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Exponential Stabilization of Delay Neutral Systems under

Sampled-Data Control

Alexandre Seuret, Emilia Fridman and Jean-Pierre Richard

Abstract— This paper considers the exponential stabilization
of delay systems of the neutral type via sampled-data control.
The control input of the neutral system can present a delay,
constant or variable. The sampling period is not necessarily
constant. It is only assumed that the time between to succes-
sive sampling instants is bounded. Since the sampling effect
(sampling and zero-holder) is equivalent to a variable delay,
the resulting system is modelled as a continuous-time one,
where the control input has a ‘non-small’ time-varying delay
belonging to some interval [h− µ,h + µ]. For instance, h− µ
may represent the minimum input delay, and2µ the additional
delay generated by the combination of the sampling effect with
the input delay variation. This results in a system with ‘non-
small’ time-varying delays (i.e. delays with a known and non-
zero minimum value), the exponential stabilization of which is
possible under LMI conditions. Two examples are provided.
The first one deals with the sampled-data control of a neutral
system. The second one considers the stabilization of a flexible
rod with continuous, delayed control

Index Terms— Time-varying delay, neutral system, sampled-
data control, stabilization, LMI, flexible rod.

I. INTRODUCTION

Recent papers [8], [27] considered the modelling of
continuous-time systems with sampled-data control in the
form of continuous-time systems with delayed control in-
put and which model was combined with Lyapunov-based
methods. The digital control law produced by a sampler
with zero-holder can be represented as follows:

u(t) = ud(tk) = ud(t − (t − tk)) = ud(t −η (t)),
tk ≤ t < tk+1, η (t) = t − tk.

(1)

Here, ud is the discrete-time control signal and the time-
varying delayη (t) = t − tk is piecewise-linear with deriv-
ative η̇ (t) = 1 for t 6= tk. Moreover,η (t) ≤ tk+1− tk ≤ µ1,
whereµ1 is the maximum sampling interval. This case of
‘small’ time-varying delayτ (t) ∈ [0,µ] has been analyzed
in the above papers by using Lyapunov-Krasovskii method
via the descriptor model transformation [6] and by the
Lyapunov-Razumikhin technique, correspondingly.

If there is an additional constant delayh2 > 0 in the con-
trol input, the delayed digital control law can be modelled
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in the form:

u(t −h2) = ud(tk −h2) = ud(t −h2− (t − tk)),
u(t −h2) = ud(t − τ (t)),

tk ≤ t < tk+1, τ (t) = h2 + t − tk.
(2)

Thus, the delay is ‘non-small’, i.e.τ (t) ∈ [h2 − µ2,h2 +
µ2] with h2 > 0 and h2 − µ2 ≥ 0. Only a few papers
[7], [15], [23] have been published on this topic. The
asymptotic stability of linear retarded-type systems with
one time-varying ‘non-small’ delay has been analyzed by
[15]. Sufficient stability conditions, there, have been derived
via a modification of ‘complete’ Lyapunov-Krassovskii
functionals, which corresponds to necessary and sufficient
stability conditions. In [7], a new construction of Lyapunov-
Krasovskii functionals, which generalizes the descriptor one
[6], was introduced. Stability andH∞ control of neutral
systems with multiple ‘non-small’ delays have been studied
in [23], using the same idea.

Concerning the sampled-data stabilization problem, two
main approaches have been used before the paper [8] (see
e.g. [4], [22], [20], [24]). The first one is based on the lifting
technique [1], [26] in which the problem is transformed
into an equivalent finite-dimensional discrete problem. This
approach seems to be unapplicable to the case of state-delay.
The second approach is based on the representation in the
form of an hybrid discrete/continuous model. Application
of this approach to linear systems leads to necessary and
sufficient conditions for stability andL2-gain analysis in the
form of differential equations (or inequalities) with jumps
(see e.g. [3], [22]). The latter approach has been applied
to H∞ control of retarded type systems with constant state
delay [9], where partial differential Riccati equations with
jumps have been derived. The method is not applicable to
neutral systems with input delay. Recently, it has been ap-
plied to the sampled-data stabilization of linear state-delay
systems in the case of uniform (periodic) sampling [14].
To overcome difficulties of solving differential inequalities
with jumps, a piecewise-linear in time Lyapunov functional
has been suggested. As a result, LMIs have been derived
which do not depend on the sampling interval and thus are
very conservative.

Concerning the exponential stabilization problem, some
applications such as observer design, networked control,
tele-operated systems or chained systems often need ex-
ponential convergence, since it is the best way of ensuring
some speed performance. Some authors have investigated
the exponential stability of delayed systems [18], [19].



However, these results are limited to constant delays. In
many cases, such as the communication lines used in
networked control, the delays cannot be reduced to constant
ones. Recently, Seuretet al developed exponential stability
results for retarded systems with time-varying delays [21].

The present work focuses on exponential stability and sta-
bilization of neutral systems with bounded, time-varying de-
lays. The approach, which involves a Lyapunov-Krasovskii
functional and a descriptor model, was developed in [10],
[11], [12] for asymptotic stabilization. We combine it with
a polytopic approach [25] that allows one to reduce the
time-varying delay to a convex sum of its bounds [21].

In the present paper, we generalize the approach of [8] to
the sampled-data stabilization of systems with state and in-
put delay. Moreover we consider, more widely,neutral-type
linear systems described by: ˙x(t)−Fẋ(t −g(t)) = A0x(t)+
A1x(t − τ1(t)) + Bu(t − h2)), which will be presented in
the next section. For systems withg(t) = h1 constant,
we complete this result with the exponential stabilization.
The solutions are derived by solving the problem for a
continuous-time system with uncertain but bounded time-
varying ‘non small’ delay in the control input.

The obtained conditions are robust with respect to differ-
ent samplings with the only requirement that the maximum
sampling intervalµ1 is not greater than some computedµ .
Moreover, the feasibility of the LMI is guaranteed for small
µ if the corresponding continuous-time controller stabilizes
the system.

Notation: Throughout the paper, the superscriptT stands
for matrix transposition,Rn denotes then-dimensional
Euclidean space with the norm|x| of vector x, Rn×m is
the set ofn×m real matrices with the Euclidean norm‖·‖.
The notationP>0 for P ∈Rn×n means thatP is symmetric
and positive definite. A star∗ in a matrix represents a
symmetrical entry.

II. PROBLEM FORMULATION

Consider the system:

ẋ(t)−Fẋ(t −g(t)) = A0x(t)+A1x(t − τ1(t))
+Bu(t −h2),

x(t) = φ(t), f or t ∈ [−h̄,0],
(3)

wherex(t)∈Rn is the system state,u(t)∈Rm is the control
input, Ai and B are constant matrices,φ is a continuously
differentiable initial function and̄h is an upper-bound on
the time-delaysτ1 and g. For simplicity only, we consider
one delayτ1 and one delayg. However, the results of this
paper can be easily extended to the case of multiple delays
τ1, ...,τm,g1, ...,gk.

The input delayh2 is constant but this also can be
easily generalized toh2(t) time-varying, sinceh2 will be
considered in combination with an additional varying delay
coming from the variable sampling.

We assume thatg(t) is a differentiable function satisfying
ġ(t) ≤ d0 < 1 for all t ≥ 0, whered0 is a known upper-
bound. Moreover, we assume that‖F‖ < 1. The latter

�

Fig. 1. Problem representation

guarantees that the difference equationx(t)−Fx(t−g(t)) =
0 is asymptotically stable [2],[16]. Our asymptotic stability
results will be independent ong and dependent ond0. Our
exponential stability results will be considered in the case
ġ(t) = 0.

The uncertain delayτ1(t) is supposed to have the follow-
ing form τ1(t) = h1+η1(t), whereh1 > 0 is a constant value
andη1 is a time-varying perturbation. We will consider that
η1(t) is a piecewise-continuous function, satisfying:

−µ1 ≤ η1(t) ≤ µ1, ∀ t ≥ 0. (4)

We consider a piecewise-constant control law of the form
u(t−h2) = ud(tk −h2), tk ≤ t < tk+1, whereud is a discrete-
time control signal and 0= t0 < t1 < ... < tk < ... are the
sampling instants. Our objective is to find a state-feedback
stabilizing controller in the form:

u(t −h2) = Kx(tk −h2), tk ≤ t < tk+1. (5)

The piecewise-constant control law is equivalent to a
continuous-time control with a time-varying piecewise-
continuous (continuous from the right) delayτ2(t) = h2 +
t − tk as given in (2), whereh = h2. Thus, we look for a
state-feedback controller of the formu(t) = Kx(t − τ2(t)).
Substituting the latter controller into (3), we obtain the
following closed-loop system:

ẋ(t)−Fẋ(t −g(t)) = A0x(t)+A1x(t − τ1(t))
+BKx(t − τ2(t))

τ2(t) = h2 + t − tk, tk ≤ t < tk+1.

(6)

We assume thatA1: −µ2 ≤ tk+1− tk ≤ µ2, ∀k ≥ 0.

From A1 and sinceτ2(t) = h2 + tk+1− tk, it follows that
h2− µ2 ≤ τ2(t) ≤ h2 + µ2. We will further consider (6) as
the ‘system with uncertain and bounded delay’.

III. A SYMPTOTIC STABILITY OF THE CLOSED-LOOP

SYSTEM

Lemma 1 (Stability, [7] (Case 1)): Given a gain ma-
trix K, the system (6) is stable for all the sam-
plings satisfying A1, if there existn×n matrices 0<
P1, P2, P3, Si, U, Yk1, Yk2, Zk1, Zk2,Zk3,Rk andRka, k=1,2



that satisfy:


















Ψ̄1 PT

[

0
A1

]

−Y T
1 PT

[

0
BK

]

−Y T
2 PT

[

0
F

]

∗ −S1 0 0
∗ ∗ −S2 0
∗ ∗ ∗ −(1−d0)U
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

µ1PT

[

0
A1

]

µ2PT

[

0
BK

]

0 0
0 0
0 0

−µ1R1a 0
∗ −µ2R2a



















< 0,

(7)

[

Rk Yk

∗ Zk

]

≥0, k = 1,2, (8)

whereYk,Zk and Ψ̄1 are given by:

Ψ̄1 = Ψ̄n +

[

0 0
0 ∑2

k=1 2µkRka

]

,

Ψ̄n = PT

[

0 I
A0 −I

]

+

[

0 I
A0 −I

]T

P+∑2
k=1(hk + µk)Zk

+∑2
k=1

[

Yk

0

]

+∑2
k=1

[

Yk

0

]T

,

+

[

∑2
k=1 Sk 0

0 ∑2
k=1(hk + µk)Rk +U

]

Yk = [Yk1 Yk2], Zk =

[

Zk1 Zk2
∗ Zk3

]

(9)

IV. EXPONENTIAL STABILITY OF THE CLOSED-LOOP

SYSTEM

We consider in this section the neutral type system (3) in
the (particular but frequent) caseg(t) = h1 . As usual [19],
[21], being given some rateα > 0, the closed-loop system
(3) is said to beα−stable, or ‘exponentially stable with the
rateα ’, if there exists a scalarK ≥ 1 such that its solution
x(t; t0,φ) satisfies:

|x(t, t0,φ)| ≤ K|φ|e−α (t−t0). (10)

Substituting the new variablez(t) = eα tx(t) in (6), we
find:

ż(t) = (A0 +α I)z(t)+ eατ1A1z(t − τ1(t))
+eατ2BKz(t − τ2(t))+Feα t ẋ(t −h1),

(11)

the last term of which can be expressed with the variable
z :

eα t ẋ(t −h1) = eα h1 ż(t −h1)−α eα h1z(t −h1), (12)

which finally leads to the transformed neutral system:

ż(t) = (A0 +α I)x(t)+ eατ1(t)A1x(t − τ1(t))
−α eα h1Fz(t −h1)+Feα h1 ż(t −h1)

+eατ2(t)BKx(t − τ2(t)).
(13)

Our purpose is to find conditions for the solutionz = 0
of this transformed system (13) to be stable. Then, these
conditions will assure the exponential,α−stability (10) of
the original system (6). Note that a necessary condition of
exponential stability is that the spectral radius ofeα h1F is
less than one.

However, system (13) is a linear time-varying one be-
cause of the gainseατ1(t) and eατ2(t).This does not allow

for applying directly Lemma 1. This difficulty can be
overcome by applying a polytopic approach [21] [13].
Indeed, according to A1 and (2), the time-varying terms
eατ1(t) andeατ2(t) are bounded as follows:

eα (hi−µi) ≤ eατ i(t) ≤ eα (hi+µi), ∀t ≥ 0, ∀i = 1,2.

This means there exists unknown scalar and positive
functions λi j : R → R, (i, j) ∈ {1,2}2, satisfying the
following convexity conditions:

∀t ≥ 0, ∀(i, j) ∈ {1,2}2 λi j(t) ≥ 0, ∑2
i, j=1 λi j(t) = 1 (14)

and such that equation (13) is written as:

ż(t) = ∑2
i, j=1 λi j(t){(A0 +α I)z(t)+β1iA1z(t − τ1(t))

−α eα h1Fz(t −h1)+Feα h1 ż(t −h1)
+β2 jBKz(t − τ2(t))},

(15)

where
β11 = eα (h1−µ1), β12 = eα (h1+µ1),

β21 = eα (h2−µ2), β22 = eα (h2+µ2),
(16)

Now, applying the results of [7] (Case 1) yields the
following result.

Theorem 1 (Exponential stability): Given a gain matrix
K, the system (6) isα−stable for all the samplings satis-
fying A1, if there existn×n matrices 0< P1,P2,P3, Sk, U,

Yk1, Yk2, Zk1, Zk2, Zk3, Rk and Rka, k =1,2 that satisfy (8)
and



















Ψ2 PT

[

0
β̄1iA1−α eα h1F

]

−Y T
1 PT

[

0
β2 jBK

]

−Y T
2

∗ −S1 0
∗ ∗ −S2
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

PT

[

0
eα h1F

]

µ1PT

[

0
β1iA1

]

µ2PT

[

0
β2 jBK

]

0 0 0
0 0 0

−U 0 0
∗ −µ1R1a 0
∗ ∗ −µ2R2a



















< 0,

∀(i, j) ∈ {1,2}2

(17)

whereYi,Zi are given by (9) and

Ψ2 = Ψ̄ne +

[

0 0
0 ∑2

k=1 2µkRka

]

,

Ψ̄ne = PT

[

0 I
A0 +α I −I

]

+

[

0 I
A0 +α I −I

]T

P

+∑2
k=1

(

[

Yk

0

]

+

[

Yk

0

]T
)

+∑2
k=1(hk + µk)Zk

+

[

∑2
k=1 Sk 0
0 ∑2

k=1(hk + µk)Rk +U

]

,

(18)

V. EXPONENTIAL STABILIZATION OF NEUTRAL

SYSTEMS

Theorem 2 (Exponential stabilization): The control law
(5) exponentially stabilizes system (3) if, for some positive
numbersα andε, there exists a positive definite matrix̄P1,

matrices of sizen× n P̄, Ū , Z̄k1, Z̄k2, Z̄k3, Ȳk1, Ȳk2 from



definition (9) and an×m matrixW, such that the following
LMI conditions hold fori, j = 1,2 :



















Ψ3

[

β̄1iA1P̄−α eα h1FP̄− Ȳ T
11

ε(β̄1iA1P̄−α eα h1FP̄)− Ȳ T
12

] [

β2 jBW − Ȳ T
21

εβ2 jBW − Ȳ T
22

]

∗ −S̄1 0
∗ ∗ −S̄2
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
[

eα h1FP̄
εeα h1FP̄

]

µ1

[

β1iA1P̄
εβ1iA1P̄

]

µ2

[

β2 jBW
εβ2 jBW

]

0 0 0
0 0 0

−Ū 0 0
∗ −µ1R̄1a 0
∗ ∗ −µ2R̄2a



















< 0,

∀(i, j) ∈ {1,2}2

(19)

and
[

R̄i Ȳi1 Ȳi2
∗ Z̄i1 Z̄i2
∗ ∗ Z̄i3

]

≥ 0, (20)

where
Ψ̄311 = (A0 +α I)P̄+ P̄T (A0 +α I)T

+∑2
k=1

(

S̄k +(hk + µk)Z̄k1 + Ȳk1 + Ȳ T
k1

)

,

Ψ̄312 = P̄1− P̄+ εP̄T (A0 +α I)T

+∑2
k=1 ((hk + µk)Z̄k2 + Ȳk2) ,

Ψ̄322 = −ε(P̄+ P̄T )
+∑2

k=1 ((hk + µk)(Z̄k3 + R̄k)+2µkR̄ka) .

The correspondingα−stabilizing state-feedback gain is
given by:

K = WP̄−1
. (21)

Proof: Following [23], we apply Theorem 1 with:
P3 = εP2, whereε ∈ R is a tuning scalar parameter. Note
that P2 is nonsingular since the only matrix which can be
negative definite in the second block on the diagonal of (19)
is −ε(P2 +PT

2 ). Defining:

P̄ = P−1
2 (22)

For all the matrical variablesV ∈ [P1 Yi j Si U Ri Ria

Zik] for all i = 1,2, j = 1,2, k = 1,2,3 the new vari-
able V̄ is defined by P̄TV P̄. and W = KP̄, multiplying
(19) by diag{P̄, P̄, P̄, P̄, P̄, P̄, P̄}, and its transpose, from
the right and the left, respectively, and multiplying (8) by
diag{P̄, P̄, P̄} and its transpose, from the right and the left,
achieves the proof.

Remark 1: In the caseα = 0, Theorem 1 assures that the
state-feedback gainK asymptotically stabilizes system (3).

VI. EXAMPLE 1

Consider the following example, taken from [17]. We
address the problem of finding an exponentially stabilizing
control for system (3) with the values:

A0 =

[

1 0
0 1

]

, A1 =

[

−1 0
−1 −0.9

]

,

F =

[

0.1 0
0 0.1

]

, B =

[

0
1

]

.

(23)

Solving the LMIs of Theorem 2 forh1 = 0.5, µ1 = 0.2,
h2 = 0.6, andε = 4.2 leads to the state-feedback gainK =
[0.7670, −0.2241] which asymptotically stabilizes (α = 0)
the system up toµ2 = 0.21.

Concerning theα−stabilization, for α = 1.19, h1 =
h2 = 0.16, µ1 = µ2 = 0.09 and ε = 2.3, the computed
state-feedback gainK = [1.0215 − 1.0741] exponentially
stabilizes the system. This result ensures that the system
is exponentially stable with a delayed and nonuniform
sampled control. The corresponding simulation results are
given on Figure 2.

0 1 2 3 4 5 6 7
−15

−10

−5

0

5

10

time (s)

X
1/

X
2

X1(t)
X2(t)
Exponential Bounds

Fig. 2. Simulation of the system forα = 1.19, h1 = h2 = 0.16, µ1 = µ2 =
0.09

Note that for larger valuesα > 1, Theorem 2 cannot
ensureα−stability.

VII. E XAMPLE 2

The second example , of the neutral type, is not concerned
with sampled-data control, but it still uses Theorem 2.
Several authors interpreted the wave equation describing the
torsional behavior of a flexible rod with a mass as a linear
system with delayed terms. A neutral state representation
for flexible rod equation is given in [5] :

ẋ1(t) = x2(t),
ẋ2(t) = ẋ2(t −2T )− x2 + x2(t −2T )+u(t −T ),

(24)

whereT represents the delay and depends on the parameters
of the system.

In such a neutral case, the difference operatorx(t)−
Fx(t−g) must be stable in sense of Shür-Cohn, which cor-
responds to formal stability [2]. Then, [2] and [5] introduce
a stabilizing control of the form :

u(t) = −λ ẋ2(t −T )+ v(t)

with λ ∈]0,2[. In [2] and [5],v(t) was designed on the basis
of x(t−T ) measurement. Here, one suppose that ˙x2(t−T ) is
still measured, but thatx is measured with some additional
time-varying delayµ , i.e. x(t −T −µ(t). So the following
control law is proposed:

v(t) = Kx(t −T −µ(t)), (25)

whereµ is such that‖µ(t)‖ ≤ µ2 andK is a state feedback
gain of appropriate dimension.



Then, flexible rod equations are in the form of (3) with:

A0 =

[

0 1
0 −1

]

, A1 =

[

0 0
0 1

]

,

F =

[

0 0
0 1−λ

]

, B =

[

0
1

]

.

(26)

Theorem 2 is adapted to the flexible rod case, withλ =
0.2, T = 0.1, by takingα = 1.05, µ1 = 0, µ2 = 0.08 andε =
1.32. After controlling that‖eα h1F‖< 1, the corresponding
simulation results are given on Figure 3. They show the
expected exponential convergence.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

time (s)

X
1/

X
2

X1(t)
X2(t)
Exponential Bounds

Fig. 3. Simulation of flexible rod withα = 1.05, h1 = h2 = 0.1, µ1 =
0µ2 = 0.08

VIII. C ONCLUSION

The obtained results generalize several recent works: [8]
and [14] to neutral systems; [7], [8] and [15] to exponential
stabilization; [14] to non uniform sampling; [8] to non-small
delays; [2] and [5] to delayed measurement..

In order to shorten the presentation, it was only consid-
ered one delayτ1, one delayg and a constant input delayh2.
However, the results of this paper can be easily extended
to the case of multiple delaysτ1, ...,τm, g1, ...,gk and of
a time-varyingh2(t). Another possible extension includes
robustness issues.
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