
HAL Id: hal-00384683
https://hal.archives-ouvertes.fr/hal-00384683

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A lambda-calculus with explicit weakening and explicit
substitution

René David, Bruno Guillaume

To cite this version:
René David, Bruno Guillaume. A lambda-calculus with explicit weakening and explicit substitution.
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2001, 11 (1),
pp.169-206. �hal-00384683�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50171786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00384683
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. ScienceA �-calculus with explicit weakening andexplicit substitutionREN �E DAVID1 and BRUNO GUILLAUME1;2 y1Laboratoire de Math�ematiquesUniversit�e de SavoieF-73376 Le Bourget du Lac Cedex2Laboratoire de Recherche en InformatiqueBât. 490 - Universit�e Paris SUDF-91405 Orsay CedexReceived 3 April 2000Since Melli�es has shown that �� (a calculus of explicit substitutions) does not preservethe strong normalization of the �-reduction, it became a challenge to �nd a calculussatisfying the following properties: step by step simulation of the �-reduction, conuenceon terms with metavariables, strong normalization of the calculus of substitutions andpreservation of the strong normalization of the �-calculus. We present here such acalculus. The main novelty of the calculus (given with de Bruijn indices) is the use oflabels that represent updating functions and correspond to explicit weakening. A typedversion is also presented.Contents1 Introduction 22 Preliminaries 42.1 Rewriting 42.2 The �-calculus with de Bruijn indices: the �db-calculus 62.3 The �s-calculus and the �se-calculus 73 The calculus with explicit weakening: �w 93.1 Terms with labels 93.2 The �w-calculus 103.3 Simply typed �w-calculus 103.4 �w versus �db 113.5 Conclusion: �w versus �db 134 The �ws-calculus 144.1 Syntax and reduction rules for the �ws-calculus 144.2 Typing rules for the �ws-calculus 164.3 Link with the �se-calculus 17y This work was done at Universit�e de Savoie and was �nished in Universit�e Paris SUD.

Ren�e David, Bruno Guillaume 25 Strong normalization of the calculus of substitutions 175.1 The substitutive contexts 175.2 Simulation of the ws-calculus in the p2-calculus 195.3 Strong normalization of the p2-calculus 206 Conuence on open terms 226.1 The calculus with metavariables 226.2 Conuence of the wso-calculus 226.3 Conuence of the �wso-calculus 227 Simulation of the �-reduction 288 Preservation of strong normalization 298.1 Sketch of the proof 308.2 De�nitions 308.3 Preservation of in�nite reductions by propagation 328.4 Proof of the key lemma 379 Conclusion 38References 391. IntroductionCalculi of explicit substitutions are useful tools that �ll the gap between the meta op-eration of substitution appearing in the �-reduction of the �-calculus and its concreteimplementation.The most natural property such calculi have to satisfy is the simulation of the �-reduction (SIM): every �-reduction can be done in the new calculus and conversely thiscalculus does not introduce other reductions.To have a good implementation of the �-calculus, it is also natural to ask that no in�nitereductions are created by the use of explicit substitutions. This is called the preservationof strong normalization (PSN). Melli�es gave in (Melli�es, 1995) a simply typed term withan in�nite reduction in ��. This counter-example shows that �� has not PSN.Another important property is to have the conuence on terms with metavariables(MC): in proof assistants or theorem provers one has to consider proof trees with someunknown subtrees. To represent these proof trees, �-terms with metavariables (corre-sponding to unknown parts of the tree) are necessary. The conuence on usual (closed)terms is easy to obtain but MC is much more di�cult.Since Melli�es gave his counter-example, many calculi have been proposed but none ofthem satis�es simultaneously SIM, PSN and MC. Figure 1 gives some of them and theirproperties.In order to satisfy both SIM and MC, rules for the interaction between substitutionsare necessary. These rules are responsible for the lack of PSN in �� and �se. In �d and��n, a weaker notion of composition is used and thus PSN is satis�ed, but these rulesare not strong enough to get MC.The �s-calculus is the most natural calculus of explicit substitutions: it is the �-calculus(with de Bruijn indices) where the substitution (�i) and the updating (�kj) have been

A �-calculus with explicit weakening and explicit substitution 3SIM PSN MCwithout �� (Benaissa et al., 1996) Yes Yes Nointeraction �s (Kamareddine and R��os, 1995b) Yes Yes No�� (Mu~noz, 1996; Mu~noz, 1997) Big step Yes Yes��(Abadi et al., 1991) Yes No Yeswith �se (Kamareddine and R��os, 1997) Yes No Yesinteraction �d (Ferreira et al., 1996) Yes Yes NoSKInT (Goguen and Goubault-Larrecq, 1999) Yes Yes YesFig. 1. Calculi of explicit substitutions and their propertiesinternalized. The �se-calculus is obtained by adding new rules for the interaction ofsubstitutions. This set of rules is the minimal one to get MC but unfortunately, �se doesnot satisfy PSN (Guillaume, 1999a).In the following example, the �-reduction is done in two steps: �rst, the reduction ofthe �-redex and the propagation of the substitution and then, the propagation of theupdating function. The h1i in the middle term means that the free indices in the termbelow must be increased by 1. This corresponds to the function �10 in �se.Example 1.1. ��� @@@��� @@0 1���� @@2�� @@10 - ��� @@1�� @@h1i��� @@0 10 - ��� @@1�� @@��� @@0 20The rules for the propagation of the updating functions are responsible for the lack ofPSN in �se (Guillaume, 1999a). The key idea of our calculus is to keep the informationabout updating in terms rather than to move it down. In others words, we decide that(in the example above) the \right" reduct of the term is the second rather than the thirdone.Recently, another solution which relies on a translation of �-terms into sequent combi-nators has been proposed (Goguen and Goubault-Larrecq, 1999). Goguen and Goubaultintroduce a �rst order calculus (named SKIn) on the set of terms de�ned by:t ::= x j Im j Km(t) j Sm(t; t)where Im, km and Sm are generalizations of the usual combinators I, K and S. Thetranslation of the �-term t in SKIn is written t� and the reverse one [[u]] for any SKIn-term u. They show that t �!� u implies t� �!+SKIn u� but conversely, they only havethat t �!SKIn u implies [[t]] �!��� [[u]]. Unfortunately, with an example �a la Melli�es,

Ren�e David, Bruno Guillaume 4they show that SKIn is not strongly normalizing in the typed case and thus that it doesnot have PSN.To recover the PSN, they de�ne the SKInT -calculus on the same syntax but withless permissive rules. This second calculus has the expected properties (including PSN)but the relation with the �-calculus is more complicated than for SKIn. The logicbehind SKInT is a fragment of the modal logic S4 called near-intuitionistic logic. Thecorresponding notion of \�-calculus" is a closure calculus (named �clos) which is anextension of call-by-value (CBV) �-calculus. The �-calculus is translated in SKInT inthe following way: �rst, encode the �-calculus in the CBV �-calculus (using for examplea continuation passing style (CPS) transformation), then use a translation from �clos toSKInT . Denoting by L�(t) the translation of the �-term t in SKInT , they prove:| if t �!� u then L�(t) �!�SKInT L�(u);| t and u are convertible if and only if L�(t) and L�(u) are convertible in SKInT .The paper is organized as follow: we �rst introduce the �w-calculus (section 3)whichis the usual �-calculus (with de Bruijn indices) where terms may contain labels hki, thenwe give the �ws-calculus (section 4) which is obtained from the �w-calculus by makingthe substitutions explicit and by adding rules for interaction between substitutions.The sections from 5 to 8 are devoted to the proofs of the main properties of the�ws-calculus. The most innovative section is the last one where the PSN is proved.Warning: This paper is the complete version of the extended abstract presented inWESTAPP'99 (David and Guillaume, 1999). There, the �ws-calculus was called �l (l forlabel).2. PreliminariesWe give here some de�nitions and useful lemmas about rewriting systems. We also recallthe rules for the usual �-reduction on �-terms with de Bruijn indices and the explicitsubstitution calculus �se.2.1. RewritingDe�nition 2.1 (Abstract rewriting systems). Let E be a set of terms and R bea set of rewriting rules. We denote by �!R the binary relation on E de�ned by thecontextual closure of the set of rules.We also write �!�R (resp. �!+R) for the transitive and reexive closure, (resp. transitiveclosure) of �!R.De�nition 2.2 (Normal form). We say that t 2 E is an R-normal form if there areno terms u such that t �!R u. The set of R-normal forms is denoted by NF (R).De�nition 2.3 (Normalization).| A term t 2 E is strongly normalizable if there is no in�nite R-reduction of t, i.e.if every sequence t �!R t1 �!R t2 : : : is �nite. The set of R-strongly normalizableterms is denoted by SN (R). If SN (R) = E, we say that the reduction R is stronglynormalizing.

A �-calculus with explicit weakening and explicit substitution 5| A term t is weakly normalizable if there is a �nite reduction t �!�R u where u is anR-normal form. The set of R-weakly normalizable terms is denoted by WN (R). IfWN (R) = E, we say that the reduction R is weakly normalizing.De�nition 2.4 (Conuence).| A reduction �!R is conuent if, for t; u; v 2 E such that t �!�R u and t �!�R v thereis w such that u �!�R w and v �!�R w.| A reduction �!R is locally conuent if, for t; u; v 2 E such that t �!R u andt �!R v there is w such that u �!�R w and v �!�R w.| A reduction �!R is strongly conuent if, for t; u; v 2 E such that t �!R u andt �!R v there is w such that u �!R w and v �!R w.Remark 2.5. The reduction �!R is conuent if and only if the reduction �!�R isstrongly conuent.Lemma 2.6 (Newman's lemma). If the reduction �!R is strongly normalizable andlocally conuent, then it is conuent.The following lemmas will be used in section 8. The second one is a particular case ofthe �rst one.Lemma 2.7 (Projection lemma). Let R, S be reductions on E and F respectivelyand < be a binary relation on E � F . Assume that:| R = R1 [R2.| R1 is strongly normalizing.| If t �!R1 t0 and t < u then there is u0 such that u �!�S u0 and t0 < u0.| If t �!R2 t0 and t < u then there is u0 such that u �!+S u0 and t0 < u0.Let t 2 E, u 2 F with t < u. If u 2 SN (S) then t 2 SN (R).Proof. From an in�nite R-reduction of t, we can construct an in�nite S-reduction of u:t = t0 �R1//< t00 R2//< t1 �R1//< t01 //< : : :u = u0 �S // u00 +S // u1 �S // u01 // : : :The next lemma corresponds to the particular case where R contains the equality (i.e.for all t, we have t < t) and S = R2.Lemma 2.8 (Simulation lemma). Let R = R1 [R2 be a reduction on the set E and< be a binary relation on E � E. Assume that:| For all t 2 E, we have t < t.| R1 is strongly normalizable.| If t �!R1 t0 and t < u then there is u0 such that u �!�R2 u0 and t0 < u0.| If t �!R2 t0 and t < u then there is u0 such that u �!+R2 u0 and t0 < u0.

Ren�e David, Bruno Guillaume 6Then SN (R) = SN (R2).The lemma 2.10 is an adaptation of a result given in (Klop, 1992). The original resultis that a rewriting system which is locally conuent, weakly normalizing and increasing(there is a measure which is strictly increased by reduction) is also strongly normalizing.In lemma 2.10, the measure is only increasing (not strictly) but we have the additionalhypothesis that reductions which leave the measure unchanged are strongly normalizing.Lemma 2.9. Let R be a locally conuent reduction, t be a normalizable term and vbe a normal form of t. Assume t 62 SN (R). Then, there is a term u 62 SN (R) such thatt �!+R u and v is a normal form of u.Proof. Let t = t0 �! t1 �! : : : �! tn = v a derivation from t to v. Let i be such thatti 62 SN (R) and ti+1 2 SN (R) and u be a term such that ti �! u and u 62 SN (R).Since R is locally conuent there is a term w such that u �!� w and ti+1 �!� w.Since ti+1 2 SN (R) and R is locally conuent, ti+1 has a unique R-normal form v andthus v also is a normal form of w. Finally, we have t �!+ u and v is an R-normal formof u. t �// ti //

��

ti+1 �//��� vu �// w � ==Lemma 2.10 (Increasing reductions). Let R = R1 [R2 and j � j be a measure suchthat:| R1 is strongly normalizing.| If t �!R1 t0 then jtj = jt0j.| If t �!R2 t0 then jtj < jt0j.| R is weakly normalizing.| R is locally conuent.Then R is strongly normalizing.Proof. Assume there is a term t which is not R-strongly normalizable. The weak nor-malization of the R-reduction ensures that t has an R-normal form v. By lemma 2.9 wecan construct an in�nite derivation: t = t0 �!+ t1 �!+ : : : �!+ ti �!+ : : : such that vis an R-normal form of each ti. Since R1 is strongly normalizing, there are in�nitely manyR2-reductions in this derivation. Thus, jtjj > jvj for some j. This gives a contradictionsince tj �!�R v and thus jtjj � jvj.2.2. The �-calculus with de Bruijn indices: the �db-calculusWe will use de Bruijn representation of �-terms where the �rst index is 0 and not 1. Thiswill simplify notations in the next sections and, this is more natural with respect to thetyped calculus. For instance, the �-term �x�y(x y) is written ��(1 0).

A �-calculus with explicit weakening and explicit substitution 7Substitutions will be written on the left of the terms (for example fx := ugt means twhere x is substituted by u): this corresponds to the tree representation of terms and webelieve this is easier to read.Terms of the �db-calculus are de�ned by:t ::= n j �t j (t t) with n 2 NThe �-reduction is given by the next de�nition. fi := ug (the substitution) and � (theupdating function) are meta functions, i.e. are not in the syntax of the calculus.De�nition 2.11. The �db-calculus is de�ned by the rule:(�t u) �!�db f0 := ugtwith:fi := ug�t = �fi + 1 := ugt �ji (�t) = ��ji+1(t)fi := ug(t v) = (fi := ugt fi := ugv) �ji (t u) = (�ji (t) �ji (u))fi := ugn = 8<: n if n < i�i0(u) if n = in � 1 if n > i �ji (n) = � n if n < in+ j if n � iIt is well known that this reduction is isomorphic to the usual �-reduction on �-termsmodulo �-equivalence (Kamareddine and R��os, 1998).2.3. The �s-calculus and the �se-calculusThe �s-calculus and the �se-calculus were introduced and studied by Kamareddine andRos (Kamareddine and R��os, 1995a; Kamareddine and R��os, 1997). They both use thesame syntax. The �s-calculus is obtained naturally from the �db-calculus by writingexplicitly the substitutions and the updating functions.t ::= n j �t j (t t) j [i := t]t j hi; jit with n; i; j 2 NRemark 2.12. In the papers by Kamareddine and Ros, the �rst De Bruijn index is 1whereas we use 0. The term [i := u]t correspond to the term t�i+1u in the original syntaxand hi; jit correspond to 'ji+1(t).

Ren�e David, Bruno Guillaume 8Rules are translation of the de�nition 2.11:(�) (�t u) �! [0 := u]t(��) [i := u]�t �! �[i + 1 := u]t(�a) [i := u](t v) �! ([i := u]t [i := u]v)(�n1) [i := u]n �! n if n < i(�n2) [i := u]n �! h0; iiu if n = i(�n3) [i := u]n �! n � 1 if n > i('�) hi; ji�t �! �hi + 1; jit('a) hi; ji(t u) �! (hi; jit hi; jiu)('n1) hi; jin �! n if n < i('n2) hi; jin �! n + j if n � iThis calculus lacks only the metaconuence property. In order to recover this property,the reduction relation is extended to give the �se-calculus. The extra rules are:(��) [i := u][j := v]t �! [j := [i� j := u]v][i+ 1 := u]t if j � i(�'1) [i := u]hj; kit �! hj; k � 1it if j � i < j + k(�'2) [i := u]hj; kit �! hj; ki[i� k := u]t if j + k � i('�) hj; ki[i := u]t �! [i := hj � i; kiu]hj + 1; kit if i � j(''1) hi; jihk; lit �! hk; j + lit if k � i � k + l(''2) hi; jihk; lit �! hk; lihi � l; jit if k + l < iThese extra rules are exactly the ones needed to get MC. The strong normalization ofthe substitution calculus (�se without the rule �) is an open question.The PSN was conjectured but its failure has been shown in (Guillaume, 1999a). At �rstsight, the ��-rule seems to be the right rule to have PSN: everything is right with respectto the Melli�es counter-example. The problem comes from the rules for the interactionbetween substitutions and updatings. The following example shows where the problemarises.Example 2.13.[4 := u][7 := v]h3; 4it �!'�2;�' [4 := u][3 := h0; 4iv]h4; 4itIn the left-hand side, the substitution [4 := u] should not interact with the substitution[7 := v] (because 4 < 7, the ��-rule does not apply). In the right-hand side, after tworeduction steps, the two substitutions can now interact and produce a self-embeddedterm as in the Melli�es counter-example. This phenomenon can be used to construct anin�nite reduction of a simply typed �-term. See (Guillaume, 1999a) for details.

A �-calculus with explicit weakening and explicit substitution 93. The calculus with explicit weakening: �w3.1. Terms with labelsWe avoid the counter-example to the PSN property of the �se-calculus by adding to theusual syntax a new constructor that we call a label and which represents an updatinginformation. The term t with label k (denoted by hkit) corresponds to the term t whereall free indices have been increased by k (i.e. �k0(t) in �se).In the terms we are �nally interested in, two successive labels are not allowed. We �rstde�ne preterms without this restriction.De�nition 3.1. We de�ne the set of �w-preterms by the following grammar:t ::= n j �t j (t t) j hkit with n; k 2 NThe function E de�ned below gives the �db-representation of a �-term represented bya preterm.De�nition 3.2. The function E is de�ned from the set of preterms to �db by:| E(n) = n| E(�t) = �E(t)| E(t u) = (E(t) E(u))| E(hkit) = �k0(E(t))where � is the function from �db to �db de�ned by:| �ji (�t) = ��ji+1(t)| �ji (t u) = (�ji (t) �ji (u))| �ji (n) = � n if n < in + j if n � iDe�nition 3.3. �w is the set of terms given by the following grammar:t ::= u j hkiu with k 2 Nu ::= n j �t j (t t) with n 2 NIt is easy to de�ne a reduction to recover a �w-term from any �w-preterm. Let m bethe reduction rule (called mixing):hiihjit �! hi + jitThis reduction is clearly conuent and strongly normalizable on the set of preterms.We denote by m(t) the �w-term which is the m-normal form of the preterm t.The following lemma ensures that the m-reduction does not change the meaning ofterms.Lemma 3.4. Let t; u be �w-preterms such that t �!m u, then E(t) = E(u). In partic-ular, for each preterm t, we have E(t) = E(m(t)).Proof. By an easy induction on the construction of t. Use the fact that for any �db-termv, we have �k0(�l0(v)) = �k+l0 (v).

Ren�e David, Bruno Guillaume 103.2. The �w-calculusLet t = (hki�u v). Since E(t) is a redex, t must also be a redex. We thus need a rule toreduce a redex which contains a label and the substitution must record this label. Thesubstitution fi=u; jg means that the indices i must be replaced by hiiu and that therewas a label hji in the redex.Note that, even if t and u are terms, fi=u; jgt only is a preterm. This is why, in thenext de�nition, the m-normal form has to be taken in the �-rules. In the �nal calculus,the m-rule will also be an explicit rule.De�nition 3.5. The �w-calculus is de�ned on the set �w by the two rules:(�1) (�tu) �! m(f0=u; 0gt)(�2) (hki�tu) �! m(f0=u; kgt)with:| fi=u; jgn =8<: n if n < ihiiu if n = in+ j � 1 if n > i| fi=u; jg�t = �(fi+ 1=u; jgt)| fi=u; jg(t v) = ((fi=u; jgt) (fi=u; jgv))| fi=u; jghkit = � hk + j � 1it if i < khki(fi� k=u; jgt) if i � k3.3. Simply typed �w-calculusAs usual, types (denoted by A;B; : : :) are constructed with basic types and !. Contexts(denoted by �;�; : : :) are lists of types. j�j denotes the length of �. The typing rules aregiven below (where j�j = i). (ax)�; A;� ` i : A A;� ` t : B (!i)� ` �t : A! B� ` t : A! B � ` u : A (!e)� ` (t u) : B � ` t : A (weak)�;� ` hiit : AThe �rst three rules are the usual ones of the �db-calculus. The last rule introduceslabels. A label corresponds to a weakening in the proof tree associated with the term.This is the motivation of the subscript \w" in the name of the calculus.The proof of subject reduction is straightforward.Theorem 3.6 (Subject reduction). Let t; u 2 �w. Assume t �!��w u and � ` t : A.Then � ` u : A.It is easy to check that if � ` t : A, then � ` E(t) : A. The following result followsthen immediately from theorem 3.15 below.

A �-calculus with explicit weakening and explicit substitution 11Theorem 3.7 (Strong normalization). Every typed �w-terms is strongly normaliz-able.3.4. �w versus �dbIn this subsection we show that the �w-calculus corresponds to the usual notion of �-reduction. We need some easy lemmas. Their detailed proof can be found in (Guillaume,1999b).Remark 3.8. Let t 2 �db and i 2 N. Then �0i (t) = t.Lemma 3.9. Let t 2 �db. Then1 If k � i � k + l then �ji (�lk(t)) = �j+lk (t).2 If i > k + l then �ji (�lk(t)) = �lk(�ji�l(t)).Lemma 3.10. Let t; u 2 �db and i � k < i + j. Then fk := ug�ji (t) = �j�1i (t).Lemma 3.11. Let t; u 2 �db.1 If i � k then �ji (fk := ugt) = fk := �ji�k(u)g�ji+1(t).2 If i � k then �ji (fk := ugt) = fk + j := ug�ji (t).Lemma 3.12. Let t; u 2 �db be such that t �!�db u. Then �ji (t) �!�db �ji (u).Lemma 3.13. Let t; u0 2 �db be such that �ji (t) �!�db u0. Then there is a term u 2 �dbsuch that t �!�db u and �ji (u) = u0.3.4.1. The �db-calculus simulates the �w-calculusThe following lemma translates a �w-term with substitution into a �db-term withsubstitution.Lemma 3.14. Let t; u be �w-preterms. Then E(fi=u; jgt) = fi := E(u)g�ji+1(E(t)).Proof. By induction on t. If t = �v or t = (v w), the result is trivial.| If t = n and n < i then E(fi=u; jgn) = n = fi := E(u)g�ji+1(E(n)).| If t = i then E(fi=u; jgi) = E(hiiu) = �i0(E(u)). We have also �ji+1(E(i)) = i and sofi := E(u)g�ji+1(E(i)) = �i0(E(u)).| If t = n and n > i then E(fi=u; jgn) = n+ j � 1 = fi := E(u)g�ji+1(E(n)).| If t = hkiv and i � k, thenE(fi=u; jghkiv) = E(hkifi � k=u; jgv)= �k0(E(fi� k=u; jgv))= �k0(fi� k := E(u)g�ji�k+1(E(v))) induction hypothesis= fi := E(u)g�k0(�ji�k+1(E(v))) lemma 3.11(2)fi := E(u)g�ji+1(E(hkit)) = fi := E(u)g�ji+1(�k0(E(v)))= fi := E(u)g�k0(�ji�k+1(E(v))) lemma 3.9(2)| If t = hkiv and i < k, then

Ren�e David, Bruno Guillaume 12fi := E(u)g�ji+1(E(hkiv)) = fi := E(u)g�ji+1(�k0(E(v)))= fi := E(u)g�j+k0 (E(v)) lemma 3.9(1)= �j+k�10 (E(v)) lemma 3.10E(fi=u; jghkiv) = E(hj + k � 1iv)= �j+k�10 (E(v))The following result shows that the �w-reduction corresponds to the usual �db-reduction.Theorem 3.15. Let t; u 2 �w. If t �!�w u, then E(t) �!�db E(u).Proof. By induction on t.| If t = �v and u = �v0, or t = (v w) and u = (v0 w), or t = (w v) and u = (w v0) withv �!�w v0, we use the induction hypothesis.| If t = hkiv and u = hkiv0 with v �!�w v0, then by induction hypothesis E(v) �!�dbE(v0) and, using lemma 3.12, E(t) = �k0(E(v)) �!�db �k0(E(v0)) = E(u).| If t = (�v w) and u = m(f0=w; 0gv) then E(t) = (�E(v)E(w)) and E(t) �!�db f0 :=E(w)gE(v).E(u) = E(m(f0=w; 0gv))= E(f0=w; 0gv) lemma 3.4= f0 := E(w)g�01(E(v)) lemma 3.14= f0 := E(w)gE(v) remark 3.8Finally, E(t) �!�db E(u).| If t = (hki�v w) and u = m(f0=w; kgv) then E(t) = (��k1(E(v))E(w)) �!�db f0 :=E(w)g�k1(E(v)).E(u) = E(m(f0=w; kgv))= E(f0=w; kgv) lemma 3.4= f0 := E(w)g�k1(E(v)) lemma 3.14Finally, E(t) �!�db E(u).3.4.2. The �w-calculus simulates the �db-calculusConversely, we show that, if t is a �w-term such that E(t) has a �-redex, then thereduction of this redex can always be simulated in �w .Theorem 3.16. Let t 2 �w and u0 2 �db be such that E(t) �!�db u0. Then, there is aterm u 2 �w such that t �!�w u and E(u) = u0.Proof. By induction on t. The non trivial cases are the following:| If t = hkiv then E(t) = �k0(E(v)). Since E(t) �!�db u0, lemma 3.13 gives a term w0such that E(v) �!�db w0 and �k0(w0) = u0. By the induction hypothesis on v, we geta term w such that v �!�w w and E(w) = w0. Let u = hkiw, then t �!�w u andE(u) = �k0(E(w)) = �k0(w0) = u0.| If t = (�vw) and u0 = f0 := E(w)gE(v) then let u = f0=w; 0gv, we get t �!�w u andE(u) = f0 := E(w)g�01(E(v)) (lemma 3.14), and �nally E(u) = u0 (lemma 3.9(1)).

A �-calculus with explicit weakening and explicit substitution 13term �db-calculus �w-calculus(inf 16 20) 1.441.824 steps10.5 seconds 101.761 steps0.9 seconds((30 pred) 30) 607.840 steps5.6 seconds 38.420 steps1.4 seconds(mult 100 200) 142.026 steps1.7 seconds 80.718 steps1.6 secondsFig. 2. Comparison between the �db-calculus and the �w-calculus| If t = (hki�v w) and u0 = f0 := E(w)g�k1(E(v)) then let u = f0=w; kgv, we gett �!�w u and E(u) = f0 := E(w)g�k1(E(v)) (lemma 3.14), and so E(u) = u0.3.5. Conclusion: �w versus �dbIn our �nal calculus (the �ws-calculus de�ned below), the normal forms of the calculusof substitution are terms of �w and not the usual terms of �db. We actually think thatthis gives a better representation of �-terms.| The fact that, with labels, a �-term is not uniquely represented is not a drawbacksince labels are intrinsic: a term can be put in any context (whatever its labeling is).Therefore in an implementation, the function E (cf. de�nition 3.2) would be useless.Moreover, if necessary, the algorithm to check whether two terms represent the same�-term is clearly linear in the size of the terms. Also note that it does not cost morework to translate a labeled term into a term with variables than to translate a usualde Bruijn term.| A label in a typed term corresponds to a weakening in the associated proof. In thenormalization of a proof, it is natural to move cuts up to the axioms i.e. to propagatesubstitutions in terms but there is no reason to move weakenings up to the axiomsi.e. to propagate labels in terms.| We hope that labels will give more e�cient implementations. Compared with imple-mentations in the representation of de Bruijn, there are no steps of propagation oflifts and many steps of propagation of substitutions are avoided since substitutionsare erased earlier when they are useless. A very small implementation of the de Bruijncalculus and the labeled calculus gives an idea of the di�erence between these twopresentations.Figure 2 gives the number of elementary reduction steps and the time of the reduc-tion to normal form in both systems. These tests were made on a PC-133Mhz withObjective Caml. The integers are the Church numerals. The inf function of the �rstexample is an e�cient one given in (David, 1994).

Ren�e David, Bruno Guillaume 14b1 (�t u) �! [0=u; 0]tb2 (hki�t u) �! [0=u; k]tl [i=u; j]�t �! �[i + 1=u; j]ta [i=u; j](t v) �! (([i=u; j]t) ([i=u; j]v))e1 [i=u; j]hkit �! hj + k � 1it i < ke2 [i=u; j]hkit �! hki[i � k=u; j]t k � in1 [i=u; j]n �! n n < in2 [i=u; j]n �! hiiu n = in3 [i=u; j]n �! n + j � 1 i < nc1 [i=u; j][k=v; l]t �! [k=[i � k=u; j]v; j + l� 1]t k � i < k + lc2 [i=u; j][k=v; l]t �! [k=[i � k=u; j]v; l][i� l + 1=u; j]t k + l � im hiihjit �! hi + jitFig. 3. Rules of the �ws-calculus4. The �ws-calculus4.1. Syntax and reduction rules for the �ws-calculusIn this section, we give our new calculus. The syntax is obtained from the syntax of the�w-calculus (de�nition 3.5) by adding a constructor for substitutions. This de�nition issimilar to the de�nition of the �se-calculus from the �db-calculus.The set �ws of terms of the �ws-calculus is de�ned by:t ::= n j �t j (t t) j hkit j [i=t; j]t with n; i; j; k 2 NNote that, as for the �w-calculus, two natural numbers are needed in each substitution:the second one keeps track of labels from redexes of the form (hki�t u). Also note thatthere is no restriction on nested labels: hkihlit is a valid term of the �ws-calculus.The set of rules is given in �gure 3. The �rst two rules deal with �-redexes (with orwithout labels). The seven next rules come from the de�nition of the \implicit" substitu-tion (de�nition 3.5). The composition rules c1 and c2 are needed for the conuence: theyappear naturally to close the critical pairs a=b1 and a=b2 on the terms [i=v; j](�t u) and[i=v; j](hki�t u). Finally, the mixing rule m deals with nested labels. It has to be madeexplicit for the simulation of the �-reduction.Example 4.1. The following example shows the use of the rule e1. It erases a substitu-tion when a label ensures that this substitution is useless in the term below.

A �-calculus with explicit weakening and explicit substitution 15��@@� u��@@�1 v -b1; a; l ��@@�[1=u; 0]1 [0=u; 0]v v0 -n2 ��@@�h1iu v0 -b1 [0=v0; 0]h1iu -e1 h0iuIn the last step, the substitution [0=v0; 0] is erased in one step, independently of thecomplexity of u.Example 4.2. The rule c2 looks like the ��-rule of the �se-calculus. The rule c1 is lesscommon. This rule can be understood as the simultaneous use of c2 and e1:��@@� �u�� @@� v��@@1 w -b1; a; l; a; n2 ��@@� [0=�u; 0]v v0��@@h1i�u [1=�u; 0]w w0 -b1; b2 [0=v0; 0][0=w0; 1]u -c1 0 �� [0=v0; 0]w0 ; 0uIn the last but one term, the substitution [0=v0; 0] could be propagated in w0 and u,but the index 1 in the second substitution ensures that [0=v0; 0] is useless in u.Notation 4.3. In the following, b will denote the reduction b1[b2. In the same way, wede�ne e = e1 [e2, n = n1 [n2 [n3 and c = c1 [c2.De�nition 4.4. We de�ne two sub-calculus on the set �ws of terms:| The ws-calculus is the �ws-calculus without the rules b1 and b2, i.e. the rules l, a, e,n, c and m.| The p-calculus is the calculus of propagation of the substitutions i.e. the ws-calculuswithout the rule m, i.e. the rules l, a, e, n and c.The ws-calculus allows the propagation of the substitutions and the contraction ofsuccessive labels. The p-calculus allows only the propagation of substitutions. The p-calculus is introduced for technical reasons: in the proof of PSN, working on p-normalforms rather than on ws-normal forms gives a shorter proof. The p-calculus is also usedin the proof of the strong normalization of the ws-calculus.Remark 4.5. For any t 2 �ws, we have ws(t) = m(p(t)), i.e. we can always postponethe mixing rule.The complexity of a term is de�ned as usual as the number of constructors of the term:De�nition 4.6. The complexity of t 2 �ws (denoted by cxty(t)) is de�ned by:| cxty(n) = 1| cxty(�u) = 1 + cxty(u)| cxty((u v)) = 1 + cxty(u) + cxty(v)| cxty(hkiu) = 1 + cxty(u)

Ren�e David, Bruno Guillaume 16| cxty([i=u; j]v) = 1 + cxty(u) + cxty(v)4.2. Typing rules for the �ws-calculusAs usual, types (denoted by A;B; : : :) are constructed with basic types and !. Contexts(denoted by �;�; : : :) are lists of types. j�j denotes the length of �.The typing rules are the following (where j�j = i and j�j = j):(ax)�; A;� ` i : A A;� ` t : B (!i)� ` �t : A! B� ` t : A! B � ` u : A (!e)� ` (t u) : B � ` t : A (weak)�;� ` hiit : A�;� ` u : A �; A;� ` t : B (cut)�;�;� ` [i=u; j]t : BWe add the cut rule to the typing system of subsection 3.3. This rule is twofold : a(usual) cut and a weakening (� is added to the hypotheses for t). Intuitively, the contextused to type [i=u; j]t can be divided into three parts: the �rst one (�, of length i) isspeci�c to t, the next one (�, of length j) is speci�c to u and the remaining one (�) iscommon to t and u.It is easy to check that the reduction rules of the �ws-calculus correspond naturally tothe cut elimination process of the proof tree.Theorem 4.7 (Subject reduction). Let t; u 2 �ws. If t �!�ws u and � ` t : A, then� ` u : A.Proof. By induction on t. We may assume that the reduction is at the root. Just check,for each rule, that the reduct can be typed, with the same type and the same hypothesis,as the redex.The rest of the paper is devoted to the untyped �se-calculus. We give here the nor-malization property of the typed calculus.Theorem 4.8. Every typed �ws-term is weakly normalizable.Proof. Let t 2 �ws be typable. Theorem 4.7 ensures that ws(t) (which exists bysections 5 and 6) is typable. The strong normalization of the typed �-calculus and thepreservation of the strong normalization of the �ws-calculus (section 8) ensure that ws(t)is strongly normalizable for the �ws-calculus. Finally, t is weakly normalizable.It should be possible to prove the strong normalization of the typed calculus by thesame kind of technique as in the proof of PSN. This result has been proved recently (DiCosmo et al., 2000) by using a translation into proof nets, a technique introduced in (DiCosmo and Kesner, 1997).

A �-calculus with explicit weakening and explicit substitution 174.3. Link with the �se-calculusEvery �ws-term t can be translated in a �se-term (denoted by t]) in the following way.Note that there is no translation in the other way.| n] = n| (�t)] = �t]| (t u)] = (t] u])| (hkit)] = h0; kit]| [i=u; j]t = [i := u]]hi+ 1; jit]The �ws-calculus can be seen as a part of the �se-calculus where some reductions areforbidden. Intuitively, in �ws, an updating hi; ji may not move down, except if it appearsat the root of the function part of a redex. In this case, the updating may cross the �but the redex has to be contracted immediately after and this new updating must belinked to the substitution coming from the redex (i.e. they cannot move independently).The relation betwen both calculi is the following. If t �!�ws u then t] �!+�se u] and onestep of �ws-reduction can be simulated by a �xed number (from 1 to 4, depending of therule) of �se-reduction.5. Strong normalization of the calculus of substitutionsIn this section, we prove that the ws-calculus is strongly normalizing. This proof isinspired by the one Zantema gave for the strong normalization of the ��-rule of the�se-calculus (Zantema, 1998).We �rst show, using the simulation lemma (lemma 2.8) that SN (ws) = SN (p2) wherethe p2-calculus is the calculus de�ned by the set of rules that increase (not strictly)the complexity i.e. the rules l, a, e2 and c (subsection 5.2). Then, using the increasingreductions lemma (lemma 2.10), we prove that the p2-calculus is strongly normalizing(subsection 5.3). We �nally get the theorem:Theorem 5.1. The ws-calculus is strongly normalizing.The complete proofs of the lemmas 5.6, 5.7 and of the propositions 5.9, 5.10 and 5.11can be found in (Guillaume, 1999b).5.1. The substitutive contextsIn the rest of this paper, the notion of \normal form" of a sequence of substitutions isuseful. We call such a sequence substitutive context.Notation 5.2. N denotes the set N [f�1;1g with its natural ordering extended insuch a way that �1 is the smallest element and 1 is the greatest one. The addition isextended by i+1 =1 and i�1 = �1 for i 2 N (1�1 is not de�ned).We use the notation � to represent a term about which nothing has to be known. Thecontexts have only one hole (denoted by f] � [g). Cf]t[g denotes the context C in which thehole has been replaced by t.

Ren�e David, Bruno Guillaume 18De�nition 5.3. A substitutive context is a context:S = [i1=�; j1] : : : [in=�; jn]f] � [g with n � 0 and i1 < : : : < in.We de�ne:| The initial index i(S) 2 N of S:i(S) = � 1 if n = 0i1 if n > 0| The �nal index f(S) 2 N of S:f(S) = � �1 if n = 0in if n > 0| The height h(S) 2 N of S:h(S) = n| The shift d(S) 2Zof S:d(S) = nXk=1 jk!� nIt is important to note that (for technical reasons) we allow a substitutive context tobe empty. When there is no ambiguity, we extend the usual notion of reduction on theterms to reduction on contexts.Notation 5.4. If S is the substitutive context [i1=�; j1] : : : [in=�; jn] we will denote by:| [i=u; j]S the substitutive context [i=u; j][i1=�; j1] : : : [in=�; jn]f] � [g if i < i(S).| S[i=u; j] the substitutive context [i1=�; j1] : : : [in=�; jn][i=u; j]f] � [g if i > f(S).Remark 5.5. Let S be a substitutive context such that h(s) > 0, then f(S) � i(S). Atrivial induction on h(S) show that if h(s) > 0 then i(S) � f(S) � h(S) + 1.The next two lemmas give the result of the \composition" of a substitution with asubstitutive context. There are two cases: either the new substitution can \go through"the context (lemma 5.6), or the substitution is \integrated" in the context (lemma 5.7).These two cases are not disjoint: when the substitution goes through the context, we canchoose to either integrate it at the end of the context (lemma 5.7) or keep it separated(lemma 5.6).Lemma 5.6. Let S be a substitutive context, and [i=u; j] be a substitution such thati > d(S) + f(S). Then, there is a substitutive context S0 such that: [i=u; j]S �!�cS0[i� d(S)=u; j], d(S0) = d(S) and f(S0) = f(S).Proof. The proof is by induction on h(S): we show that there is a substitutive contextS0 such that [i=u; j]S �!�c S0[i�d(S)=u; j], d(S0) = d(S), f(S0) = f(S) and i(S0) = i(S).Lemma 5.7. Let S be a substitutive context, and [i=u; j] a substitution. Then there isa substitutive context S0 such that [i=u; j]S �!�c S0, d(S0) = d(S) + j � 1 and� f(S0) = f(S) if i � d(S) + f(S)f(S0) = i� d(S) if i > d(S) + f(S)

A �-calculus with explicit weakening and explicit substitution 19Proof. The case i > d(S)+f(S) is a reformulation of the previous lemma. Indeed, thereis a substitutive context S00 such that [i=u; j]S �!�c S00[i � d(S)=u; j]. Let S0 = S00[i �d(S)=u; j], we verify that S0 is a substitutive context because f(S00) = f(S) < i � d(S).For the second point, remark that i � d(S) + f(S) only if h(S) > 0. We then use aninduction on h(S) and show that there is a substitutive context S0 such that [i=u; j]S �!�cS0, d(S0) = d(S) + j � 1, f(S0) = f(S) and i(S0) = min(i; i(S)).The following lemma shows how we can erase the context when all the substitutionsare useless. This also shows that d(S) really is a shift.Lemma 5.8. Let S be a substitutive context. If f(s) < k, then Sf]hkit[g �!�e1 hk +d(S)it.Proof. By induction on h(S). The case h(S) = 0 is trivial. If h(S) > 0, then S =S0[i=u; j] with i < k and d(S) = d(S0) + j � 1 soSf]hkit[g �!e1 S0f]hk + j � 1it[gand we can use the induction hypothesis (because f(S0) < i � k�1) and f(S0) < k+j�1),we have S0f]hk + j � 1it[g �!�e1 hk + j � 1 + d(S0)it = hk + d(S)it :5.2. Simulation of the ws-calculus in the p2-calculusIn order to prove that SN (ws) = SN (p2), we use intermediate reductions:| The ws-calculus is de�ned by the rules l, a, e, n, c and m.| The p-calculus (propagation) is de�ned by the rules l, a, e, n and c.| The p1-calculus is de�ned by the rules l, a, e2, n and c.| The p2-calculus (rules which increase (not strictly) the complexity) is de�ned by therules l, a, e2 and c.The proof is divided in three steps: SN (ws) = SN (p), SN (p) = SN (p1) and SN (p1) =SN (p2).Proposition 5.9. SN (ws) = SN (p).Proof. ws = p [m. We use the simulation lemma (lemma 2.8) with R1 = m, R2 = pand the relation < on �ws � �ws de�ned by:| k < k| �t < �t0 i� t < t0| (tu) < (t0u0) i� t < t0 and u < u0| hkit < hk1i : : : hknit0 i� t < t0, n � 1 and k = k1 + : : :+ kn| [i=u; j]t < [i=u0; j]t0 i� t < t0 and u < u0.Proposition 5.10. SN (p) = SN (p1).

Ren�e David, Bruno Guillaume 20Proof. p = p1 [e1. We use lemma 2.8 with R1 = e1, R2 = p1, and the relation <de�ned by:| k < k| �t < �t0 i� t < t0| (tu) < (t0u0) i� t < t0 and u < u0| hkit < Sf]hk0it0[g with t < t0 and S is a substitutive context such that f(S) < k0 andk = k0 + d(S)| [i=u; j]t < [i=u0; j]t0 i� t < t0 and u < u0.Proposition 5.11. SN (p1) = SN (p2).Proof. p1 = p2[n. We use lemma 2.8 with R1 = n, R2 = p2 and the relation < de�nedby:| k < t for all t| �t < �t0 i� t < t0| (tu) < (t0u0) i� t < t0 and u < u0| hkit < v i� v is of one of the following form:{ v = hkit0 and t < t0{ v = Sf][k0=t0; j]w[g with f(S) < k0, k = k0 + d(S) and t < t0| [i=u; j]t < [i=u0; j]t0 i� t < t0 and u < u0.5.3. Strong normalization of the p2-calculusWe prove the strong normalization of the p2-calculus by using lemma 2.10 where themeasure is the complexity and| R1 = the rules l, c1 and e2 (the complexity is left unchanged by these rules).| R2 = the rules a and c2 (these rules increase the complexity).We have to check:| The reduction R1 is strongly normalizable (proposition 5.12).| The reduction p2 is locally conuent (this is done by analyzing critical pairs).| The reduction p2 is weakly normalizing (proposition 5.15).5.3.1. Strong normalization of the rules that leave complexity unchangedWe use a measure which decreases by R1-reduction. This measure is the sum of thecomplexities of the subterms which are below each substitution of the term.Proposition 5.12. The R1-reduction is strongly normalizing.Proof. The measure k � k de�ned below strictly decreases by l, c1 and e2-reduction:| knk = 0| k�tk = ktk

A �-calculus with explicit weakening and explicit substitution 21| k(tu)k = ktk+ kuk| khkitk = ktk| k[i=u; j]tk = ktk+ kuk+ cxty(t).5.3.2. Weak normalization of the p2-calculusDe�nition 5.13. We de�ne a binary relation * on �ws � N by: * (t; k) i� t = hkiv ort = [k=v; l]w.Proposition 5.14 (Description of the p2-normal forms). A p2-normal form is aterm in one of the following forms:| n| �t with t 2 NF (p2)| (t u) with t; u 2 NF (p2)| hkit with t 2 NF (p2)| [i=u; j]n with u 2 NF (p2)| [i=u; j]t with t; u 2 NF (p2) and there is k such that k > i and * (t; k)Proof. By induction on t.Proposition 5.15. The p2-calculus is weakly normalizing.Proof. Let t be a �ws-term. We show, by induction on the complexity of t, that t 2WN (p2). The only di�cult case is t = [i=u; j]v. By induction, u and v have normal formsu0 and v0 and we can reduce t �!� [i=u0; j]v0. We have to show: If t; u 2 NF (p2) then[i=u; j]t 2WN (p2).By induction on the complexity of t, we show that there is t0 2 NF (p2) such that:| [i=u; j]t �!�p2 t0| If * (t; k) then * (t0;min(i; k))The non trivial cases are:| If t = n then t0 = [i=u; j]n is a normal form.| If t = hkiv:{ If i < k then t0 = [i=u; j]hkiv is a normal form and we have * (t0;min(i; k)).{ If i � k then [i=u; j]t �! hki[i � k=u; j]v. By induction [i � k=u; j]v �!� v0with v0 2 NF (p2) and so [i=u; j]t �!� hkiv0 and hkiv0 2 NF (p2). Clearly *(t0;min(i; k)).| If t = [k=v; l]w:{ If i < k then t0 = [i=u; j]t is a normal form and we have * (t0;min(i; k)).{ If k � i < k + l then [i=u; j]t �! [k=[i � k=u; j]v; l + j � 1]w. By induction[i� k=u; j]v �!� v0 with v0 2 NF (p2) and so [i=u; j]t �!� t0 = [k=v0; l+ j � 1]w.Finally t0 2 NF (p2) and * (t0;min(i; k)).{ If k + l � i then [i=u; j]t �! [k=[i � k=u; j]v; l][i � l + 1=u; j]w. By induction,

Ren�e David, Bruno Guillaume 22[i � k=u; j]v �!� v0 with v0 2 NF (p2), and [i � l + 1=u; j]w �!� w0 with w0 2NF (p2). Thus: [i=u; j]t �!�p2 t0 = [k=v0; l]w0Clearly * (t0;min(i; k)). The only thing to prove is that t0 is a p2-normal form. wis necessarily of one of the following forms:� w = m and w0 = [i� l + 1=u; j]w but k < i� l + 1, and then t0 2 NF (p2).� * (w; n) with k < n. By induction hypothesis, * (w0;min(i � l + 1; n)). Ask < i� l + 1, we have k < min(n; i� l + 1) and t0 is a p2-normal form.6. Conuence on open termsIn this section, we show that the �ws-calculus is conuent on terms with metavariables.6.1. The calculus with metavariablesWe enlarge the syntax of terms by allowing metavariables (denoted by a; b; : : :).De�nition 6.1. �wso is the set of terms with metavariables which are de�ned by:t ::= n j a j �t j (t t) j hkit j [i=t; j]t with a a metavariable and n; i; j; k 2 NDe�nition 6.2. The �wso-calculus is the reduction on �wso de�ned by the rules of the�ws-calculus. The wso-calculus is the reduction de�ned by the rules of the ws-calculus.Proposition 6.3. The wso-calculus is strongly normalizing.Proof. It is an immediate consequence of the strong normalization of the ws-calculus.6.2. Conuence of the wso-calculusProposition 6.4. The wso-calculus is locally conuent.Proof. By analyzing the critical pairs (see (Guillaume, 1999b)).Theorem 6.5. The wso-calculus is conuent.Proof. The wso-calculus is locally conuent (proposition 6.4) and strongly normalizing(proposition 6.3). The result follows from Newman's lemma.6.3. Conuence of the �wso-calculusIn order to show the conuence of the �wso-calculus, we use the interpretation method(Hardin, 1989). This allows to restrict ourselves to conuence on wso-normal forms.

A �-calculus with explicit weakening and explicit substitution 23Lemma 6.6 (Description of the wso-normal forms).The terms NF (wso) are described by the following grammar:t ::= u j hkiuu ::= n j [i1=t; j1] : : : [im=t; jm]a j �t j (t t)with m � 0, a a metavariable and k; n; i1; j1; : : : ; im; jm 2 N such that i1 < : : : < im.Proof. Trivial.We denote by wso(t) the wso-normal form of t. Remark, in the previous de�nition, thatthe term [i1=t; j1] : : : [im=t; jm]a could be written Sf]a[g with S a substitutive context,but we have to say that the terms inside the substitutions are wso-normal forms.De�nition 6.7. On the set NF (wso), we de�ne a reduction b0 by:t �!b0 u i� there is t0 2 �ws such that t �!b t0 and u = wso(t0).Theorem 6.8. The �wso-calculus is conuent.Proof. We will check:(1) If t �!�wso u then wso(t) �!�b0 wso(u) (proposition 6.15).(2) b0 is conuent (proposition 6.20).The following diagram (the interpretation method) then gives the conuence of the �wso-calculus. t ��wso//
��wso ��

�

##FFFFFFFFF t1 �

##FF
FF

FF
FF

F(1)wso(t) �b0 //b0��� (2) wso(t1)
b0���t2 �

##FF
FF

FF
FF

F

(1) wso(t2) �b0 // uCorollary 6.9. The �ws-calculus is conuent.In order to prove (1) and (2) above we need some lemmas. The following de�nitionwill simplify the proofs.De�nition 6.10. We de�ne a function " from �wso to N by:| " (a) =1,| " ([i=u; j]t) = i,| " (t) = �1 in the other cases.Remark 6.11. This function allows to write easily the condition under which a substi-tution can go down in a term: if t; u are wso-normal forms then[i=u; j]t 2 NF (wso) i� i < " (t)

Ren�e David, Bruno Guillaume 24Lemma 6.12. Let t; u 2 NF (wso). Then, " (wso([i=u; j]t)) = min(i; " (t)).Proof. Trivial.6.3.1. The calculus on the wso-normal formsLemma 6.13. Let t; u; u0 2 NF (wso) be such that u �!�b0 u0. Then,wso([i=u; j]t) �!�b0 wso([i=u0; j]t) :Proof. By an immediate induction on the length of the derivation u �!�b0 u0, we mayassume that u �!b0 u0. The proof is by induction on t. The only interesting case ist = [k=v; l]w.| If i < k then wso([i=u; j][k=v; l]w) = [i=u; j][k=v; l]wwso([i=u0; j][k=v; l]w) = [i=u0; j][k=v; l]wThus, wso([i=u; j]t) �!�b0 wso([i=u0; j]t)| If k � i < k + l thenwso([i=u; j][k=v; l]w) = [k=wso([i� k=u; j]v); l+ j � 1]wwso([i=u0; j][k=v; l]w) = [k=wso([i� k=u0; j]v); l + j � 1]wBy induction hypothesis, wso([i � k=u; j]v) �!�b0 wso([i � k=u0; j]v) and thenwso([i=u; j]t) �!�b0 wso([i=u0; j]t)| If k + l � i.wso([i=u; j][k=v; l]w) = wso([k=[i� k=u; j]v; l][i� l + 1=u; j]w)Since t 2 NF (wso), we have k < " (w) so k < min(" (w); i + l � 1). Lemma 6.12ensures that k < " (wso([i� l + 1=u; j]w)). We getwso([i=u; j][k=v; l]w) = [k=wso([i � k=u; j]v); l]wso([i� l + 1=u; j]w)In the same way,wso([i=u0; j][k=v; l]w) = [k=wso([i� k=u0; j]v); l]wso([i� l + 1=u0; j]w)By induction hypothesis, wso([i� k=u; j]v) �!�b0 wso([i� k=u0; j]v) and wso([i� l+1=u; j]w) �!�b0 wso([i� l + 1=u0; j]w). Finally,wso([i=u; j]t) �!�b0 wso([i=u0; j]t) :Lemma 6.14. Let t; t0; u 2 NF (wso) be such that t �!�b0 t0. Thenwso([i=u; j]t) �!�b0 wso([i=u; j]t0)

A �-calculus with explicit weakening and explicit substitution 25Proof. By an immediate induction on the length of the derivation t �!�b0 t0, we mayassume that this reduction is one step. The proof is by induction on t. The only interestingcase is when the redex is at the root of t: t = (hki�v w) and t0 = wso([0=w; k]v).| If i < k thenwso([i=u; j]t) = (hk + j � 1i�v wso([i=u; j]w))wso([i=u; j]t0) = wso([i=u; j]wso([0=w; k]v))= wso([i=u; j][0=w; k]v)= wso([0=[i=u; j]w; k+ j � 1]v)Thus, wso([i=u; j]t) �!�b0 wso([i=u; j]t0).| If i � k thenwso([i=u; j]t) = (hki�wso([i� k + 1=u; j])v wso([i=u; j]w))wso([i=u; j]t0) = wso([i=u; j]wso([0=w; k]v))= wso([i=u; j][0=w; k]v)= wso([0=[i=u; j]w; k][i� k + 1=u; j]v)Thus, wso([i=u; j]t) �!�b0 wso([i=u; j]t0).Proposition 6.15. If t �!�wso u then wso(t) �!�b0 wso(u).Proof. If the reduction t �!�wso u is a wso-reduction, then the uniqueness of wso-normal forms gives the result. Assume then that t �!b u. The proof is by induction ont:| If t does not begin with a substitution, the di�cult case is when the reduction is atthe root, i.e. t = (hki�v w) and u = [0=w; k]v. We getwso(t) = (hki�wso(v) wso(w)) �!b0 wso([0=wso(w); k]wso(v)) = wso(u)| If t = [i=w; j]v and u = [i=w0; j]v with w �!b w0 then, by the induction hypothesis,wso(w) �!�b0 wso(w0). By lemma 6.13, we havewso([i=wso(w); j]wso(v)) �!�b0 wso([i=wso(w0); j]wso(v))and then wso(t) �!�b0 wso(u).| If t = [i=w; j]v and u = [i=w; j]v0 with v �!b v0 then, by the induction hypothesis,wso(v) �!�b0 wso(v0). By lemma 6.14, we havewso([i=wso(w); j]wso(v)) �!�b0 wso([i=wso(w); j]wso(v0))and then wso(t) �!�b0 wso(u).6.3.2. Conuence of the reduction on wso-normal formsTo show the conuence of the b0-reduction, we use the usual method of parallel reduc-tions.De�nition 6.16. We de�ne the parallel reduction =) on the set NF (wso) by:| n =) n.

Ren�e David, Bruno Guillaume 26| If t1 =) t2 then �t1 =) �t2.| If t1 =) t2 and u1 =) u2 then (t1u1) =) (t2u2).| If t1 =) t2 then hkit1 =) hkit2.| If tk =) uk for 1 � k � n and i1 < : : : < inthen [i1=t1; j1] : : : [in=tn; jn]a =) [i1=u1; j1] : : : [in=un; jn]a.| If t1 =) t2 and u1 =) u2 then (�t1 u1) =) wso([0=u2; 0]t2).| If t1 =) t2 and u1 =) u2 then (hki�t1 u1) =) wso([0=u2; k]t2).Lemma 6.17. =)�=�!�b0 .Proof. It is easy to see that if t �!b0 u then t =) u. Conversely, assume that t =) u.We use an induction on the de�nition of t =) u. The hardest case is the last one:Let t = (hki�v w) and u = wso([0=w0; k]v0) with v =) v0 and w =) w0. By inductionhypothesis, v �!�b0 v0 and w �!�b0 w0. Then,t = (hki�v w) �!�b0 (hki�v0 w) �!�b0 (hki�v0 w0) �!b0 u = wso([0=w0; k]v0) :Lemma 6.18. Let t; u 2 NF (wso). If t =) t0 and u =) u0, then wso([i=u; j]t) =)wso([i=u0; j]t0).Proof. Let T = wso([i=u; j]t) and T 0 = wso([i=u0; j]t0). We show T =) T 0 by inductionon the de�nition of t =) t0The di�cult cases are:| t = [k=v; l]w and t0 = [k=v0; l]w0 with v =) v0 and w =) w0.{ If i < k then [i=u; j]t and [i=u0; j]t0 are already wso-normal forms and soT = [i=u; j][k=v; l]w =) T 0 = [i=u0; j][k=v0; l]w0{ If k � i < k + l thenT = [k=wso([i� k=u; j]v); l + j � 1]wT 0 = [k=wso([i� k=u0; j]v0); l + j � 1]w0By the induction hypothesis, wso([i� k=u; j]v) =) wso([i� k=u0; j]v0) and T =)T 0.{ If i � k + l then T = wso([k=[i� k=u; j]v; l][i� l + 1=u; j]w)T 0 = wso([k=[i� k=u0; j]v0; l][i� l + 1=u0; j]w0)By the induction hypothesis, wso([i�k=u; j]v) =) wso([i�k=u0; j]v0) and wso([i�l + 1=u; j]w) =) wso([i � l + 1=u0; j]w0). Moreover, lemma 6.12 ensures that" (wso([i � l + 1=u; j]w)) = min(" (w); i � l + 1). Since t 2 NF (wso) we havek < " (w) and so k < min(" (w); i� l + 1).T = [k=wso([i� k=u; j]v); l]wso([i� l + 1=u; j]w)T 0 = [k=wso([i� k=u0; j]v0); l]wso([i� l + 1=u0; j]w0)Finally, T =) T 0.

A �-calculus with explicit weakening and explicit substitution 27| t = (hki�w v) and t0 = wso([0=w0; k]v0) with v =) v0 and w =) w0.{ If i < k T = (hk + j � 1i�v wso([i=u; j]w))T 0 = wso([i=u0; j][0=w0; k]v0) = wso([0=[i=u0; j]w0; k + j � 1]v0)By the induction hypothesis, wso([i=u; j]w) =) wso([i=u0; j]w0) so T =) T 0.{ If i � kT = (hki�wso([i� k + 1=u; j]v)wso([i=u; j]w))T 0 = wso([i=u0; j][0=w0; k]v0) = wso([0=[i=u0; j]w0; k][i� k + 1=u0; j]v0)By the induction hypothesis, wso([i=u; j]w) =) wso([i=u0; j]w0) and T =) T 0.Lemma 6.19. The reduction =) is strongly conuent.Proof. Let t1; t2; t3 2 NF (wso) be such that t1 =) t2 and t1 =) t3. We show thatthere is a term t4 such that t2 =) t4 and t3 =) t4 by induction on the complexity of t1.The only interesting case is when t1 = (hki�u1 v1). We consider the form of t2 and t3.| If t2 = (hki�u2 v2) with u1 =) u2 and v1 =) v2.{ If t3 = (hki�u3 v3) with u1 =) u3 and v1 =) v3 the induction hypothesis givesthe result.{ If t3 = wso([0=v3; k]u3) with u1 =) u3 and v1 =) v3 the induction hypothesisensures that there are u4 and v4 such that u2 =) u4, u3 =) u4, v2 =) v4 andv3 =) v4 and thent1 = (hki�u1 v1) +3

��

t2 = (hki�u2 v2)
��t3 = wso([0=v3; k]u3) prev: lemma +3 t4 = wso([0=v4; k]u4)| If t2 = wso([0=v2; k]u2) with u1 =) u2 and v1 =) v2.{ If t3 = (hki�u3 v3) with u1 =) u3 and v1 =) v3, we conclude as in the previouscase.{ If t3 = wso([0=v3; k]u3) with u1 =) u3 and v1 =) v3 the induction hypothesisensures that there are u4 and v4 such that u2 =) u4, u3 =) u4, v2 =) v4 andv3 =) v4, thent1 = (hki�u1 v1) +3

��

t2 = wso([0=v2; k]u2)prev: lemma
��t3 = wso([0=v3; k]u3) prev: lemma +3 t4 = wso([0=v4; k]u4)Proposition 6.20. b0 is conuent.

Ren�e David, Bruno Guillaume 28Proof. The reduction =) is strongly conuent, therefore the reduction �!�b0 is alsostrongly conuent and then b0 is conuent (remark 2.5).7. Simulation of the �-reductionThere is a one-one correspondence between one-step reduction in the �db-calculus andone-step of �-reduction in the �w-calculus. In order to show that the �ws-calculus cor-rectly implements the �-reduction, we give the link with the �w-calculus. We show thatany reduction of the �w-calculus can be done in the �ws-calculus (cf. proposition 7.3)and that any �ws-reduction corresponds to a �w-reduction on the ws-normal forms (cf.proposition 7.4). In this sense, our calculus has a step by step simulation of �.Strictly speaking, �ws does not simulate the �db-reduction. However, as we alreadysaid in subsection 3.5, �-terms with labels are e�cient notations for �-terms and, whenthe �ws-calculus is used as the internal representation of �-terms (for the implementationof a functional language or a proof assistant), the simulation property we give here isclearly the useful one.Finally note that �� only simulates big steps of reduction and that the link of the�ws-calculus with the �-reduction is much simpler than the one of the SKInT -calculus:�-terms trivially are �ws-terms whereas, in SKInT , CPS transformation and abstractionalgorithm are necessary to get the translation.The following property is trivial:Proposition 7.1. The ws-normal forms are the terms of �w, i.e. they are given by thegrammar:t ::= u j hkiu with k 2 Nu ::= n j �t j (t t)The set of ws-normal forms will be denoted either by NF (ws) or by �w.The next lemma gives the relation between the implicit substitution (cf. de�nition 3.5)and the explicit one.Lemma 7.2. Let t; u 2 NF (ws). Then fi=u; jgt = p([i=u; j]t).Proof. By induction on the complexity of t.The following proposition shows that any �ws-reduction can be simulated in the �w-calculus.Proposition 7.3. Let t; u 2 NF (ws). If t �!�w u then t �!��ws u.Proof. We consider the case t �!�2 u (the �1 rule is simpler). Let t = Cf](hki�v w)[gand u = m(Cf]f0=w; kgt[g).| If the context C ends with a label: Cf] � [g = C0f]hli � [g thent = C0f]hli(hki�v w)[g �!b2 C 0f]hli[0=w; k]t[g �!�ws C 0f]ws(hli[0=w; k]t)[gwith remark 4.5 and lemma 7.2,ws(hli[0=w; k]t) = m(p(hli[0=w; k]t)) = m(hlip([0=w; k]t)) = m(hlif0=w; kgt)

A �-calculus with explicit weakening and explicit substitution 29Moreover, as C0 cannot end with a label, we have u = m(C 0f]hlif0=w; kgt[g) =C0f]m(hlif0=w; kgt)[g and thus t �!��ws u.| If the context C does not end with a label:t = Cf](hki�v w)[g �!b2 Cf][0=w; k]t[g �!�ws Cf]ws([0=w; k]t)[gwith remark 4.5 and lemma 7.2,ws([0=w; k]t) = m(p([0=w; k]t)) = m(f0=w; kgt)Moreover, u = m(Cf]f0=w; kgt[g) = Cf]m(f0=w; kgt)[g and thus t �!��ws u.Conversely, we can show that any �ws-reduction of a term t corresponds to a �w-reduction of the ws-normal form of t.Proposition 7.4. Let t; u 2 �ws. If t �!�ws u then ws(t) �!��w ws(u).Proof. This is a particular case of proposition 6.15 with terms without metavariables.Just remark that, on terms without metavariables, the reductions �w and b0 (cf. de�ni-tion 6.7) are the same.8. Preservation of strong normalizationIn this section, we give the proof of the preservation of the strong normalization. Thisproperty is the hardest one. Since most of the calculi with composition of substitutionsfail to have the PSN property, a new technique has to be invented. This technique isinspired by the notion of standard reduction of the �-calculus.The labels prevent the loss of information which appears in the �se-calculus and inthe ��-calculus. The rules c1 and c2 are exactly the rules needed to obtain both MC andPSN.As in �se, the Melli�es counter-example is avoided with the side condition of the inter-action rules: a term [i=u; j][k=v; l]t is a redex (rule c1 or c2) if and only if i � k. In �se,new rules are added for the propagation of updatings. We have seen, in subsection 2.3,that one of these rules (��) causes the failure of PSN. In �ws, this rule is useless, sincethere no need to move updatings down. In this way, �ws avoids the �se counter-example.The key point of the proof is lemma 8.15. This lemma ensures that it is always possibleto do a useful composition to get MC (�rst point) and that it is never possible to do auseless and dangerous (for PSN) composition (second point). The corresponding lemmawould be false for �se and ��. In other words, unlike �se, the substitution have a goodbehavior: if a term contains a subterm [i=u; j][k=v; l]t with i < k (no possible interaction)then in all future reducts of t it will still be impossible to make these two substitutionsinteract.The general idea of the proof is the following: we construct an in�nite derivationwithout composition from an in�nite derivation in the �ws-calculus. This allows to showthat we never get arti�cial terms of the form [: : :u : : :]u.

Ren�e David, Bruno Guillaume 30In the subsection 8.1, we give the sketch of the proof. Sections 8.2 and 8.3 give thede�nitions and the main tools used in the proof. The key lemma is proved in section 8.4.8.1. Sketch of the proofLet t 2 NF (ws) be such that t 2 SN (�w). We show that t is strongly normalizable inthe �ws-calculus.Theorem 8.1. SN (�w) � SN (�ws).For technical reasons, it is easier to work on p-normal forms rather than on ws-normalforms (the p-calculus is the ws-calculus without the mixing rule m). We thus provethe (stronger) result: If t 2 NF (p) and m(t) 2 SN (�w) then t 2 SN (�ws) which is aconsequence of the following:Lemma 8.2 (key lemma). Let t 2 NF (p) n SN (�ws). There is u 2 NF (p) such thatu 62 SN (�ws) and m(t) �!�w m(u).Proof of the theorem 8.1. Let t 2 NF (p) be such thatm(t) 2 SN (�w) and t 62 SN (�ws).We can choose t such that the length of the longest �w-reduction of m(t) is minimal. Thekey lemma gives a term u such that the length of the longest �w-reduction of m(u) isshorter and thus we get a contradiction. We have proved: If t 2 NF (p) andm(t) 2 SN (�w)then t 2 SN (�ws). The theorem is a particular case of this result with t 2 NF (ws) since,for such a t, m(t) = t.The key lemma is proved by induction. The di�cult case is when the head of t is(hk1i : : : hkni�v w) and v, w as well as all arguments of the head redex are �ws-stronglynormalizable. The term u (given by the lemma) is de�ned by the following sequence ofreductions:| if n > 1, contract the labels hkji,| reduce the head redex,| take the p-normal form.The key point is to show that if t has an in�nite �ws-reduction, then so does u. Forthe two �rst steps (contraction of the labels and reduction of the head redex), it is easyto show that in�nite reductions are preserved.For the last step (propagation of the substitution), we use the projection lemma on anextended syntax of the �ws-calculus. This syntax allows to keep track of the reducts ofthe substitution created by reduction of the head redex. (subsection 8.3).8.2. De�nitionsWe give here the de�nitions which are used in the de�nition of the term u of the keylemma.De�nition 8.3.We de�ne particular contexts and terms:

A �-calculus with explicit weakening and explicit substitution 31| The feet F and the bodies B are contexts de�ned by the grammars:F = f] � [g j hk1i : : : hkni�FB = f] � [g j hkiB j (B t) with t 2 NF (p)| The heads H are terms of the form n or (hk1i : : : hkmi�u v) with m � 0 and u; v 2NF (p).Lemma 8.4 (canonical decomposition of the p-normal-forms).Each term t 2 NF (p) has a canonical decomposition t = Ff]Bf]H[g[g.Proof. By induction on t.Example 8.5. Let t = �h2ih3i�h1i(h1ih4i(h2i(h1ih4i�0 u) t1) t2),�h2ih3i�. .h1i��� @@@t2h1ih4i��� @@t1h2i. .��� @@@uh1ih4i�0

F
B
HThe two main points are the following: (1) The interesting reductions of t are the onesof Bf]H[g. This is due to the fact that a foot is either empty or is a context �nishingwith a �. (2) An important information is the level where the substitution created by thereduction of the head redex appears in the term Bf]H[g. This will be de�ned (cf. below)as the depth of B.De�nition 8.6.1 Let B be a body, Arg(B) (the set of arguments of B) is de�ned by:| If B = f] � [g then Arg(B) = ;.| If B = hkiB0 then Arg(B) = Arg(B0).| If B = (B0 t) then Arg(B) = Arg(B0) [ftg.2 Let B be a body. jBj (the depth of B) is de�ned by:

Ren�e David, Bruno Guillaume 32| jf] � [gj = 0.| jhkiBj = jBj+ k.| j(B t)j = jBj.Let t be the term of example 8.5, then Arg(B) = ft1; t2g and jBj = 8.The following lemma will be used in the proof of the key lemma.Lemma 8.7. Let t 2 NF (p) and t0; t00 2 �ws be such that t �!�m t0 �!b t00. Thenm(t) �!�w m(u) where u = p(t00).Proof. By induction on t. If t = hk1i : : : hkni�v or t = hk1i : : : hkni(v w) and the b-reduction is in v or w, the induction hypothesis immediately gives the result.The only di�cult case is t = hk1i : : : hkni(hl1i : : : hlmi�v w) and the b-reduction is theone of the head redex. Then,m(t) = hki(hli�m(v) m(w)) with k =Pni=0 ki and l =Pmi=0 lit0 = hk01i : : : hk0n0i(hli�v0 w0) with v �!�m v0, w �!�m w0 and k =Pn0i=0 k0i.t00 = hk01i : : : hk0n0i[0=w0; l]v0.m(u) = m(p(t00)) = ws(t00) = ws(hki[0=w0; l]v0) .Finally,m(t) �!�w ws(hki[0=w; l]v) = m(u) (because the ws-calculus is conuent andnormalizing).8.3. Preservation of in�nite reductions by propagationThe goal of this subsection is to prove the following lemma; it is the hardest part ofthe proof. The meaning of this lemma is that the in�nite reduction is preserved by thepropagation of the head substitution.Lemma 8.8. Let t = Bf][0=w; l]v[g where v; w 2 NF (p). Assume that v, w and thearguments of B are �ws-strongly normalizable. If t has an in�nite �ws-reduction thenp(t) also has an in�nite �ws-reduction.The idea of the proof is the following: let u = p(t). In order to translate the reductiont �! t1 �! t2 �! : : : into a reduction u �! u1 �! u2 �! : : :, we will tag thereducts of the substitution [0=w; l] and write them [[0=w; l]]. Then, in any reduct of t,there are two kinds of substitutions: the tagged ones (denoted [[: : :]]) which are reductsof the head substitution of t and the other ones (denoted [: : :]) which are created duringthe reduction.The key point (which allows to construct the derivation of u) consists in proving thefollowing properties of the ti: they ensure that, in each ti we can move down the sub-stitutions [[: : :]] without moving the substitutions [: : :] and thus de�ne ui as the \normalform of ti by tagged propagation".| If a subterm is [[i=w0; j]]v0 then v0 and w0 contain no substitution [[: : :]].| Substitutions [[: : :]] are always \higher" than the [: : :], i.e. if the subterm is [[: : :]][: : :]wthen we can always compose the substitutions. Conversely, if the subterm is [: : :][[: : :]]w,the composition is never possible.

A �-calculus with explicit weakening and explicit substitution 33| If a subterm is [[i=w0; j]]v0 then w0 is strongly normalizable.The �rst property comes from the syntax of the ��ws-calculus (cf. 8.3.1). The twoothers are proved in subsection 8.3.2 and are derived from the notion of well-taggedterms. Finally, it will remain to check that the terms ui give an in�nite �ws-reduction ofu.8.3.1. The tagged reductionsDe�nition 8.9 (The ��ws-calculus). The set of terms of the ��ws-calculus (denoted by��ws) is de�ned by:t = n j �t j (t t) j hkit j [i=t; j]t j [[i=u; j]]v with n; i; j; k 2 N and u; v 2 �ws:The rules of the ��ws-calculus are those of the �ws-calculus with the additional rules:l� [[i=u; j]]�t �! �[[i+ 1=u; j]]ta� [[i=u; j]](t v) �! ([[i=u; j]]t [[i=u; j]]v)e1� [[i=u; j]]hkit �! hk + j � 1it i < ke2� [[i=u; j]]hkit �! hki[[i� k=u; j]]t k � in1� [[i=u; j]]n �! n n < in2� [[i=u; j]]n �! hiiu n = in3� [[i=u; j]]n �! n + j � 1 i < nc1� [[i=u; j]][k=v; l]t �! [k=[[i� k=u; j]]v; l+ j � 1]t k � i < k + lc2� [[i=u; j]][k=v; l]t �! [k=[[i� k=u; j]]v; l][[i� l + 1=u; j]]t k + l � iIt is easy to check that the set ��ws is closed under this reduction: the only constraintimposed by the syntax is that the subterms under or inside a tagged substitution are�ws-terms (i.e. without tagged substitution). This constraint is clearly preserved by thenew rules.De�nition 8.10. The �-calculus is the calculus on the set ��ws which contains the rulesof propagation of tagged substitutions: l�, a�, e�, n� and c�.Remark 8.11. Note that the following rulesc01� [i=u; j][[k=v; l]]t �! [[k=[i� k=u; j]v; l + j � 1]]t k � i < k + lc02� [i=u; j][[k=v; l]]t �! [[k=[i� k=u; j]v; l]][i� l + 1=u; j]t k + l � iwhich would be natural in a general framework are missing in the ��ws-calculus. We willhave to consider only well-tagged terms (cf. below) of the ��ws-calculus and these termsdo not contain any c01�-redex or c02�-redex. These rules are thus useless.

Ren�e David, Bruno Guillaume 348.3.2. The well-tagged termsHere, we formalize the following intuitive fact: in the terms that we are interested in,the tagged substitutions are always higher than the others. We actually de�ne a moregeneral property which is preserved by reduction.The relation H between a term (with tagged substitutions) and an integer means thatany untagged substitution has a small enough index if a tagged substitution occurs below.The integer gives the depth where the tagged substitution (if any) is in the term.The relation B between a term (without tagged substitutions) and an integer meansthat any untagged substitution which occurs under a tagged one has a small enoughindex, allowing thus the tagged substitution to be propagated.De�nition 8.12. We de�ne the binary relations by:| B on �ws �N{ B(n;m){ B(�u;m) i� B(u;m + 1){ B((u v);m) i� B(u;m) and B(v;m){ B(hiiu;m) i� 8<: i � m and B(u;m� i)ori > m{ B([i=u; j]v;m) i� 8<: i � m < i+ j and B(u;m� i)ori + j � m and B(u;m� i) and B(v;m � j + 1)| H on ��ws � N{ H(n;m){ H(�u;m) i� H(u;m + 1){ H((u v);m) i� H(u;m) and H(v;m){ H(hiiu;m) i� 8<: i � m and H(u;m� i)ori > m and u 2 �ws{ H([i=u; j]v;m) i� 8>>>><>>>>: m < i and u 2 �ws and v 2 �wsori � m < i+ j and H(u;m � i) and v 2 �wsori + j � m and H(u;m� i) and H(v;m � j + 1){ H([[i=u; j]]v;m) i� i = m, u 2 �ws, u 2 SN (�ws) and B(v;m)De�nition 8.13. A term t 2 ��ws is well-tagged if there is an integerm such thatH(t;m).The set of well-tagged terms is denoted by WT .Remark 8.14. The following facts are immediate (by induction on t):| If t 2 NF (p) (i.e. t contains no substitution) then, for all m 2 N, we have B(t;m).| If t 2 �ws (i.e. t contains no tagged substitution) then, for allm 2 N, we haveH(t;m).

A �-calculus with explicit weakening and explicit substitution 35| If t 2WT then, for all u subterm of t, we have u 2WT .The following lemma gives the desired properties of well-tagged terms.Lemma 8.15. Let t be a well-tagged term.1 If [[i=u; j]][k=v; l]w is a subterm of t, then i � k (i.e. the subterm is a c1�-redex or ac2�-redex).2 If [i=u; j][[k=v; l]]w is a subterm of t, then i < k (i.e. there is no c01�-redex or c02�-redex(cf. remark 8.11)).Proof.1 Let t0 = [[i=u; j]][k=v; l]w be the subterm. This is a well-tagged term (remark 8.14(3))therefore there is an integer m such that H(t0;m). The de�nition of H implies thatm = i and B([k=v; l]w; i). The de�nition of B implies k � i.2 Let t0 = [i=u; j][[k=v; l]]w be the subterm. There is an integer m such that H(t0;m).Since [[k=v; l]]w 62 �ws, we have m � i + j and H([[k=v; l]]w;m � j + 1), and thusk = m � j + 1. Finally, k = m � j + 1 > i.Proposition 8.16. WT is closed by ��ws-reduction.Proof. The proof is not di�cult but tedious. We �rst prove that if t �!�ws u andB(t;m) then B(u;m). We may assume that the reduction is at the root of t. We considereach rule of the �ws-calculus. The proposition is a consequence of the fact that if t �!��wsu and H(t;m) then H(u;m). This is proved by induction on t using the previous fact.Again we may assume that the reduction is at the root, and we consider each rule of the��ws-calculus. The complete proof is given in the annex of (Guillaume, 1999b).Lemma 8.17. The �-calculus is conuent and strongly normalizable on the set of well-tagged terms. Let �(t) denote the normal form of t for the �-calculus.Proof. The �-calculus is locally conuent because it has no critical pairs. The strongnormalization of the �-calculus is a trivial consequence of the strong normalization of thews-calculus.Proposition 8.18. Let t be a well-tagged term. Then �(t) 2 �ws.Proof. If t is a well-tagged term then �(t) also is one (proposition 8.16). If �(t) 62 �wsthen it contains a tagged substitution and the lemma 8.15(1) ensures that we can movedown this substitution. This contradicts the fact that �(t) is a �-normal form.8.3.3. The projectionWe show that an in�nite ��ws-reduction of a well-tagged term t, gives an in�nite �ws-reduction of �(t). This is done by showing that the relations R1 and R2 de�ned belowsatisfy the hypothesis of the projection lemma (lemma 2.7).| R1: the �-reductions and the reductions inside tagged substitutions (i.e. [[i=u; j]]t �![[i=u0; j]]t with u �!�ws u0).

Ren�e David, Bruno Guillaume 36| R2: the other reductions, i.e. the �ws-rules used outside a tagged substitution.Lemma 8.19. WT � SN (R1).Proof. The measure k � k is de�ned on well-tagged terms as follows. lg(u) denotes thelength of the longest �ws-derivation of u (which exists since any term inside a taggedsubstitution is strongly normalizable). Note that this measure is not the same as the onein proposition 5.12.| knk = 0| k�tk = ktk| k(t u)k = ktk+ kuk| khkitk = ktk| k[i=u; j]tk = ktk+ kuk| k[[i=u; j]]tk= cxty(t)(1 + lg(u))We have to show that if t �!� u then ktk > kuk. By induction on t, we may assumethat the reduction is at the root. For the rules e1�, n1�, n2� and n3�, note that if aterm has no tagged substitution its measure is 0. For the other rules, the veri�cation isimmediate.We also have to show that the measure decreases by reduction inside tagged substi-tutions. By induction on t, we may assume that the reduction is [[i=u; j]]t �! [[i=u0; j]]twith u �!�ws u0. We have lg(u0) < lg(u) hence (since cxty(t) � 1):k[[i=u; j]]tk= cxty(t)(1 + lg(u)) > cxty(t)(1 + lg(u0)) = k[[i=u0; j]]tk :Lemma 8.20. Let t be a well-tagged term. If t �!R1 u then �(t) �!��ws �(u).t R1//_�
��

u_�
���(t) ��ws// �(u)Proof. If the reduction t �!R1 u is a �-reduction then, by uniqueness of the �-normalform, �(t) = �(u).If the reduction is inside a tagged substitution, we use induction on t. The di�cultcase is t = [[i=v; j]]w and u = [[i=v0; j]]w with v �!�ws v0. An induction on w gives�(t) �!��ws �(u).Lemma 8.21. Let t be a well-tagged term. If t �!R2 u then �(t) �!+�ws �(u).t R2//_�

��

u_�
���(t) +�ws// �(u)Proof. This proof, by induction on t, is easy but tedious. The di�cult case is t =

A �-calculus with explicit weakening and explicit substitution 37[[i=v; j]]w and u = [[i=v; j]]w0 with w �!R2 w0. By an induction on w we may assume thatthe reduction is at the root of w. We then have to consider each rule of �ws-calculus.This proof has been checked by a Caml Program and is given in the annex of (Guillaume,1999b).Proposition 8.22. Let t 2 ��ws be a well-tagged term. If t has an in�nite ��ws-reductionthen �(t) has an in�nite �ws-reduction.Proof. The previous lemmas prove the hypothesis of the projection lemma.We are now ready to �nish the proof of the main result of this subsection.Proof of lemma 8.8 Let t = Bf][0=w; l]v[g with v; w 2 NF (p). Assume that v, w andthe arguments of B are �ws-strongly normalizable but t is not strongly normalizable. Lett �! t1 �! t2 �! : : : be an in�nite reduction of t and let t0i be ti where the residue of[[0=w; l]] has been tagged.| t0 = Bf][[0=w; l]]v[g is a well-tagged term: by induction on B, we prove that H(t0; jBj)(cf. de�nitions 8.6 and 8.12){ If B = f] � [g, t0 = [[0=w; l]]v and w 2 SN (�ws). Moreover v 2 NF (p). By re-mark 8.14(1), we have B(v; 0). Finally H(t0; 0).{ if B = hkiB0: by the induction hypothesis H(B0f][[0=w; l]]v[g; jB0j) and soH(hkiB0f][[0=w; l]]v[g; jB0j+ k), i.e. H(t0; jBj).{ If B = (B0w0) with w0 2 �ws: by induction, H(B0f][[0=w; l]]v[g; jB0j). The re-mark 8.14(2) gives H(w0; jBj). Finally, H(t0; jBj).| t0 �! t01 �! t02 �! : : : is an in�nite ��ws-reduction of t0: proposition 8.16 andlemma 8.15 that each t0i is well-tagged and that the reduction t0i �! t0i+1 is alwayspossible (no c01� or c02� redex), respectively.the proposition 8.16 ensures that each t0i is well-tagged and lemma 8.15 ensures thatthe reduction t0i �! t0i+1 is always possible (no c01� or c02� redex).| �(t0) = p(t): t0 has no untagged substitutions. The reduction from t to p(t) can betranslated into a reduction from t0 to �(t0) by using rules l�, a�, e� and n� instead ofl, a, e and n. Thus �(t0) and p(t) di�er only by the character of their substitutions(tagged or not). Since they have no substitutions, �(t0) = p(t).| p(t) has an in�nite reduction. t0 is well-tagged and has an in�nite ��ws-reduction.Proposition 8.22 gives an in�nite �ws-reduction of �(t0) = p(t).8.4. Proof of the key lemmaThe proof of the key lemma �nishes the proof of theorem 8.1:Lemma 8.2 Let t 2 NF (p) n SN (�ws). There is u 2 NF (p) such that u 62 SN (�ws) andm(t) �!�w m(u).Proof. We prove, by induction on t, that there is a term u such that:| u 62 SN (�ws),

Ren�e David, Bruno Guillaume 38| there are t0; t00 2 �ws such that t �!�m t0 �!b t00 and u = p(t00).The result follows then immediately from lemma 8.7.1) If t has a proper subterm v which is not �ws-strongly normalizing then t = Cf]v[gand there is a term w 62 SN (�ws) such that w = p(v00) and v �!�m v0 �!b v00. Letu = Cf]w[g. Since C has no substitutions, p(u) = Cf]p(w)[g.2) Else, Every proper subterm of t is �ws-strongly normalizable. Let t = Ff]Bf]H[g[g.Fis empty since (if not, Bf]H[g would be a non �ws-strongly normalizable proper subtermof t). H is not a de Bruijn index since, otherwise, t would be strongly normalizable. Thust = Bf](hk1i : : : hkni�v w)[g. Let k =Pni=0 ki andt0 = Bf](hki�v w)[g t00 = Bf][0=w; k]v[g u = p(Bf][0=w; k]v[g)By construction: t �!�m t0 �!b t00 and u = p(t00). It remains to prove that u has anin�nite �ws-reduction.Since every subterm is strongly normalizable, any in�nite reduction of t must reducethe head redex. The in�nite reduction of t looks like:t �!� B0f](hki�v0 w0)[g �! B0f][0=w0; k]v0[g �! : : :And thus t00 has an in�nite reduction:t00 = Bf][0=w; k]v[g �!� B0f][0=w0; k]v0[g �! : : :Lemma 8.8 ensures that u = p(t00) has an in�nite reduction.9. ConclusionThe counter-examples to the preservation of strong normalization of the ��-calculusand the �se-calculus led us to introduce the �w-calculus: a new presentation of the �-reduction.We then derived a calculus with explicit substitutions satisfying: step by step simula-tion of �, conuence on terms with metavariables and preservation of strong normaliza-tion.The simulation property of our calculus is not exactly the expected one, however, webelieve that the idea of keeping updating functions in terms rather than pushing themdown is one of the interesting points of our calculus.This calculus is the �rst (together with SKInT of Goubault and Goguen) to answerpositively the open question on the existence of such a calculus. We believe that the linkof our calculus with De Bruijn calculus is much simpler than the one of the SKInT -calculus.We leave for future work the study of other systems of types for the �ws-calculus.The implementation of this calculus would also be interesting in order to measure thee�ciency of the use of labels.

A �-calculus with explicit weakening and explicit substitution 39AcknowledgementsWe would like to thank Pierre-Louis Curien, D�elia Kesner, Yves Lafont and the anony-mous referees for their helpful comments on this work.ReferencesAbadi, M., Cardelli, L., Curien, P.-L., and L�evy, J.-J. (1991). Explicit substitutions. Journal ofFunctional Programming, 1(4):375{416.Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., and Rouyer-Degli, J. (1996). ��, a calculus of ex-plicit substitutions which preserves strong normalisation. Journal of Functional Programming,6(5):699{722.David, R. (1994). The inf function in the system F. Theoretical Computer Science, 135:423{431.David, R. and Guillaume, B. (1999). The �l-calculus (extended abstract). In Proceedings ofThe Second International Workshop on Explicit Substitutions: Theory and Applications toPrograms and Proofs (WESTAPP'99), Trento.Di Cosmo, R. and Kesner, D. (1997). Strong normalization of explicit substitutions via cutelimination in proof nets. In Proceedings of the 12th Annual IEEE Symposium on Logic InComputer Science (LICS), Warsaw.Di Cosmo, R., Kesner, D., and Polonovsky, E. (2000). Proof Nets and Explicit Substitutions.In Foundations of Software Science and Computation Structures (FOSSACS). To appear.Ferreira, M.-C.-F., Kesner, D., and Puel, L. (1996). �-calculi with explicit substitutions andcomposition which preserve strong normalization. Proceedings of Algebraic and Logic Pro-gramming 96 in Lecture Notes in Computer Science, 1139:284{298.Goguen, H. and Goubault-Larrecq, J. (1999). Sequent combinators: A hilbert system for thelambda calculus. Mathematical Structures in Computer Science, special issue in honor of SirRoger Hindley.Guillaume, B. (1999a). The �se-calculus does not preserve strong normalisation. To appear inJournal of Functional Programming.Guillaume, B. (1999b). Un calcul de substitutions avec �etiquettes. PhD thesis, Universit�e deSavoie. (URL : http://www.lama.univ-savoie.fr/users/GUILLAUME).Hardin, T. (1989). Conuence results for the pure strong categorical logic CCL : �-calculi assubsystems of CCL. Theoretical Computer Science, 65(2):291{342.Kamareddine, F. and R��os, A. (1995a). A �-calculus �a la de Bruijn with explicit substitutions.Proceedings of the 7th international symposium on Programming Languages: Implementations,Logics and Programs, PLILP '95 in Lecture Notes in Computer Science, 982:45{62.Kamareddine, F. and R��os, A. (1995b). The �s-calculus: its typed and its extended versions.Technical report, Department of Computing Science, University of Glasgow.Kamareddine, F. and R��os, A. (1997). Extending a �-calculus with explicit substitution whichpreserves strong normalisation into a conuent calculus on open terms. Journal of FunctionalProgramming, 7(4):395{420.Kamareddine, F. and R��os, A. (1998). Bridging de bruijn indices and variable names in explicitsubstitutions calculi. Logic Journal of the IGPL, 6(6):843{874.Klop, J. (1992). Term Rewriting Systems. In Abramsky, S., Gabbay, D., and Maibaum, T.,editors, Handbook of Logic in Computer Science, volume 2, pages 1{116. Oxford UniversityPress.Melli�es, P.-A. (1995). Typed �-calculi with explicit substitutions may not terminate. Proceedingsof Typed Lambda Calculi and Applications 95 in Lecture Notes in Computer Science, 902:328{334.

Ren�e David, Bruno Guillaume 40Mu~noz, C. (1996). Conuence and preservation of strong normalisation in an explicit substitu-tions calculus. Proceeddings of LICS'96, pages 440{447.Mu~noz, C. (1997). Un calcul de substitutions pour la repr�esentation de preuves partielles enth�eorie des types. PhD thesis, Universit�e Paris VII.Zantema, H. (1998). The ��-rule terminates. Personnal communication.

