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TypiCal - INRIA Saclay Île de France - Ecole Polytechnique

1 Minimal deduction modulo

1.1 Syntax

We consider a set (T ) of sorts, an infinite set of variables of each sort, a set (f)
of function symbols, and a set (P ) of predicate symbols, that come with their
rank. The formation rules for objects and propositions are the usual ones.

– Variables of sort T are terms of sort T .
– If f is a function symbol of rank 〈T1, . . . , Tn, U〉 and t1, . . . , tn are respectively

objects of sort T1, . . . , Tn, then f(t1, . . . , tn) is a term of sort U .
– If P is a predicate symbol of rank 〈T1, . . . , Tn〉 and t1, . . . , tn are respectively

objects of sort T1, . . . , Tn, then P (t1, . . . , tn) is an atomic proposition.

Propositions are built-up from atomic propositions with the usual connective
⇒ and quantifier ∀ . Remark that, implicitly, quantification in ∀x.A is restricted
over the sort of the variable x.

Definition 1 (Terms and Propositions).
We call O (as objects), the set of terms: t ::= x | f t . . . t
We call P, the set of propositions: A ::= P t . . . t | A⇒ A | ∀x.A

In this language, proof-terms can contain both term variables (written x, y, . . .)
and proof variables (written α, β, . . .). Terms are written t, u, . . . while proof-
terms are written π, ρ, . . .. We call X the set of proof variables and Y the set of
term variables.

Definition 2 (Proof-terms).
We call T , the set of proof-terms: π := α | λα.π | π π′ | λx.π | π t

Notice that variables α and x are bound in the constructions λα.π, and λx.π.
Alphabetic equivalence, free and bound variables are defined as usual.

Each proof-term construction corresponds to a natural deduction rule: terms
of the form α express proofs built with the axiom rule, terms of the form λα.π
and (π π′) express proofs built respectively with the introduction and elimination



rules of the implication and terms of the form λx.π and (π t) express proofs built
with the introduction and elimination rules of the universal quantifier.

We call neutral those proof-terms of T that are not abstractions i.e. of the
form α, (ππ′) or (πt). A proof-term is called isolated if it is neutral and only
reduces on neutral terms.

1.2 Typing rules

We call contexts, lists of declarations [α : A] where α is a proof-variable and A
is a proposition, such that each variable in a declaration is different from all the
other variables of the context (in this way, we only consider well formed contexts,
therefore we have to deal with alphabetic equivalence, when concatening them).

Given a congruence relation on propositions ≡ , we define typing rules as
usual, in deduction modulo:

A ≡ B (axiom)
Γ, α : A ⊢≡ α : B

Γ, α : A ⊢≡ π : B
C ≡ A ⇒ B (⇒-intro)

Γ ⊢≡ λα π : C

Γ ⊢≡ π : C Γ ⊢≡ π′ : A
C ≡ A ⇒ B (⇒-elim)

Γ ⊢≡ (π π′) : B

Γ ⊢≡ π : A
B ≡ ∀x.A, x 6∈ FV (Γ ) (∀-intro)

Γ ⊢≡ λx.π : B

Γ ⊢≡ π : B
B ≡ ∀x.A, C ≡ (t/x)A, t has the sort of x (∀-elim)

Γ ⊢≡ π t : C

Fig. 1. Typing rules

1.3 Proof reduction rules and strong normalization

As usual in deduction modulo, the process of cut elimination is modeled by β-
reduction. We consider the contextual closure of the reduction rules given figure
2. These rules correspond to proof reduction in natural deduction.

(λα.π π′) →βπ (π′/α)π

(λx.π t) →βt (t/x)π (if x and t have the same sort)

Fig. 2. Proof reduction rules
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We write (π′/α)π (resp. (t/x)π) the substitution of α (resp. x) by π′ (resp.
t) in π. We say that π reduces to π′ if π →βt π

′ or π →βπ π
′. We write π → π′

if π reduces in one step to π′, π →+ π′ if π reduces in at least one step to π′,
and π →∗ π′ if π reduces in an arbitrary number of steps to π′.
A proof is said to be normal if it contains no redex. It is said to be weakly
normalizing if it has a normal form and strongly normalizing if all reduction
sequences issued from this proofs are finite. We write SN for the set of strongly
normalizing proofs.

1.4 Theories expressed in minimal deduction modulo

A theory expressed in minimal deduction modulo is defined by a many-sorted
language in predicate logic L = 〈((T ), (F ), (P )〉 and a congruence relation ≡ on
propositions of the associated many-sorted logic. We suppose ≡ not ambiguous,
i.e. there does not exist x ∈ Y, A,B,C ∈ P such that A⇒ B ≡ ∀x.C. We will
call L≡ this theory.

Remark 1. Given a theory L≡, we will write ⊢ for ⊢≡.

Proposition 1 (confluence and subject-reduction). → is confluent.
And for all contexts Γ , proof-terms π, π′ and propositions A,
if Γ ⊢ π : A and π → π′, then Γ ⊢ π′ : A.

Example As mentioned above deduction modulo permits to express (inten-
tional) simple type theory [1] without any axiom. We show in the following, how
minimal deduction modulo permits to express minimal (intentional) simple type
theory, without any axiom (see [6] for details).

The sorts are simple types inductively defined by:
– ι and o are sorts,
– if T and U are sorts then T → U is a sort.

The language is composed of the individual symbols
- ST,U,V of sort (T → U → V ) → (T → U) → T → V ,
- KT,U of sort T → U → T ,
- ⇒̇, of sort o,
- ∀̇T of sort (T → o) → o,

the function symbols αT,U of rank 〈T → U, T, U〉,
and the predicate symbol ε of rank 〈o〉.

The combinators ST,U,V and KT,U are used to express functions. The ob-

jects ⇒̇, and ∀̇T allow to represent propositions as objects of sort o. Finally,
the predicate ε allows to transform such an object t of type o into the actual
corresponding proposition ε(t).

α(α(α(ST,U,V , x), y), z) → α(α(x, z), α(y, z))

α(α(KT,U , x), y) → x

ε(α(α(⇒̇, x), y)) → ε(x) ⇒ ε(y)

ε(α(∀̇, x)) → ∀y ε(α(x, y))
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2 Language-dependent truth values algebras

2.1 Definition

For all sets E, we call P(E) the set of subsets of E.
For all sorts T of a language L, we write T̂ , the set of closed terms of sort T .

Definition 3 (language-dependent tvas).
Let L = 〈(T ), (f), (P )〉 be a many-sorted language in predicate logic.

〈B, ⇒̂, (ÂT ), (∀̂T )〉 is a ldtva for L if and only if:

– B is a set,
– ⇒̂ is a function from B × B to B,
– for all sorts T ,

- ÂT is a set of functions from T̂ to B: ÂT ⊆ T̂ 7→ B
- ∀̂T is a function from ÂT to B.

Definition 4 (Morphism).

Let B1 = 〈B1, ⇒̂1, (Â1
T ), (∀̂1

T )〉〉 and B2 = 〈B2, ⇒̂2, (Â2
T ), (∀̂2

T )〉 be two ldtvas.
A morphism from B1 to B2 is a function F from B1 to B2 such that:

– for all E,G ∈ B1, F (E ⇒̂1 G) = F (E) ⇒̂2 F (G),

– for all sorts T , x ∈ T̂ and f ∈ ÅT , F (∀̂1
T f) = ∀̂2

T F ◦ f .

Definition 5 (Valuation).
Given a ldtva for L = 〈(T ), (f), (P )〉, a valuation ϕ is a substitution mapping
term-variables of a sort to closed terms of the same sort. For all propositions
A (resp. terms t), we call Val(A) (resp. Val(t)) the set of valuations whose
domain contains the set of free variables of A (resp. t).
We write x /∈ ϕ for expressing the fact that ϕ(x) is not defined.

Definition 6. For all A ∈ P, terms t and ϕ ∈ Val(A), we write |A|ϕ the result
of the substitution ϕ on A.

Definition 7 (Models).
Let L = 〈(T ), (f), (P )〉 be a many-sorted language in predicate logic,
let ≡ a congruence relation on propositions of minimal deduction based on L,
let B = 〈B, ⇒̂, (ÂT ), (∀̂T )〉 be a ldtva for L.

1. We call B-valued interpretations those functions which map every ordered
pair of a proposition A and a valuation in Val(A) to an element of B.

2. A B-valued interpretation J.K. is a B-valued model if and only if:

– for all A,B ∈ P and ϕ ∈ Val(A⇒ B), JA⇒ BKϕ = JAKϕ ⇒̃ JBKϕ

– for all A ∈ P, x of sort T and ϕ ∈ Val(∀x.A) such that x /∈ ϕ,

J∀x.AKϕ = ∀̂T (t 7→ JAKϕ+〈x,t〉)

– for all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such that x /∈ ϕ,
J(t/x)AKϕ = JAKϕ+〈x,t〉.
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3. A B-valued model J.K. is a model of the theory L≡ if and only if:
for all A,A′ ∈ P, ϕ ∈ Val(A) and ψ ∈ Val(A′), if |A|ϕ ≡ |A′|ψ,
then JAKϕ = JA′Kψ

Remark 2. The previous conditions can be reformulated as: 2. Interpretations
of propositions have to be adapted to the connectives to be a model. 3. Models
have to be adapted to the congruence to be a model of the associated theory.

The following lemma explains that our definition of morphism is correct for
the property of being a model of a theory L≡.

Lemma 1. For all ldtvas B1 and B2 and morphisms F from B1 to B2, if J.K.
is a B1-valued model of a theory L≡, then F ◦ J.K. is a B2-valued model of L≡.

3 About WN -reducibility candidates and typing

3.1 D
≡
, a ldtva of (≡) well-typed WN-reducibility candidates

Definition 8 (U).
U = {(Γ, π) such that Γ is a context and π is a proof-term }.

Definition 9.
For all E ⊆ U , we define the following properties :

(P≡) There exists AE such that ∀(Γ, π) ∈ E, Γ ⊢ π : AE
(P1≡

) For all (Γ, π) ∈ E, π ∈WN

(P2≡
) For all (Γ, π) ∈ E and π′ ∈WN such that π → π′, (Γ, π′) ∈ E

(P3≡
) For all (Γ, π) ∈ U ,

- If π ∈WN , π is isolated and Γ ⊢ π : AE, then (Γ, π) ∈ E
- If (Γ, π) ∈ E and π′ →βt π, then (Γ, π′) ∈ E.

Remark 3. For all E ⊆ U , if E satisfies (P≡) and (P3≡
),

then for all proof-variables α, (α : AE , α) ∈ E, as α is isolated and in WN .

Definition 10 (domain D
≡
). We call D

≡
the set of subsets of U which satisfy

(P≡), (P1≡
), (P2≡

) and (P3≡
).

Definition 11 (leaves).
The leaves of a proof-term π are its first reducts which are normal or not neutral.
(ρ is a leaf of π if and only if it is normal or not neutral and there exists n ≥ 0
and π1 . . . πn−1 neutral not normal terms such that π = π1 → . . .→ πn−1 → ρ).
We call L(π) the set of leaves of π, L↓(π) the set of neutral normal leaves of π,
and Lλ the set of not neutral leaves of π.

Remark 4. - The only leaf of a normal or not neutral proof-term is itself.
- If π is a neutral non-normal proof-term, then ρ ∈ L(π) if and only if there

exists a one-step reduct π′ of π such that ρ ∈ L(π′).
- If π ∈WN , then L(π) 6= ∅.
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Definition 12 (⇒̊). For all E,F ∈ D
≡
,

E⇒̊F = {(Γ, π) ∈ U such that π ∈WN , Γ ⊢ π : AE ⇒ AF and
- ∀ρ ∈ Lλ(π), ρ = λα.ρ′ with (Γ, α : AE , ρ) ∈ F
- ∀ρ ∈ L↓(π) and (Γ ′, π′) ∈ E, (ΓΓ ′, ρπ′) ∈ F}

Remark 5. We recall the fact that we only consider well-formed contexts, there-
fore the only variables Γ and Γ ′ can share have to be declared proofs of equivalent
propositions, otherwise we have to deal with α-conversion when concatening Γ
and Γ ′.

Lemma 2. ⇒̊ is a function from D
≡
×D

≡
to D

≡
.

Proof. Let E,F ∈ D
≡
, and (Γ, π) ∈ E⇒̊F ,

(P≡) By definition, AE⇒̊F ≡ AE ⇒ AF .

(P1≡
) By definition.

(P2≡
) By subject-reduction, the fact that F satisfies (P2≡

) and the fact that
all leaves of a reduct of a proof term π are also leaves or reducts of leaves of π.
(P3≡

)
- By the fact that an isolated term has only neutral leaves, and that if π

is a neutral normal term, and π′ is a term in WN , then ππ′ is isolated
and in WN .

- By the fact that if π′ →βt π, then in a given context, π and π′ have
the same type, if π ∈WN then so does π′ and all leaves of π′ are either
leaves of π, either ”βt-expansions” of leaves of π.

Definition 13 (ÅT ). For all sorts T ,
ÅT = {f : T̂ 7→ D

≡
, such that there exists Af ∈ P and xf ∈ X such that

for all t ∈ T̂ and (Γ, π) ∈ f(t), Γ ⊢ π : (t/xf )Af}

Definition 14 (̊∀T ). For all sorts T and functions f ∈ ÅT ,

∀̊T .f = {(Γ, π) ∈ U such that for all t ∈ T̂ , (Γ, π t) ∈ f(t)}

Lemma 3. For all sorts T , ∀̊T is a function from ÅT to D
≡
.

Proof. Let f ∈ ÅT , and (Γ, π) ∈ ∀̊T .f

(P≡) Let t ∈ T̂ (6= ∅). Then (Γ, πt) ∈ f(t). As f ∈ ∀̊T , we have Γ ⊢ πt : (t/xf )Af .
Therefore Γ ⊢ π : ∀xf .Af , by case on the last rule used in the derivation of
Γ ⊢ πt : (t/xf )Af . Finally, A∀̊T f

≡ ∀xf .Af .

(P1≡
) Let t ∈ T̂ (6= ∅). Then (Γ, πt) ∈ f(t) ∈ D

≡
therefore πt ∈ WN and so

does π.
(P2≡

) Let π′ such that π → π′. Then, for all t ∈ T̂ , πt → π′t, therefore
π′t ∈ f(t) ∈ D

≡
.

(P3≡
)

- Let (Γ, τ) ∈ U such that τ ∈ WN , τ is isolated and Γ ⊢ τ : ∀xf .Af . Let

t ∈ T̂ then Γ ⊢ τt : (t/xf )Af , τt is isolated as τ is, and τt ∈ WN , as

τ ∈WN . Finally, τ ∈ ∀̊T .f , as f(t) satisfies (P3≡
), for all t ∈ T̂ .
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- Let π′ such that π′ →βt π, then for all t ∈ T̂ , π′t →βt πt therefore

(Γ, π′t) ∈ f(t) as it satisfies (P3≡
). Hence (Γ, π′) ∈ ∀̊T f .

Definition 15 (D
≡
). D

≡
is the ldtva 〈D

≡
, ⇒̊, (ÅT ), (̊∀T )〉.

3.2 Building a D
≡
-valued interpretation of WN theories L≡

Let us now define a first D
≡
-valued model, by using directly definitions of

⇒̊ and ∀̊T , and well-chosen interpretations of atomic propositions.

Definition 16. Let A be a proposition and ϕ ∈ Val(A).
We define the subset of U , [A]ϕ by induction over the structure of A.

- [P t1 . . . tn]ϕ = {(Γ, π) ∈ U such that π ∈WN and Γ ⊢ π : P ϕ(t1) . . . ϕ(tn)}
- [B ⇒ C]ϕ = [B]ϕ⇒̊[C]ϕ
- [∀x.B]ϕ = ∀̊T (t 7→ [B]ϕ+〈x,t〉)

Lemma 4. For all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such that
x /∈ ϕ, we have [(t/x)A]ϕ = [A]ϕ+〈x,t〉.

Proof. By induction on A.

Lemma 5. For all A ∈ P, and ϕ ∈ Val(A),
[A]ϕ ∈ D

≡
with A[A]ϕ = Aϕ (i.e, ∀(Γ, π) ∈ [A]ϕ, Γ ⊢ π : Aϕ).

Proof. By induction on A.

– If A is an atomic proposition P t1 . . . tn,

(P≡) By definition. (with A[P t1...tn]ϕ ≡ P ϕ(t1) . . . ϕ(tn)).

(P1≡
) By definition.

(P2≡
) By subject-reduction.

(P3≡
) By definition.

– If A = B ⇒ C, as ⇒̊ : D
≡
×D

≡
7→ D

≡
, we conclude by induction hypothesis

(with A[B⇒C]ϕ = A[B]ϕ⇒̊[C]ϕ ≡ A[B]ϕ ⇒ A[C]ϕ ≡ Bϕ ⇒ Cϕ = (B ⇒ C)ϕ).

- If A = ∀x.B, let T be the sort of x and f = t 7→ [B]ϕ+〈x,t〉.

Then f is a function from T̂ to D
≡
, by induction hypothesis. Moreover, for

all t ∈ T̂ , Af(t) = Bϕ+〈x,t〉 = (t/x)Bϕ, by induction hypothesis. Therefore

f ∈ ÅT and ∀̊T f ∈ D
≡

(with A[∀x.B]ϕ = ∀x.Af = ∀x.Bϕ).

At this point, we have D
≡
-valued model which is adapted to typing but not

necessarily ≡-adapted. Indeed, in a theory where we have two atomic propo-
sition symbols P and Q such that P ≡ (Q ⇒ Q) (notice that such a theory
can be weakly normalizing), then for all valuations ϕ ∈ Val(P ) ∩ Val(Q),
[P ]ϕ 6= [Q]ϕ⇒̊[Q]ϕ. We have then to modify this interpretation to make it a
D

≡
-valued model of L≡.
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3.3 Adapting this interpretation to the congruence

Definition 17. We define a second interpretation ⌊.⌋., as follows :
for all A ∈ P and ϕ ∈ Val(A),

⌊A⌋ϕ =
⋂

Aϕ≡A′

ψ

[A′]ψ

Remark 6. For all A,A′ ∈ P, ϕ ∈ Val(A) and ψ ∈ Val(A′) such that Aϕ ≡ A′
ψ,

we have ⌊A⌋ϕ = ⌊A′⌋ψ, by definition.

Then we prove that ⌊.⌋. is also a D
≡
-valued interpretation adapted to typing.

Lemma 6. For all A ∈ P, and ϕ ∈ Val(A),
⌊A⌋ϕ ∈ D

≡
with A⌊A⌋ϕ = Aϕ (i.e, ∀(Γ, π) ∈ ⌊A⌋ϕ, Γ ⊢ π : Aϕ).

Proof. Let A ∈ P, and ϕ ∈ Val(A),
By lemma 5 and the fact that ⌊A⌋ϕ ⊆ [A′]ψ, for all A′

ψ ≡ Aϕ.

Lemma 7. For all A ∈ P, x of sort T , t ∈ T̂ and ϕ ∈ Val(∀x.A) such that
x /∈ ϕ, we have ⌊(t/x)A⌋ϕ = ⌊A⌋ϕ+〈x,t〉.

Proof. By lemma 7.

Finally, we proved, that ⌊.⌋. is a D
≡
-valued interpretation of propositions

adapted to typing and to the congruence relation ≡. Let us now show that ⌊.⌋. is
also a D

≡
-valued model of weakly normalizing theories L≡, i.e. it is also adapted

to connectives, when L≡ is weakly normalizing.

3.4 ⌊.⌋
.

is a D
≡
-valued model of weakly normalizing theories L≡

In order to prove that ⌊.⌋. is a D
≡
-valued model of L≡, if it is weakly normalizing,

we proceed by reductio ad absurdum, showing that if ⌊.⌋. is not connectives-
adapted, then we can exhibit a typing judgement Γ ⊢ π : A such that π /∈WN .

Lemma 8.
If there exists A,B ∈ P and ϕ ∈ Val(A⇒ B), such that ⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̊⌊B⌋ϕ
then there exists π ∈ T , C ∈ P, ψ ∈ Val(C) such that Γ ⊢ π : Cψ and (Γ, π) /∈ ⌊C⌋ψ.

Proof. – If there exists (Γ, π) ∈ U such that (Γ, π) /∈ ⌊A⇒ B⌋ϕ and
(Γ, π) ∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ. Then Γ ⊢ π : Aϕ ⇒ Bϕ = (A⇒ B)ϕ.
We take C = A⇒ B and ψ = ϕ.

– If there exists (Γ, π) ∈ U such that (Γ, π) ∈ ⌊A⇒ B⌋ϕ and (Γ, π) /∈ ⌊A⌋ϕ⇒̊⌊B⌋ϕ.
Notice that as Γ ⊢ π : Aϕ ⇒ Bϕ, π cannot reduce to a term-abstraction,
by subject-reduction. Then, as π ∈ WN and Γ ⊢ π : Aϕ ⇒ Bϕ, either there
exists λα.ρ ∈ Lλ(π) such that (Γ, α : Aϕ, ρ) /∈ ⌊B⌋ϕ, with Γ, α : Aϕ ⊢ ρ : Bϕ
by subject-reduction. Either there exists ρ ∈ L↓(π) and (Γ ′, π′) ∈ ⌊A⌋ϕ such
that (ΓΓ ′, ρπ′) /∈ ⌊B⌋ϕ, with ΓΓ ′ ⊢ ρπ′ : Bϕ by subject-reduction. We take
C = B and ψ = ϕ
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Lemma 9.
If there exists A ∈ P, ϕ ∈ Val(A), and x of sort T such that x /∈ ϕ, and

⌊∀x.A⌋ϕ 6= ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉)

then there exists π ∈ T , C ∈ P, ψ ∈ Val(C) such that Γ ⊢ π : Cψ and (Γ, π) /∈ ⌊C⌋ψ.

Proof. – If there exists (Γ, π) ∈ U such that (Γ, π) /∈ ⌊∀x.A⌋ϕ and

(Γ, π) ∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉). Then Γ ⊢ π : (∀x.A)ϕ.
We take C = ∀x.A and ψ = ϕ.

– If there exists (Γ, π) ∈ U such that (Γ, π) ∈ ⌊∀x.A⌋ϕ and (Γ, π) /∈ ∀̊T (t 7→ ⌊A⌋ϕ+〈x,t〉).

Then there exists t ∈ T̂ such that (Γ, πt) /∈ ⌊A⌋ϕ+〈x,t〉. As Γ ⊢ π : (∀x.A)ϕ,
we have Γ ⊢ πt : (t/x)Aϕ = Aϕ+〈x,t〉. We take C = A and ψ = ϕ+ 〈x, t〉

Lemma 10.
If there exists A,B ∈ P, ϕ ∈ Val(A⇒ B) or ϕ′ ∈ Val(∀x.A) with x of sort T , x /∈ ϕ′ and

⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̃⌊B⌋ϕ or ⌊∀x.A⌋ϕ′ 6= ∀̊T (t 7→ ⌊A⌋ϕ′+〈x,t〉)

then there exists D ∈ P, π ∈ T , ψ ∈ Val(D) such that Γ ⊢ π : Dψ and (Γ, π) /∈ [D]ψ.

Proof. By lemmas 8 and 9, there exists C, Γ , π and ψ such that Γ ⊢ π : Cψ and
(Γ, π) /∈ ⌊C⌋ψ. Therefore, there exists a proposition D and ψ′ ∈ Val(D) such
that Dψ′ ≡ Cψ and (Γ, π) /∈ [D]ψ′ . And Γ ⊢ π : Dψ′ , by equivalence of Cψ and
Dψ′ .

Lemma 11.
If there exists A,B ∈ P, ϕ ∈ Val(A⇒ B) or ϕ′ ∈ Val(∀x.A) with x of sort T , x /∈ ϕ′

and ⌊A⇒ B⌋ϕ 6= ⌊A⌋ϕ⇒̃⌊B⌋ϕ or ⌊∀x.A⌋ϕ′ 6= ∀̊T (t 7→ ⌊A⌋ϕ′+〈x,t〉)

then there exists a (term-closed) proposition E, π ∈ T and a context Γ such that

Γ ⊢ π : E and π /∈WN .

Proof. By lemma 10, there exists a proposition D, a context Γ , a proof π and
ϕ ∈ V(D) such that Γ ⊢ π : Dϕ and (Γ, π) /∈ [D]ϕ. By induction on D.

– if D is atomic, then as Γ ⊢ π : Dϕ, we have π /∈WN .
– if D = (F ⇒ G)ϕ,

then Γ ⊢ π : (F ⇒ G)ϕ and (Γ, π) /∈ [F ⇒ G]ϕ = [F ]ϕ⇒̊[G]ϕ. If π ∈ WN ,
either there exists λα.ρ ∈ Lλ(π) such that (Γ, α : Fϕ, ρ) /∈ [G]ϕ. Either
there exists ρ ∈ L↓(π) and (Γ ′, π′) ∈ [F ]ϕ such that (ΓΓ ′, ρπ′) /∈ [G]ϕ, with
ΓΓ ′ ⊢ ρπ′ : Gϕ. We conclude by induction hypothesis.

– if D = ∀x.F ,
then Γ ⊢ π : (∀x.F )ϕ and (Γ, π) /∈ [∀x.F ]ϕ. Therefore there exists t ∈ T̂ such
that (Γ, πt) /∈ [F ]ϕ+〈x,t〉, with Γ ⊢ πt : Aϕ+〈x,t〉. We conclude by induction
hypothesis.

Proposition 2 (Completeness). If the theory L≡ is weakly normalizing,
then ⌊.⌋. = 〈A,ϕ〉 7→ ⌊A⌋ϕ is a D

≡
-model of this theory.

Proof. By remark 6 and lemmas 6 and 11.
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4 From D
≡

to C′

4.1 C′, yet another algebra of candidates.

Definition 18.
For all sets E of proof-terms, we define the following properties :

(CR1) For all π ∈ E, π ∈ SN .

(CR2) For all π ∈ E, for all π′ ∈ T such that π → π′, then π′ ∈ E.

(CR′
3) for all n ∈ N, for all ν, µ1, . . . , µn ∈ T , if

- for all i ≤ n, µi is neutral and not normal,
- ∀ρ1, . . . , ρn ∈ T such that for all i ≤ n, µi≤n → ρi, (ρi/αi)i≤nν ∈ E

then (µi/αi)ν ∈ E.

Remark 7. If E satisfies (CR′
3) then, in particular, all neutral not normal terms

whose all one-steps reducts are in E, is in E. That is slightly different from the
usual (CR3) of reducibility candidates, where the neutral term can be normal,
therefore all neutral normal terms are in all reducibility candidates.

Definition 19 (⇒̃).
For all E,F ⊆ T , E⇒̃F = {π ∈ SN such that

- ∀ρ ∈ Lλ(π), ρ = λα.ρ′ with ρ ∈ F
- ∀ρ ∈ L↓(π) and π′ ∈ E, ρπ′ ∈ F}

Lemma 12. ⇒̃ is a function from C′ × C′ to C′.

Proof. Let E,F ∈ C′ and π ∈ E⇒̃F ,

(CR1) π ∈ SN , by definition.
(CR2) If π′ is a one-step reduct of π, then for all π′ ∈ SN and all its leaves
are leaves of π, or reducts of leaves of π.
(CR′

3) Let π = (µi/αi)ν with each µi neutral not normal and such that for
all (ρi) each respectively a one-step reduct of µi, (ρi/αi)ν ∈ E⇒̃F . We can
first notice that π cannot reduce to a term-abstraction, by confluence. Let
us prove that π ∈ E⇒̃F , by induction on the length l of the maximal length
of a reductions sequence from π to one of its leaves.
• If l = 0, then π is either normal and neutral, either a proof-abstraction.

∗ If π is neutral and normal then none of the µi appears in ν, hence
π ∈ E⇒̃F .

∗ If π = λα.π′ then, as each µi is neutral, ν = λα.ν′, with π′ =
(µi/αi)ν

′. And for all (ρi) each respectively a one-step reduct of µi,
(ρi/αi)ν = λα.(ρi/αi)ν

′ ∈ E⇒̃F , therefore (ρi/αi)ν
′ ∈ F . Finally,

π′ ∈ F as it satisfies (CR′
3), and π = λα.π′ ∈ E⇒̃F .

• If l > 0, then all its leaves are leaves of a one-step reduct of π, wich is
in E⇒̃F , by induction hypothesis.

Definition 20 (ÃT ).
For all sorts T , ÃT = T̂ 7→ C′.
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Definition 21 (∀̃T ). For all sorts T and function f ∈ ÃT ,
∀̃T .f = {π ∈ T such that for all t ∈ T̂ , πt ∈ f(t)}

Lemma 13. For all sorts T , ∀̃T is a function from ÃT to C′.

Proof. Let T be a sort, f ∈ ÃT and π ∈ ∀̃T .f .

(CR1) Let t ∈ T̂ (6= ∅), then πt ∈ f(t) ∈ C′, therefore πt ∈ SN and so does π.

(CR2) Let π′ such that π → π′. Then for all t ∈ T̂ , π′t is a one-step reduct
of πt.

(CR′
3) If there exists ν, µ1, . . . , µn ∈ T , such that each µi is neutral not nor-

mal, τ = (µi/αi)i≤n ν and for all (ρi)i≤n ⊆ T , such that for all i ≤ n, µi≤n →

ρi, then (ρi/αi)i≤n ν ∈ ∀̃T .f . Then, for all t ∈ T̂ , τt = (µi/αi)i≤n νt =
(µi/αi)i≤n ν

′ with ν′ = νt. And for all (ρi)i≤n ⊆ T , such that for all i ≤ n,
µi≤n → ρi, we have (ρi/αi)i≤n ν′ = (ρi/αi)i≤n ν t ∈ f(t) by hypothesis,

therefore τt ∈ f(t) as it satifies (CR′
3). And finally, τ ∈ ∀̃T .f .

Definition 22 (C′). C′ is the ldtva 〈C′, ⇒̃, (ÃT ), (∀̃T )〉.

4.2 Building a function from D
≡

to C′

Definition 23 (∆). We consider a context which contains an infinite number
of variables for each proposition. ∆ = (βAi : A)A∈P,i∈N.

Definition 24 (Cl). For all E ⊆ U , we define Cl(E) as follows :
for all k ∈ N,

- Cl0(E) = {π ∈ T such that (∆,π) ∈ E and π is normal }

- Clk+1(E) = {π ∈ T , such that there exists n ∈ N:
∃νπ ∈ T ,∃(µi)i≤n ⊆ SN , each neutral not normal s.t.

π = (µi/αi)i≤n νπ and ∀(ρi)i≤n ⊆ T , s.t. ∀i ≤ n, ρi ∈ L(µi),
we have (ρi/αi)i≤n νπ ∈ Clk(E)}

- Cl(E) = ∪n∈N Cl
n(E)

Remark 8. For all E ∈ D
≡
,

1. for all k ∈ N, Clk(E) ⊆ Clk+1(E),

2. Cl(E) 6= ∅ as Cl0(E) contains all variables α such that ∆ ⊢ α : AE .

3. if π ∈ Cl(E) and π is normal, then π ∈ Cl0(E).

Proposition 3.
For all E ∈ D

≡
, Cl(E) ∈ C′.

Proof. See [2]
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4.3 Proving that Cl(.) is a morphism

⇒-morphism
We prove now that for all E,F ∈ D

≡
, we have Cl(E⇒̊F ) = Cl(E)⇒̃Cl(F ).

Lemma 14. For all E ⊆ T and π ∈ T ,
If π ∈ SN , π is neutral not normal and ∀ρ ∈ L(π), ρ ∈ Cl(E), then π ∈ Cl(E)

Proof. As π ∈ SN , L(π) is defined and finite.
And, if we call km = max{min{k, ρ ∈ Clk(E)}, ρ ∈ L(π)},
then π ∈ Clkm+1(E) ⊆ Cl(E).

Remark 9. In the same way, if there exists νπ ∈ T , and (µi)i≤n ⊆ SN , each
neutral not normal such that π = (µi/αi)i≤n νπ and ∀(ρi)i≤n ⊆ T , such that
for all i ≤ n, ρi ∈ L(µi), then (ρi/αi)i≤n νπ ∈ Cl(E), we have π ∈ Cl(E).

Remark 10. If π ∈ Cl(E⇒̊F ), then its normal form ρ is in Cl0(E⇒̊F ), hence
∆ ⊢ ρ : AE ⇒ AF and therefore, π cannot reduce to a term abstraction, by
confluence.

Proposition 4. For all E,F ∈ D
≡
, then Cl(E⇒̊F ) = Cl(E)⇒̃Cl(F ).

Proof. ⊆ Let π ∈ Cl(E⇒̊F ),
then π ∈ SN as Cl(E⇒̊F ) satisfies (CR1).

- Let ρ ∈ L↓(π), then ρ ∈ Cl(E⇒̊F ) by (CR2), and as it is normal, it is,
in particular, in Cl0(E⇒̊F ), hence (∆, ρ) ∈ E⇒̊F . Let π′ ∈ Cl(E), then
there exists (a minimal) j ∈ N, such that π′ ∈ Clj(E). Let us show that
ρπ′ ∈ Cl(F ) by induction on j.
∗ If j = 0, then π′ is normal and (∆,π′) ∈ E, therefore (∆, ρπ′) ∈ F ,

as (∆, ρ) ∈ E⇒̊F . Moreover, ρπ′ is normal as π′ is normal and ρ is
neutral and normal. Finally ρπ′ ∈ Cl0(F ).

∗ If j > 0, then there exists νπ′ ∈ T , and (µi)i≤n ⊆ SN , each neu-
tral not normal such that π′ = (µi/αi)i≤n νπ′ and ∀(ρi)i≤n ⊆ T ,
such that for all i ≤ n, ρi ∈ L(µi), then (ρi/αi)i≤n νπ′ ∈ Clj−1(E),
therefore ρ (ρi/αi)i≤n νπ′ ∈ Cl(F ), by induction hypothesis. Finally,
ρπ′ = (µi/αi)i≤n (ρνπ′) ∈ Cl(F ) by remark 9.

- Let λα.ρ ∈ Lλ(π), then λα.ρ ∈ Cl(E⇒̊F ) by (CR2), and there exists
(a minimal) k ∈ N, such that λα.ρ ∈ Clk(E⇒̊F ). Let us prove that
ρ ∈ Cl(F ) by induction on k.
∗ If k = 0, then λα.ρ ∈ SN and (∆,λα.ρ) ∈ E⇒̊F , therefore ρ ∈ SN

and (∆, ρ) ∈ F , as we can choose α such that ∆ ⊢ α : AE , by
α-conversion. Finally, ρ ∈ Cl0(F ).

∗ If k > 0, then there exists ν ∈ T , and (µi)i≤n ⊆ SN , each neutral
not normal such that λα.ρ = (µi/αi)i≤n νπ′ and ∀(ρi)i≤n ⊆ T , such
that for all i ≤ n, ρi ∈ L(µi), then (ρi/αi)i≤n ν ∈ Clk−1(E⇒̊F ).
As each µi is neutral, there exists ν′ such that ν = λα.ν′, there-
fore (ρi/αi)i≤n ν′ ∈ Cl(F ), by induction hypothesis. Finally, ρ =
(µi/αi)i≤n (ν′) ∈ Cl(F ) by remark 9.
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Finally, π ∈ Cl(E)⇒̃Cl(F ).

⊇ Let π ∈ Cl(E)⇒̃Cl(F ). then π ∈ SN and π cannot reduce to a term-
abstraction, by definition of ⇒̃.

- If π is a proof-abstraction λα.ρ, then ρ ∈ Cl(F ) and there exists (a
minimal) k ∈ N, such that ρ ∈ Clk(F ). Let us prove that π ∈ Cl(E⇒̊F )
by induction on k.
∗ If k = 0, then ρ is normal and (∆, ρ) ∈ F , therefore λα.ρ is normal

and (∆,λα.ρ) ∈ E⇒̊F , as we can choose α such that ∆ ⊢ α : AE ,
by α-conversion. Finally, π = λα.ρ ∈ Cl0(E⇒̊F ).

∗ If k > 0, then there exists ν ∈ T , and (µi)i≤n ⊆ SN , each neutral
not normal such that ρ = (µi/αi)i≤n ν and ∀(ρi)i≤n ⊆ T , such
that for all i ≤ n, ρi ∈ L(µi), then (ρi/αi)i≤n ν ∈ Clk−1(F ). Hence
π = (µi/αi)i≤n (λα.ν) ∈ Cl(E⇒̊F ) by induction hypothesis and
remark 9.

- If π is neutral and normal, let α ∈ X such that ∆ ⊢ α : AE , then
πα ∈ Cl(F ). Moreover π is neutral and normal, therefore πα is normal,
hence πα ∈ Cl0(F ). Then ∆ ⊢ πα : AF and ∆ ⊢ π : AE ⇒ AF . Let
(Γ ′, π′) ∈ E, then Γ ′ ⊢ π′ : AE , by (P≡), therefore ∆Γ ′ ⊢ ππ′ : AF .
Finally, as π is neutral and normal and π′ ∈ WN , we have ππ′ ∈ WN ,
and ππ′ is isolated, therefore (∆Γ ′, ππ′) ∈ F as it satisfies (P3≡

). Hence
(∆,π) ∈ E⇒̊F and π ∈ Cl0(E⇒̊F ), as it is normal.

- Otherwise, π ∈ SN , is neutral and not normal. All its leaves are either
neutral, either proof-abstractions and all these leaves are in Cl(E)⇒̃Cl(F ),
as it satisfies (CR2), therefore they also are in Cl(E⇒̊F ), as we saw in
the previous points. Finally, π ∈ Cl(E⇒̊F ), by lemma 14.

∀-morphism
We prove now that for all sorts T and f ∈ ÅT , Cl(̊∀T f) = ∀̃T Cl ◦ f .
Notice that for all functions f ∈ ÅT , Cl ◦ f ∈ ÃT .

Lemma 15. For all E ∈ D
≡
, k ∈ N, terms t and term-variables x of same sort,

proof-terms π′,
if (t/x)π ∈ Clk(E), then (λx.π)t ∈ Clk(E).

Proof. By induction on k.

– If k = 0, by (P3≡
).

– If k > 0, by induction hypothesis.

Proposition 5. For all sorts T and f ∈ ÅT , Cl(̊∀T f) = ∀̃T Cl ◦ f .

Proof. ⊆ Let π ∈ Cl(̊∀T f), then there exists (a minimal) k ∈ N such that

π ∈ Clk (̊∀T f). By induction on k.

- If k = 0, (∆,π) ∈ ∀̊T f and π ∈ SN , then for all t ∈ T̂ , (∆,πt) ∈ f(t),
therefore πt ∈ SN and its normal form is in Cl0 ◦ f(t) , hence πt ∈
Cl ◦ f(t), by lemma ??. Finally, π ∈ ∀̃T Cl ◦ f .
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- If k > 0, then π = (µi/αi)iν, with each µi neutral not normal and such
that for all (ρi)i≤n each respectively a leaf of µi, we have (ρi/αi)iν ∈

Clk−1(̊∀T f) ⊆ ∀̃T Cl ◦ f , by induction hypothesis. Let t ∈ T̂ , then
if we write ν′ = νt, we have πt = (µi/αi)iν

′ and for all (ρi)i≤n each
respectively a leaf of µi, (ρi/αi)iν

′ = (ρi/αi)iν t ∈ Cl ◦ f(t). Therefore
πt ∈ Cl ◦ f(t) by remark 9. Finally, π ∈ ∀̃T Cl ◦ f .

⊇ Let π ∈ ∀̃T Cl ◦ f , then there exists a minimal k ∈ N such that there exists
t ∈ T̂ , πt ∈ Clk ◦ f(t). By induction on k.

- If k = 0, then there exists t ∈ T̂ such that πt ∈ Cl0 ◦ f(t). Hence
(∆,πt) ∈ f(t) and πt is normal. Hence π is normal and for all t′ ∈ T̂ , πt′

is also normal, therefore, as πt′ ∈ Cl ◦ f(t), we have, in particular, πt′ ∈

Cl0 ◦ f(t). Finally, for all t′ ∈ T̂ , (∆,πt′) ∈ f(t), therefore (∆,π) ∈ ∀̊T f ,

and π ∈ Cl0(̊∀T f), as it is normal.
- If k > 0, let t ∈ T̂ such that πt ∈ Clk ◦ f(t). Therefore πt = (µi/αi)iν,

with each µi neutral not normal and such that for all (ρi)i≤n each re-
spectively a leaf of µi, we have (ρi/αi)iν ∈ Clk−1 ◦ f(t).
∗ If ν 6= α1, then ν = ν′t, with π = (µi/αi)iν

′, and for all (ρi)i≤n each

respectively a leaf of µi, we have (ρi/αi)iν
′ ∈ Cl(̊∀T f), by induction

hypothesis. We conclude by lemma 14.
∗ Otherwise, every leaf of πt is in Clk−1 ◦f(t). If π is isolated, then all

its leaves ρ are neutral and normal, hence ρt is a leaf of πt, therefore
ρ ∈ Cl(̊∀T f), by induction hypothesis, and we conclude by lemma
14. If π reduces to λx.π′ then all leaves of (t/x)π′ are in Clk−1 ◦f(t),
therefore, for all leaves ρ of π′, we have (λx.ρ)t ∈ Clk−1 ◦ f(t), by

lemma 15, hence λx.ρ ∈ Cl(̊∀T f), by induction hypothesis. And

finally, λx.π′ ∈ Cl(̊∀T f), and so does π.

We finally get the following (second) completeness result:

Proposition 6.
If L≡ is strongly normalizing, then Cl ◦ ⌊.⌋. is a C′-valued model of L≡

(and each element of the model contains an infinity of proof-variables).

Proof. By lemma 1 and propositions 2, 3, 4, 5.

5 Soundness

We finally prove in this section, that having a C′-valued model is also a sound
condition of strongly normalizing theories L≡.

Lemma 16. If J.K. is a C′-valued model of a theory L≡, such that each element
of the model contains an infinity of proof-variables,
then for all A ∈ P, contexts Γ , ϕ ∈ Val(A) ∩ Val(Γ ), π ∈ T and σ substitutions
such that for all declarations α : B in Γ , σα ∈ JBKϕ, we have:

if Γ ⊢ π : A then σϕπ ∈ JAKϕ.
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Proof. By induction on the length of the derivation of Γ ⊢ π : A. By case on the
last rule used. If the last rule used is :

– axiom: in this case, π is a variable α, and Γ contains a declaration α : B
with A ≡ B (therefore |A|ϕ ≡ |B|ϕ). Then σϕπ = σα ∈ JBKϕ = JAKϕ.

– ⇒-intro: in this case, π is an abstraction λα.τ , and we have Γ, α : B ⊢ τ : C
with A ≡ B ⇒ C. Hence, by induction hypothesis, if we choose α such that
α ∈ JBKϕ, by α-conversion, we have σ(α/α)ϕτ = σϕτ ∈ JCKϕ. Therefore
σϕ(λα.τ) = λα.σϕτ ∈ JBKϕ⇒̃JCKϕ = JB ⇒ CKϕ.

– ⇒-elim: in this case, π is an application ρτ , and we have Γ ⊢ ρ : C ≡ B ⇒ A
and Γ ⊢ τ : B. Then σϕτ ∈ JBKϕ, by induction hypothesis.

- If σϕρ is a proof-abstraction then ρ is a proof-abstraction λα.ρ′, and
we have Γ, α : B ⊢ ρ′ : A, therefore (σϕτ/α)σϕρ′ ∈ JAKϕ, by induction
hypothesis, hence σϕ(λα.ρ′ τ) ∈ JAKϕ as it satisfies (CR′

3).

- If σϕρ is neutral and normal, as σϕρ ∈ JA ⇒ BKϕ = JAKϕ⇒̃JBKϕ, we
have σϕ(ρτ) ∈ JAKϕ.

- Otherwise, σϕρ is neutral and not normal and all its leaves µ satisfy
µ (σϕτ) ∈ JAKϕ as we saw in the previous points.

Finally, σϕ(ρτ) ∈ JAKϕ as it satisfies (CR′
3).

– ∀-intro: in this case, π is a term abstraction λx.π′ and we have Γ ⊢ π′ : B
with A ≡ ∀x.B. Let t ∈ T̂ (with T the sort of x), and ϕ′ = ϕ+ 〈x, t〉. Then
σϕ′π′ = σϕ(t/x)π′ ∈ JBKϕ′ , by induction hypothesis. Therefore, σϕ(λx.π′) ∈

∀̃T (t 7→ JBKϕ+〈x,t〉 = JAKϕ (by induction on the maximal length of a re-

ductions sequence from πt, with t ∈ T̂ , using the fact that for all t ∈ T̂ ,
JBKϕ+〈x,t〉 satisfies (CR2) and (CR3’)).

– ∀-elim: in this case, π is an application ρt, and we have Γ ⊢ ρ : ∀x.B with
A = (t/x)B and x /∈ FV (Γ ). By induction hypothesis, we have
σϕρ ∈ J∀x.B, ϕK = ∀̃T (t 7→ JBKϕ+ 〈x, t〉). Therefore σϕ(ρt) = σϕρ (ϕt) ∈
JBKϕ+〈x,ϕt〉 = J(t/x)BKϕ = JAKϕ

Theorem 1. If L≡ has a C′-valued model (such that each element contains an
infinite number of variables), then L≡ is strongly normalizing.

Proof. If F is a C′-valued model of ≡ then for all typing judgement Γ ⊢ π : A
and σ and ϕ as in the previous proposition, we have σϕπ ∈ JAKϕ 6= ∅ hence
σϕπ ∈ SN , therefore π ∈ SN .

6 Rice Salad

Theorem 2. If L≡ is weakly normalizing then it is strongly normalizing.
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