC t .

Measure In order to compare the performance of online algorithms that achieve the same throughput, we

introduce the following definitions. Let us denote by w
j
i (t) the fraction of outgoing bandwidth allocated

by server S j to client Ci during round t. Then, we say that client Ci is connected to server S j in round

t if w
j
i (t) > 0. Furthermore, let S j(LC t) = {Ci, w

j
i (t) > 0} be the set of clients connected to server S j

during round t. Then, we define the set of new connections to server S j in round t as S j(LC t)\S j(LC t−1),
the set of clients connected to server S j in round t that were not connected to server S j in round t − 1.

Similarly, we define the set of disconnections of server S j during round t as S j(LC t−1)\S j(LC t), the set

of clients connected to server S j in round t − 1 that were not connected during round t. At last, we say

that the connection between server S j and client Ci changed during round t if w
j
i (t −1) 6= w

j
i (t), and both

are positive (Ci is connected to S j in rounds t − 1 and t, but with different capacities). Let us denote by

Ch j(LC t) the set of all the clients connected to server S j during round t and whose connections changed

between round t −1 and round t.

Online Maximum-Throughput-Bounded-Degree problem

In the former context, clients connected to a server may change from one round to the next one. Hence,

in each round a server will have to establish new connections, clients will be disconnected or their assigned

bandwidths will change. Disconnections are for free in terms of time cost. On the other hand, new con-

nections and changes in already existing connections require to manipulate TCP connections and therefore

are time expensive. Hence, in order to limit the cost induced at each round, it is necessary to reduce as

much as possible new connections and changes in already existing connections. And then, if two online

algorithms achieve the same throughput, the algorithm that produces less new connections and changes in

already existing connections per round is to be preferred. On the other hand, and even assuming that discon-

nections are for free, we prefer algorithms that reduce the number of disconnections per round. Therefore,

we introduce the following definitions to measure and compare the algorithms that solves online MTBD

problem and that achieve the same throughput.

Definition 2.1 Let A be an algorithm solving the online version of MTBD. It is said that A produces at

most l disconnections per round per server if maxt maxS j∈LS |S j(LC t−1)\S j(LC t)| = l.

Definition 2.2 Let A be an algorithm solving the online version of MTBD. It is said that A produces at

most l new connections per round per server if maxt maxS j∈LS |S j(LC t)\S j(LC t−1)| = l.

Definition 2.3 Let A be an algorithm solving the online version of MTBD. It is said that A produces at

most l changes on the already existing connections per round per server if maxt maxS j∈LS |Ch j(LC t)| = l.

3 Results

Now, we can formally state the results presented in this work. Using definitions 2.1, 2.2, and 2.3 we define

an algorithm A as fully online if it produces zero disconnections nor changes in bandwidth allocations,

and at most one new connection each time a new client arrives. During a round when a client leaves the

system, A produces one disconnection (the natural one), but no new connections, and no changes in already

existing connections. On the other hand, we say that an algorithm uses additive resource augmentation

ratio α if it connects at most d j +α clients to server S j, while the original degree constraint is d j, as stated

in Equation (2). Moreover, let us denote by I = {It}t∈T an instance, where It describes changes that take

place at the beginning of round t. Also, let us denote by OPT (It) the optimal throughput on instance I at

round t, and by A(It) the throughput provided by an algorithm A on instance I at round t. Hence, we can

state the first result about unapproximability of the problem.

Theorem 3.1 Given a resource augmentation factor α and a constant k; there exists an instance I of online

MTBD and a value t, such that for any fully online algorithm A used to solve online MTBD,

A(It ′) <
1

k
OPT (It ′) for all t ′ ≥ t.

The algorithm The previous result underlines the interest of knowing how many new connections, dis-

connections and changes in already existing connections are required in order to achieve some desired

throughput. In our case, since it is known that with additive resource augmentation equal to 1 it is possible

to obtain the optimal throughput, how many new connections per round are required to achieve the optimal

throughput for online MTBD assuming additive resource augmentation equal to 1.

Let us start with the seed of the algorithm, the criterion to connect clients from a list to a single server.

Let LC = C1,C2, . . . ,Cn be the list of clients, and assume that LC is ordered by increasing values of the

capacities of the clients, w1 ≤ w2 ≤ ·· · ≤ wn. Let LC (l,k) = ∑
k
i=l wi denote the sum of the capacities of the

clients in LC between Cl and Ck, both included. Additionally, let b and d denote the outgoing bandwidth

and degree constraint of a server S . Let S(LC) be the set of clients in C connected with server S .

Definition 3.2 If there exists an index l in LC such that LC (l, l + d − 1) < b and LC (l + 1, l + d) ≥ b

then, S(LC) := Cl ,Cl+1, . . . ,Cl+d−1,C
′
l+d , where C ′

l+d is the fraction of Cl+d such that LC (l, l + d − 1)+
w′

l+d = b. Otherwise either LC (1,d) ≥ b or LC (n− d + 1,n) < b. When LC (1,d) ≥ b, then S(LC) :=
C1,C2, . . . ,Cl ,C

′
l+1, where l is the index such that LC (1, l) < b and LC (1, l +1)≥ b, and C ′

l+1 is the fraction

of Cl+1 such that LC (1, l)+ w′
l+1 = b. It is possible that w1 ≥ b, in that case l is considered to be 0 and

Olivier Beaumont and Lionel Eyraud-Dubois and Hejer Rejeb and Christopher Thraves

S(LC) only contains C ′
1, the fraction of C1 with size equal to b. Finally, when LC (n−d + 1,n) < b, then

S(LC) := Cn−d+1,Cn−d+2, . . . ,Cn−1,Cn.

Once Definition 3.2 is applied to connect clients in LC with server S , the list of clients LC is actualized.

To do that, S(LC) is removed from the list and the remaining part of the split client (if it exists) is reinserted

in the list following its size so as to maintain the increasing order. Let us denote by LCS the actualized list

of clients. Besides the above explained way to connect clients of a list with one server, it is possible to

recursively connect clients from a list with several servers. Therefore, let LS = S1,S2, . . . ,Sm be the list of

servers. Hence, applying Definition 3.2 and then actualizing the list of clients consecutively, first to S1, then

to S2 and so on until Sm, each server is assigned a list of clients. We therefore present Online Algorithm

SEQ (OSEQ), an algorithm that solves online MTBD. In each round, algorithm OSEQ recomputes the

connections for all the servers using Definition 3.2. Algorithm 1 provides a formal description of Algorithm

OSEQ, and the complete presentation can be found in [BEDRT09].

Algorithm 1 Algorithm OSEQ

At round t;

Set LS the list of servers;

Set LC = sort(LC t) the ordered list of clients at round t;

for j = 1 to |LS |: do

Compute S j(LC) the set of clients in LC to connect with server S j applying Def. 3.2

Set LC = LCS j
, the actualized list of clients.

end for

RETURN Si(LC t) = Si(LC) for 1 ≤ i ≤ |S |; THE ALLOCATION AT ROUND t.

Wait for round t +1;

The following two theorems assess the performance of Algorithm OSEQ.

Theorem 3.3 The throughput achieved by algorithm OSEQ at any round is at least as much as the optimal

throughput without resource augmentation.

Theorem 3.4 At each server and at each round, Algorithm OSEQ produces at most 1 new connection, 1

disconnection, and 2 changes in bandwidth allocation for already existing connections.

Due to lack of place, we refer the interesting reader to the research report [BEDRT09], where all proofs can

be found.

4 Conclusions

In this paper, we proved that it is not possible to provide a constant approximation ratio for online MTBD

(online throughput maximization) when the algorithm is fully online, even allowing any additive resource

augmentation (Theorem 3.1). We also present an algorithm that provides the optimal throughput using the

smallest possible additive resource augmentation (α = 1), and allowing the smallest possible number of

disconnections per round per server (at most 1 as stated Theorem 3.4). Finally, the cost in terms of new

connections or changes in already existing connections of OSEQ algorithm is at most 3 (one new connection

and two changes in already existing connections), while the lower bound is 1 (Corollary of Theorem 3.1).

References

[And04] D.P. Anderson. BOINC: A System for Public-Resource Computing and Storage. In 5th

IEEE/ACM International Workshop on Grid Computing, pages 365–372, 2004.

[BEDRT08] O. Beaumont, L. Eyraud-Dubois, H. Rejeb, and C. Thraves. Allocation of Clients to Multiple

Servers on Large Scale Heterogeneous Platforms. INRIA Research Report, inria-00346394

v1, 2008.

[BEDRT09] O. Beaumont, L. Eyraud-Dubois, H. Rejeb, and C. Thraves. Online Allocation of Splitable

Clients to Multiple Servers on Large Scale Heterogeneous Platforms. INRIA Research Report,

inria-00384475 v1, 2009.

