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Abstract

With the aim to inhibit cancer growth and to reduce the risk of metastasis, phar-
maceutical compagnies developed early 90’s anti-metastatic agents called inhibitors
of metalloproteinases. Despite the promising results obtained in preclinic, results of
phase III trials have been somewhat disappointing for late stage cancer patients.
With the aim to investigate mathematically this therapeutic failure, we developed
a mechanistic-based model which integrates cell cycle regulation and macroscopic
tumor dynamic. By simulating the model, we evaluated the efficacy of metallo-
proteinases inhibitors therapies. Simulation results predict the lack of efficacy of
metalloproteinases inhibitors in advanced cancer patients. The theoretical model
may help the design of prospective clinical trials to evaluate the efficacy of anti-
metastatic therapies.
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1 Introduction

Mathematical models of cancer have been extensively developed with the aim
to predict tumor growth and therapeutic strategies efficacy (1; 2; 3; 4; 5).
More complex multiscale models have been set up to address questions in the
prediction of efficacy and toxicity of chemotherapy, radiotherapy (6; 7), and
to investigate the effect of cytostatic treatments such as anti-angiogenic and
anti-maturation therapies (8).

In this paper, we’re interested in cytostatic agents called the inhibitors of
metalloproteinases (MMPi), developed to slow down cancer growth and to
reduce the risk of metastasis. These agents have been designed to inhibit
metalloproteinases (MMP), a group of enzymes which are known to play a
major role in the degradation of basal membranes and extra-cellular matrixes
and thus in cancer invasion. Despite the promising results obtained in animals
models, the clinical development of these agents was rather disappointing.
Retrospective analysis have highlighted a couple of potential reasons to explain
this failure. Nonetheless, other studies are required to allow the resumption of
further clinical trials.

The aim of this paper is to present a mathematical model which integrates
basic understanding on the role of MMP in cancer growth in order to provide
some explanation on the therapeutic failure and prospectively to help the
design of further clinical trials of MMPi. Our model is composed by an age-
structured cell cycle model with three populations. We applied Darcy’s law to
simulate spatially tumor dynamic. The efficacy of simulated MMPi treatment
has been evaluated in term of tumor growth reduction.

2 Biological background

Solid cancers are characterized by an excessive proliferation of cells from ep-
ithelial layers. Due to several genetic mutations, cancer cells acquire the ability
to produce growth signals and to loose sensitivity to anti-growth signals; the
ability to escape from death processes, to replicate indefinitely, and to invade
surrounding tissue to form metastasis (see (9) for further details).

During normal morphogenesis, cells evolve in a cell cycle which we often de-
composed by a proliferative cycle where cells evolve to duplicate DNA and
divide, and a quiescent phase where cells rest and wait for proliferative signals.
It is known that proliferative cells can go to quiescence in case of anti-growth
signals such as hypoxia, i.e. lack of oxygen, and/or nutrient deprivation. How-
ever, quiescent cells can turn back in the proliferative cycle if growth signals
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arise. In vivo tumor growth is often predicted by the Gompertz model (1; 2)
which features that at the beginning of the growth process, a large part of
the cells are cycling in the proliferative phases which results in tumor expo-
nential growth. As the number of cells increases, the local environmental can
not supply cells with enough space, nutrient, and oxygen, and some cells are
moving to quiescence. During cancer growth, new genetic mutations confer to
the cells the ability to become unsensitive to anti-growth signals and thus to
continue to proliferate.

Anti-neoplastic agents can be divided in two categories. The first, called cyto-
toxics, are aimed at killing cells by damaging their genetic contents. Standard
chemotherapies and ionizing radiations belong to this class. Often their use is
limited by the toxicity they generate on healthy tissue. Recently, the better
understanding of the molecular circuits of cancer (10) encouraged the develop-
ment of targeting treatments acting on molecular processes involved in tumor
cancer in order to block cancer growth without damaging healthy cells. In
interfering with the molecular pathways involved in cell proliferation (see (9)
for a summary of these molecular pathways), these cytostatic agents have the
ability to promote proliferative cells to move to quiescence and dormant cells
to remain blocked in the quiescent phase of the cell cycle. Examples of such
therapeutic agents are Cetuximab which prevent Epidermal Growth Factor
(EGF) to bind EGFR and activate the mitogenic cascade (MAPK). The anti-
angiogenic agents Bevacizumab prevent the binding of the Vascular Endothe-
lial Growth Factor (VEGF) to the receptors FLT-1 and FLK-1 and inhibit
angiogenesis. In this paper, we are interested in anti-invasive cytostatic agents
called the inhibitors of metalloproteinases (MMPi). Matrix Metalloproteinases
(MMP) are a group of enzymes able to degrade the components of the Extra
Cellular Matrix (ECM) (11). Many evidences in experimental studies prior to
the 1990 reveal the role of MMP in promoting cancer growth, tissue invasion,
and development of metastasis (12). Despite the structural differences between
the members of the MMP family, non-specific inhibitors have been developed
since at the time the precise role of each members was unknown and MMP
action was seen globally to promote invasion and thus cancer growth (13).
Preclinical studies have shown a significant benefit of MMPi to inhibit tu-
mor growth and to prevent metastasis in animal models (14). Despite these
encouraging results, clinical trials have been disappointing. Phase I showed
toxicity which was not expected from preclinical studies. Results of Phase II
were difficult to analyze (14). Indeed, the conventional endpoints used to mea-
sure efficacy of anti-cancer drugs, e.g., reduction of tumor volume, were not
relevant for cytostatic agents since they do not kill cell but rather block pro-
liferation. Phase III trials did not show any significant efficacy on the clinical
endpoints (14; 15).

Retrospective analysis provided few arguments to explain the failure of these
therapeutic developments. It is admitted that a better understanding of each
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MMP is required before proceeding new development attempts.

3 Methods

We present a multiscale mathematical model of avascular tumor growth to
investigate the role of MMPi treatment on cancer growth. The mathematical
core is composed by an age-structured model where we distinguished between
proliferative and quiescent cells. The cell cycle model is embedded in a macro-
scopic model based on Darcy’s law to describe tumor spatial dynamic.

3.1 Cell cycle model

We developped an age-structured mathematical model of the cell cycle where
cell cycle phase duration were set according to literature (16). We distin-
guished between the proliferative phases P1 and P2, and the quiescent phase
Q. We modeled the ‘Restriction point’ R (17) at the end of phase P1 where
environmental conditions are checked (11).

Cells evolve in time t and in age a in the proliferative phases of the cell cycle.
We assumed that if the local number of cancer cells was above a threshold
Tht, then overpopulation was declared and leads cells at the end of P1 to
compartment Q (quiescence) which is not age-structured. Quiescent cells can
come back to the proliferative cycle (in phase P2) as soon as the environmental
conditions become appropriate again, i.e. the local number of cells goes below
Tht. The age-structured model can be written as follows:





∂P1

∂t
+ ∂P1

∂a
= 0,

∂P2

∂t
+ ∂P2

∂a
= 0,

∂Q
dt

= (1− f(N))P1(a = amax,P1)− [f ′(N)]+Q,

(1)

with the following initial conditions:





P1(a = 0) = 2P2(a = amax,P2),

P2(a = 0) = f(N)P1(a = amax,P1) + [f ′(N)]+Q,
(2)

where N denotes the local number of cells and f(N) is a boolean function
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Fig. 1. The proliferative cycle is composed by two phases: P1 and P2. At the end of
P2, cells divide and new born cells begin their cycle in P1. At the last age of phase
P1, we modeled the restriction point R, where external conditions are checked. If
overpopulation occurs, proliferative cells go to the Q compartment (quiescence).
These cells can go back in the proliferative cycle (at the first step of phase P2) if
the external conditions allow it.

such that:

f(N) =





1 if N < Tht

0 otherwise
(3)

See Figure 1 for a schematic representation of the cell cycle model.

3.2 Macroscopic model

We work in the framework of continuous meachnaics and we descrive the
medium by using a velocity v and a pressure p that are related to the Darcy’s
law (18; 19; 20):

v = −k∇p (4)

where k denotes the media permeability. We refer to (18) for a precise descrip-
tion and justification of such models in the context of potential flows. Here,
both quantities v and p are related to a mixture involving several species.
These species are described by nϕ(x, y, a, t) that represents the cell numbers
(by volume unit) of cancer cells with spatial position (x, y) at time t with
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age a in a given proliferative cycle phase ϕ. Applying the principle of mass
balance, the advection equations are:





∂nϕ

∂t
+ ∂nϕ

∂a
+∇ · (vnϕ) = 0, ∀ϕ ∈ {P1, P2},

dnQ

dt
+∇ · (vnQ) = (1− f(N))P1(a = amax,P1)− [f ′(N)]+nQ,

(5)

where N(x, y, t) = nQ(x, y, t) +
∑

ϕ

∫
a nϕ(x, y) ∀ϕ ∈ {P1, P2} is the total

number of cancer cells (by volume unit). Note that the quiescent phase Q is
not age-structured.

We denote M the density of healthy tissue which evolves as follows:

dM

dt
+∇ · (vM) = 0, (6)

and assume that N(x, y, t) + M(x, y, t) = Constant ∀(x, y, t).

Integrating on ages a equations 5, adding them and using the relation N +M
is constant, one can find the following relation:

[nϕ]
a=amax,ϕ

a=0 +∇ · v = (1− f(N))P1(a = amax,P1)− [f ′(N)]+nQ. (7)

Now using the initial conditions 2, we find the following equation for the
velocity:

∇ · v = P2(a = amax,P2). (8)

Thus, the pressure field p satisfies the elliptic equation:

−∇ · (k∇p) = P2(a = amax,P2). (9)

We set nϕ and nQ on part of the boundary where v · ν < 0, with ν denoting
the outgoing normal to the boundary . For the pressure p, we set p = 0 on the
boundary of the computational domain.

3.3 MMP, membrane degradation and action of therapeutic

It has been basically assumed that MMP are secreted by cancer cells and that
the degradation of the matrix components was function of MMP. We modeled
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this as follows:




MMP = κMMP N(t),

dECM
dt

= −β(MMP (t)),
(10)

where ECM stands for the basal membrane to be degraded by cancer cells
and β is an hyperbole-like function written as an ‘Emax model’:

β(MMP (t)) =
βmax ·MMP (t)

κβ + MMP (t)
. (11)

where βmax and kβ are positive constants.

To simulate the evolution of a population of cancer cells under MMPi treat-
ment we basically set MMP (t) = 0 during the whole simulation which directly
results in preventing ECM degradation and thus cancer cells dissemination in
the surrounding tissue.

3.4 Evaluation of the therapeutic benefit

As the action of MMPi is aimed at promoting the passage of cells from prolif-
eration to quiescence, we’ll use the proportion of quiescent cells as the efficacy
marker. In the following, nQ and n?

Q will denote respectively the local num-
ber of quiescent cells without MMPi and with MMPi treatment. The absolute
effect (AE) of the therapy will be compute as follows:

AE =
1

T

t=T∑

t=0

(

∫ ∫
n?

Q(t)dxdy
∫ ∫

N?(t)dxdy
−

∫ ∫
nQ(t)dxdy∫ ∫
N(t)dxdy

), (12)

where N? is the total number of cells when MMPi treatment is applied, and
T the global simulation time. The evaluation of the therapeutic benefit will
be done as follows:





if AE > 0 the treatment is effective

otherwise the treatment is useless (or harmful)
(13)

3.5 Meaningful model parameters

We identified two meaningful parameters which characterize both cell and tis-
sue properties. At the cell level, the threshold Tht is used to decide wether cells
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Fig. 2. From left to right and top to down. Illustration of ECM degradation and
tumor cells in vitro invasion. Initially, tumor cells compose a central spot (red then
light) surrounded by ECM (dark red). The MMP degrade the ECM (black ring)
and allow tumor cells to invade the domain.

continue to proliferate or go to quiescence. Thus, an increase in this threshold
characterizes a lack of sensitivity towards overpopulation. At the macroscopic
level, the critical parameter is the tissue porosity noted k in the Darcy’s law
(see Eq. 4). Different values of k results in different cell spatial motion and
in consequence different distribution in the cell cycle phases according to the
regulation of the cell cycle (see Eq. 3).

3.6 Computation domain and initial conditions

We assumed that the domain is composed by healthy and cancer cells delim-
ited from surrounding tissue by a membrane. Figures 2, 3, 4 present some
illustrations of spatial-temporal evolution of cancer cells in lifelike geometries.

In the following we will keep the spatial configuration presented Figure 4 and
note k0 and k1 the porosity constants of the healthy tissue and the mem-
brane respectively with k0 > k1 (see Figure 5). Initially, cells are distributed
uniformly in the phases of the cell cycle.

Parameters used in the simulations are presented Table 1.
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Fig. 3. From left to right and top to down. Illustration of in situ ductal carcinoma
growth without basal membrane degradation. Initially, tumor cells compose a small
area located at the bottom-left area of the epithelial layer. Tumor cells proliferate
and deform the basal membrane (white ring) of the duct.

Fig. 4. From left to right and top to down. Illustration of invading epithelial cancer
cells with basal membrane and ECM degradation. Initially, tumor cells compose a
central small area adjacent to the membrane. Tumor cells proliferate, MMP degrade
the membrane and cells invade the surrounding tissue.
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Fig. 5. Configuration used for the computer simulations aimed at evaluating the
therapeutic benefit of MMPi treatment. Cancer cells, which form initially a small
square, are embedded in the healthy tissue with porosity k0 and placed against a
basal membrane with higher porosity k1.

Parameter Description Equation Value Source

T Global simulation time

amax,P1 Duration of P1 1 and 2 20 (16)

amax,P2 Duration of P2 2 18 (16)

κMMP MMP secretion coefficient 10 5 · 10−4

κβ parameter of function β 11 0.01

βmax parameter of function β 11 0.1
Table 1
Dimensionless parameter values used for the numerical simulations.

4 Results

According to the macroscopic model (Darcy’s law), the media porosity regu-
lates the tendency for cells to move towards new areas or to remain at their
spatial position. When the MMPi treatment is applied, it prevents membrane
degradation. The porosity of the membrane should not allow cells to invade
new tissue areas. In consequence, proliferating cells should remain at their
spatial location. After a certain number of cycles, we expect that the local
number of cells goes over the overpopulation threshold Tht which promote
proliferative cells to move to quiescence. This will result in a positive absolute
effect (see Eq. 12).
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Fig. 6. Sensitivity of the absolute effect (AE) to the variation of the porosity ratio
between surrounding tissue and basal membrane (k0/k1).

4.1 Influence of porosity ratio k0/k1 on the efficacy of MMPi treatment

We first analyze how the efficacy of MMPi treatment is sensitive to the varia-
tion of the porosity ratio k0/k1. We ran six simulations for ratio porosity values
1, 102, 104, 108, 1010, 1012. For each porosity ratio values, we ran the simulations
over 300 time steps, with and without MMPi treatment, and compute the ab-
solute benefit with Eq. 12. Results are presented Figure 6.

While the ratio k0/k1 increases (the porosity of the membrane decreases re-
spect the porosity of the surrounding tissue), we get as expected a positive
absolute effect which indicates that the MMPi treatment is effective, i.e., it
promotes proliferative cells to move massively to quiescence. Note that when
the porosity of the surrounding tissue is equal to the membrane porosity,
there’s no therapeutic benefit to apply the MMPi treatment. Indeed, when
the tissue porosity is equal to the membrane’s one (k0/k1 = 1), degradation
does not have any effect on spatial availability for cells and thus repartition
in phase P and Q of the cell cycle is not affected.
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Fig. 7. Sensitivity of the absolute effect (AE) to variation of the overpopulation
signal (Tht).

4.2 Influence of overpopulation threshold (Tht) on the efficacy of MMPi
treatment

We ran six simulations for overpopulation threshold values 1000, 2000, 3000,
4000, 6000, and 8000. For each of these values, we ran the simulations over
300 time steps, with and without MMPi treatment, and compute the absolute
benefit with Eq. 12. For relatively low value of Tht we get a positive absolute
effect which means that MMPi treatment is effective in slowing down tumor
growth. When Tht is increased beyond a critical value (around 4000), the
absolute effect collapses and becomes negative. Results are displayed Figure 7

Variation of the overpopulation threshold can change drastically the effect of
the MMPi treatment: from beneficial to harmful.

We plotted Figure 8 the proportion of quiescent cells over time with and with-
out MMPi for three different overpopulaton threshold values (1000,4000, and
8000). For the two first values of the threshold (1000, and 4000) the absolute
benefit is positive (see Figure 7) while it is negative for the ultimate value
(8000). Indeed, for Tht = 8000, quiescent cells in the case of MMPi treatment
appear with a delay respect the situation without MMPi. The negative ab-
solute effect results essentially from this delay.
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Fig. 8. Proportion of quiescent cells (quiescent rate) over simulation time (in hour)
without MMPi (black curves) and with MMPi (red curves) for three overpopulation
threshold values: Tht = 1000, 4000, 8000.

We show in Figure 9 the spatial configuration of quiescent and proliferative
cells without MMPi (top) and with MMPi (bottom) from three different time
(from left to right). The difference in the evolution of cell spatial configu-
ration with and without MMPi can explain the delay observed in the ap-
pearance of quiescent cells when no MMPi is applied. When simulated the
tumor growth with the presence of the treatment (bottom), tumor cells tend
to extend uniformly within the computational domain which generate a ho-
mogeneous spheroid-like shape. On the contrary, in the absence of treatment,
membrane degradation occurs and cells have tendency to be engulfed in the
area when the membrane has been degraded. Cells at the center and the top
of the initial tumor mass will be attracted towards the hole in the membrane
and will not expand uniformly has before. In this case, the central part of
the tumor mass will become quiescent more quickly than in the case when
membrane degradation is prevented.
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Fig. 9. From left to right: Spatial configuration of proliferative cells (white), and
quiescent cells (red, composing the inner part of the mass) at time t = 40, 128,
and 300. Top: Without MMPi. Bottom: With MMPi treatment. At time t = 128,
quiescent cells have appeared in the case of no MMPi treatment while at the same
time, all cells are proliferative in the case of MMPi treatment.

5 Conclusions

MMPi were thought as promising therapeutic agents to slow down cancer
growth and reduce the risk of metastasis. Their clinical development have
failed despite good results obtained in preclinical trials. Retrospective analysis
have highlighted the lack of knowledge on the role of MMP in cancer progres-
sion and several studies have emphasized the need to apply MMPi treatments
on early stage cancer patients. It is known nowadays that MMP can also, ac-
cording to the family enzymes they belong to and/or according to the patient
disease stage, inhibit cancer growth (21). In this paper, we somehow inves-
tigated wether these conclusions could have been anticipated by integrating
within a multiscale mathematical model the knowledge that was available at
the time.

We built a mathematical model which integrates the basic actions of MMP
within a macroscopic tumor growth regulated by a continuous cell cycle model.
Simulation results obtained show that the overall efficacy of MMPi treatment
may depend on the multiscale coupling between cell cycle regulation and tumor
macroscopic behavior. Indeed, with the simple spatial configuration used, we
showed that as cancer cells become insensitive to anti-growth signal, MMPi
treatment efficacy decreases.
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However, as shown, the results obtained are sensitive to the spatial configura-
tion of tumor cells and other initial configuration taken may lead to different
and perhaps opposite results.

Nevertheless, the presented results are comparable to the recent conclusions
raised by the retrospective analysis. Indeed advanced cancer are usually char-
acterized by several mutations which give to cells a proliferating advantage by
loosing their sensitivity to anti-growth signals. The simulation results empha-
size the role of cells loosing sensitivity to anti-growth signals in the lack of effi-
cacy of MMPi treatment. This may explain the lack of efficacy obtained during
clinical development where MMPi treatment was given only at advanced stage
cancer patients. However, the MMPi action preventing membrane degradation
and tumor cells to invade the surrounding tissue should have been taken into
account, together with the effect on cell proliferation, for a proper evaluation
of therapy efficacy.

On a technical point of view, a three-dimensional tumor growth model could
reveal new factors in the dynamics. We chose a continuous approach which
provides density cells rather than actual cell number and we didn’t consider
cell shape, which has been shown to be important in the description of growth
control process (22). To be more realistic, the present model in its 3D version
should be coupled with an angiogenic model to allow simulation of MMPi
treatment action on vascular tumor growth.

In conclusion, these results should be taken as theoretical and qualitative.
Nonetheless, they highlight the need to consider multiscale regulation of tumor
growth in the prediction of cancer treatment efficacy. Beyond the complexity
of the molecular machinery, prediction of cytostatic therapies efficacy must
integrate multiscale regulation of tumor growth via the cell cycle dynamic.

Nowadays, efforts are made to develop specific MMPi inhibitors to target the
MMP which are effectively responsible for membrane degradation. Hopefully,
a mathematical model as the one presented here may be used to optimize the
design of further clinical development of these agents.
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